首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用全球气溶胶模式GEM-AQ/EC的1995~2004年10年沙尘气溶胶模拟,探讨了东亚地区沙尘气溶胶源汇分布和垂直结构特征.结果表明,东亚大陆沙尘气溶胶源区主要集中在东亚的沙漠地区,有两大沙尘主要源区:覆盖蒙古国南部及中国内蒙中西部的沙漠地区和南疆的塔克拉玛干沙漠.东亚沙尘排放量春季最大,占全年排放总量的66.81%,四月份达15.29Mt,夏季下降,秋季小幅度回升,冬季最小;东亚沙尘排放量呈现明显的年际变化及增强的趋势.东亚沙尘沉降高值区与源区一致,源区及附近以干沉降为主,远距离传输到中国东北、长江以南及西太平洋包括日本、朝鲜半岛,湿沉降占主导地位;沙尘沉降具有季节变化,其趋势与东亚沙尘排放量的季节变化大致相同,且模拟的10年沉降量呈上升趋势.东亚沙漠地区排放的沙尘主导了东亚沙尘气溶胶的变化,最大的净沙尘汇区集中在紧邻净沙尘源区的黄土高原及华北平原西部.东亚地区春夏秋3个季节均是沙尘的净源区,而冬季强西风急流输入东亚以外的沙尘使东亚整体上为沙尘净接收区.东亚大陆大部分地区,沙尘垂直分布主要集中在对流层低层3km高度以下,在西太平洋地区包括日本、朝鲜半岛沙尘高值中心位于在对流层中层5km高度上下,在沙漠以北地区沙尘垂直廓线的高值出现在对流层中上层6~8km高度.  相似文献   

2.
艾比湖流域春季大气气溶胶光学性质   总被引:1,自引:0,他引:1  
利用MicrotopsⅡ太阳光度计观测数据,得到艾比湖流域春季气溶胶光学厚度(AOD550)、Angstrom波长指数(α).结果显示,艾比湖流域春季AOD主要集中在0.1~0.4之间;受盐尘迁移过程中粉尘扩散、沉降等影响,精河地区和乌苏地区气溶胶光学性质存在一定差异.精河、乌苏两地AOD平均值分别为0.290和0.242,变异系数分别62.966%和47.444%,α平均值分别为0.609和0.894,变异系数为33.368%和56.946%,精河地区大气气溶胶主控粒子粒径相对较大,而乌苏地区气溶胶粒子的粒径变化幅度相对较大;AOD和α的关系复杂,当地主导风向是沙尘气溶胶的主要来源,温度变化并不是导致艾比湖流域AOD变化的内在原因;α0.5时,乌苏地区AOD随RH的增大而减小,精河地区受盐尘中可溶性离子的影响,表现出一定的吸湿性,α1.0时,细粒子吸湿增长造成AOD随RH的增大而增大,当0.5α1.0,气溶胶表现出一定的吸湿性,但当50%RH时,可能存在降雨对气溶胶大颗粒的冲刷从而导致AOD的降低;精河地区AOD高值的主要原因是大粒子的增加,小粒子气溶胶引起高污染现象的可能较小;乌苏地区气溶胶组成成分复杂,AOD高值受细模态粒子和粗模态粒子共同影响.  相似文献   

3.
利用MERRA-2再分析资料和CALIPSO星载激光雷达产品,分析了1980—2017年青藏高原和塔克拉玛干沙漠上空沙尘气溶胶的分布和传输特征.对比了MERRA-2与AERONET及MISR的气溶胶光学厚度(AOD)产品,其相关系数分别为0.809和0.776.基于MERRA-2资料分析表明,研究区域沙尘光学厚度(DAOD)按春、夏、秋、冬季依次递减.塔克拉玛干沙漠和青藏高原地区DAOD均在5月达最高值.青藏高原北部DAOD比南部高0.06~0.10,两地区的DAOD值差异在5月最高.自2000年开始,塔克拉玛干沙漠和印度恒河平原DAOD高值区强度和影响范围显著增大,对青藏高原的沙尘输送增强,印度沙尘对青藏高原的影响显著增加.CALIPSO观测表明,青藏高原上空的沙尘主要来自塔克拉玛干沙漠,传输量春季最大,秋、冬季最小;部分来自印度恒河平原,传输主要发生在夏、秋季.塔克拉玛干沙尘通过柴达木盆地向青藏高原传输,最远可至30°N,传输高度在4~8 km.冬季青藏高原上空的沙尘主要来自柴达木盆地.塔克拉玛干沙漠和青藏高原的最大气溶胶消光系数廓线分别出现在春季和夏季.塔克拉玛干沙漠和青藏高原地区沙尘层厚度多年平均值分别为1.00和0.82 km.2007—2017年,塔克拉玛干沙尘层厚度呈下降趋势,年下降率为0.018 km.青藏高原沙尘层厚度春季最大,冬季次之,夏季最小;沙尘层厚度年变化趋势不显著.  相似文献   

4.
RegCM3模式模拟我国春季气溶胶光学厚度及检验   总被引:1,自引:0,他引:1       下载免费PDF全文
利用区域气候模式RegCM3模拟了我国2005~2007年春季每月的气溶胶光学厚度及沙尘气溶胶光学厚度(AOD),并利用站点观测资料检验了模拟结果,探讨了沙尘气溶胶和人为活动排放气溶胶对春季AOD的贡献与影响.结果表明,模拟的我国春季AOD主要有3个高值区:南疆盆地和北疆部分地区,河西走廊地区,以及四川盆地和临近的中南部分地区.前两者AOD高值主要由沙尘气溶胶引起,后者主要受人为活动排放的气溶胶影响.观测资料检验表明模拟结果具有一定的可信度,模式对人类活动影响较少区站点的模拟效果优于对人类活动频繁区站点及城市和沿海站点的模拟,对城市和沿海站点的模拟结果偏低,对最偏远的阜康、海北、拉萨和西双版纳等站点的模拟结果与实际观测差别较大.  相似文献   

5.
基于MODIS的内蒙古气溶胶时空分布特征分析   总被引:1,自引:0,他引:1  
林泓锦  都瓦拉  玉山  苏玥 《环境科学学报》2018,38(12):4573-4581
通过对2002—2018年采用融合算法反演的MODIS气溶胶光学厚度(AOD)数据进行分析,研究了内蒙古气溶胶的时空分布特征.结果表明,内蒙古AOD值在东北部地区最高,其次为工业发达的中西部地区,最低值出现在大兴安岭及其山脉上空.全年AOD峰值出现在4月和6月,4月峰值主要受沙尘影响,6月峰值受季节雨带位移带来的湿度变化影响.中部气溶胶成分以沙尘气溶胶为主,而中西部和东北部气溶胶成分中存在大量人为源气溶胶.风场和相对湿度场与AOD值的年代际变化有关.  相似文献   

6.
根据全球沙尘气溶胶气候模式GEM-AQ/EC模拟的1995~2004年的沙尘起沙量和干湿沉降量,分析了沙尘气溶胶源汇的全球时空变化特征.全球沙尘起沙量集中在各个主要沙漠地区,北非对全球沙尘气溶胶贡献最大为66.6%.沙尘气溶胶沉降的高值区分布在沙漠源区及其紧临的下风地区.最大净沙尘气溶胶接收主要分布在沙漠周围地区并形成净接收量大于10t/(km2×a)的位于0°N~60°N之间的北非、欧亚大陆、西太平洋、北印度洋、北美和大西洋的带状分布.在北非、阿拉伯半岛、中亚、东亚和澳大利亚5个主要沙漠地区中,起沙量和沉降量都存在明显的季节变化,除中亚其他4个区域干湿沉降量和起沙的季节变化基本一致;东亚地区沙尘气溶胶起沙量和总沉降量的季节变化最为明显,而北非沙漠起沙量和总沉降量的季节变化最小,其他3个区域的季节变化幅度基本相同.中亚起沙峰值和阿拉伯半岛起沙次峰值出现在夏季,其他区域的峰值均出现在春季.10年间全球陆地年平均起沙量为(1500±94)Mt,保持略微上升趋势.以北非沙漠起沙量年际变化率最低(6.3%), 而以东亚(28.3%)和澳大利亚(45.0%)起沙量年际变化最为明显;全球陆地的沙尘气溶胶沉降量以约9.9Mt/a的速率递减,全球海洋的沙尘气溶胶沉降递增.  相似文献   

7.
利用太湖北岸地基太阳光度计(CE-318)2005年9月~2016年4月的观测数据,以及多年气象观测资料,对太湖北岸气溶胶年际尺度、季节尺度及逐月的光学特性、变化特征及影响因素进行了系统分析.揭示太湖北岸:1)AOD年均值呈逐渐降低趋势,但累年(2005~2016)均值高达0.776,2005~2012年累年均值为0.842,较全国同一时期AOD均值高63%;2)AOD四季变化分明,夏季(0.920)最高、冬季(0.689)最低、春季(0.788)与秋季(0.788)相近;3)气溶胶α指数逐年增大,年增幅约0.013,表明太湖地区大气污染物颗粒平均粒径逐年减小,非自然源比重持续增加;4)气溶胶α指数季均值为秋季冬季夏季春季,依次为1.320、1.232、1.164、1.098;5)体积谱四季均呈双峰结构,夏冬两季积聚模态粒子与粗模态粒子的体积浓度接近,春季以粗模态粒子为主,秋季以积聚模态粒子为主,6)气溶胶SSA季均值各年四季变化特征相似,累年总体季均值为秋季夏季春季冬季,依次为0.933、0.917、0.900、0.882,但年均值自2007年起呈逐年缓增趋势,年增幅约0.006,表明太湖地区气溶胶粒子的散射能力在逐年增大.  相似文献   

8.
杭州市大气气溶胶光学厚度研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2011~2012年杭州国家基准气候站内太阳光度计(CE-318)观测资料,分析杭州市气溶胶光学厚度(AOD)和Angstrom波长指数(α)的变化特征.结果表明,2011~2012年杭州市AOD500nm年平均值为0.86?0.47,α440~870nm年平均值为1.25?0.23.AOD季节变化特征不明显,主要与该地区天气形势以及内外源影响密切相关.α季节变化差异也不大,受北方带来的沙尘气溶胶影响,春季α略偏低.AOD呈现单峰型日变化特征,峰值出现在15:00,谷值出现在06:00,午后AOD明显升高主要与强烈的太阳辐射引起光化学反应产生的二次气溶胶以及近地层气溶胶在湍流输送作用下向城市上空扩散有关.从频率分布来看,AOD和α频率分布均呈现明显的单峰特征,并且较好的符合对数正态分布.α在高值区间1.1~1.7出现频率为77.8%,表明杭州市以平均半径较小的气溶胶粒子为主,属于城市-工业型气溶胶类型.杭州市AOD的高值(1.0)主要表现为粗模态气溶胶以及细模态气溶胶的吸湿增长.  相似文献   

9.
艾比湖地区气溶胶光学特性分析   总被引:1,自引:0,他引:1  
张喆  丁建丽  王瑾杰 《环境科学》2020,41(8):3484-3491
精河县气溶胶光学特性的定量评估是理解艾比湖盐尘传输过程的关键.本文利用2019年精河县CE-318太阳光度计站点观测资料,分析了气溶胶光学厚度(AOD)和Angstr?m波长指数(α)的变化特征.结果表明AOD日变化呈单峰曲线,与α呈反向变化特征;气溶胶粒子浓度和主控模态具有明显的季节性差异,与夏、秋季相比,春季AOD较高且变化幅度剧烈,粗粒子气溶胶占主控地位,粒子粒径和变化幅度较大; AOD和α呈负相关关系,从春季到秋季,气溶胶逐渐从粗模态向细模态过渡;与夏季相比,春季局地气溶胶对风速、风向和相对湿度的变化较为敏感;温度不是导致局地气溶胶变化的内在因素,但与气溶胶粒子扩散能力成正比;非采暖期,精河县AOD高值主要受粗粒子为主的沙尘气溶胶的影响,小颗粒的气溶胶的增加以及气溶胶吸湿增长都不是造成该地区AOD增加的主要原因.  相似文献   

10.
沙尘不同的垂直分布对大气的加热作用不同,通过卫星观测结合数值模拟,可以更清楚地了解沙尘辐射加热作用,有利于理解沙尘对该地区大气热结构的影响机制.因此,本研究利用CALIPSO气溶胶产品和SBDART模式,分析了2007—2020年塔克拉玛干沙漠和青藏高原沙尘气溶胶及其短波加热率的时空分布特征.结果表明,塔克拉玛干沙漠和青藏高原的年平均沙尘气溶胶光学厚度(DAOD,532 nm)分别为0.300~0.350和0.086~0.108,平均值分别为0.328和0.097.塔克拉玛干沙漠季节平均DAOD的最大、最小值分别出现在春季和冬季,而青藏高原的最大、最小值分别出现在夏季和秋季.塔克拉玛干沙漠和青藏高原的沙尘消光系数(σD)最大值分别出现在春季和夏季.2007—2020年,两地的σD在春季均呈增加趋势,而在秋季则呈减小趋势.春季和夏季的短波沙尘加热率(SW DHR)均大于其它两个季节,其中春季最大,塔克拉玛干沙漠上空冬季最弱,青藏高原上空秋季最弱.春夏季,青藏高原北坡存在较强沙尘加热层,其顶部高于5 km,其强度及高值区从春季到冬季逐渐减小.从年变化来看,春季短波加热率呈加强趋势,秋季呈减...  相似文献   

11.
2种气溶胶排放源对模拟中国地区气溶胶分布的影响   总被引:1,自引:0,他引:1  
利用意大利国际理论物理研究中心(ICTP)发展的耦合了气溶胶模块的最新版区域气候模式RegCM4/Aerosol,选用全球大气研究排放源(EDGAR)和亚洲区域排放源(REAS)分别对中国地区进行了1 a的数值积分,分析了上述2种气溶胶排放源对模拟中国地区气溶胶光学厚度(AOD)、浓度和干湿沉降分布的影响。结果表明,2种排放源对硫酸盐气溶胶(SO2)量级和分布的模拟基本一致。在西南和华北2个源区,2种排放源模拟的SO2浓度均高达100μg/m3。由于EDGAR排放源中黑碳(BC)和有机碳(OC)排放量级较小,模拟的中国地区BC和OC浓度均比REAS排放源模拟值偏小50100倍左右,对应其模拟的BC和OC干(湿)沉降通量也比REAS排放源模拟结果偏低50100倍左右,对应其模拟的BC和OC干(湿)沉降通量也比REAS排放源模拟结果偏低50100倍左右。东亚气溶胶模拟中,REAS排放源优于EDGAR排放源。  相似文献   

12.
杭州市大气气溶胶光学厚度研究   总被引:4,自引:0,他引:4       下载免费PDF全文
利用2011~2012年杭州国家基准气候站内太阳光度计(CE-318)观测资料,分析杭州市气溶胶光学厚度(AOD)和Angstrom波长指数(α)的变化特征.结果表明,2011~2012年杭州市AOD500nm年平均值为0.86±0.47,α440~870nm年平均值为1.25±0.23.AOD季节变化特征不明显,主要与该地区天气形势以及内外源影响密切相关.α季节变化差异也不大,受北方带来的沙尘气溶胶影响,春季α略偏低.AOD呈现单峰型日变化特征,峰值出现在15:00,谷值出现在06:00,午后AOD明显升高主要与强烈的太阳辐射引起光化学反应产生的二次气溶胶以及近地层气溶胶在湍流输送作用下向城市上空扩散有关.从频率分布来看,AOD和α频率分布均呈现明显的单峰特征,并且较好的符合对数正态分布.α在高值区间1.1~1.7出现频率为77.8%,表明杭州市以平均半径较小的气溶胶粒子为主,属于城市-工业型气溶胶类型.杭州市AOD的高值(>1.0)主要表现为粗模态气溶胶以及细模态气溶胶的吸湿增长.  相似文献   

13.
2004年辽宁地区一次沙尘天气过程的动力机制分析   总被引:1,自引:2,他引:1  
利用NCEP再分析资料、气溶胶指数资料和污染物监测资料,从气候背景和环流形势入手,着重探讨了2004年4月14-16日辽宁地区的一次典型沙尘天气过程的形成动力机制.研究结果表明:2004年春季我国北方的气候背景为春季沙尘天气的发生提供了丰富的沙尘源;此次过程中,高空大槽引导极地强冷空气南下,配合低层强大的蒙古气旋构成了东北地区沙尘过程的典型天气环流形势.在起沙的动力机制方面,高低空急流的耦合加速了低层的辐合上升运动,加速了低层的辐合上升运动,高低空急流的有利配置所触发的强烈上升运动构成此次沙尘过程的主要动力机制.螺旋度上负下正的垂直分布是此次沙尘过程发生发展的重要动力机制,这是由于这种垂直结构对于沙尘过程这种中尺度天气系统而言,构成了低空辐合、高空辐散的深厚上升区,这种螺旋度的垂直分布十分有利于沙尘的发展.  相似文献   

14.
利用2013~2014年天津大气边界层观测站的CE318太阳光度计观测资料,分析天津气溶胶光学厚度(AOD)和波长指数(α)的分布特征.结果表明,天津地区AOD_(440nm)和AOD_(500nm)均值分别为0.99±0.34和0.87±0.30,波长500nm下AOD月均最高值为1.41±0.79,出现在2013年6月,最低值为0.49±0.92,出现在2013年11月.AOD的季节变化特征为春季受沙尘天气影响,α最低(0.85±0.32),夏季受高温天气条件影响,新生小粒子占比较多,α最高(1.16±0.29),根据α分布特点,影响天津地区的主要气溶胶类型为城市—工业气溶胶.造成春季AOD高值(AOD≥2)情况出现是受粗、细模态气溶胶粒子共同影响,夏季AOD高值出现主要是受细模态粒子影响,同时细粒子吸湿增长特性对AOD增长有较大影响.冬季AOD高值出现同样主要受细模态气溶胶粒子影响,其气溶胶粒子粒径高于夏季.对比沙尘、霾及非污染天气条件下AOD和α的差别,发现霾天气下AOD和α最高,分别为1.41±0.68和1.17±0.29,沙尘天气下AOD为0.99±0.62,α最低,为0.55±0.22.非污染天气下AOD最低,为0.53±0.46.不同天气条件下,随AOD增长α均有先升高后降低的特征.  相似文献   

15.
中国3个AERONET站点气溶胶微物理特性分析及比较   总被引:3,自引:0,他引:3  
选取中国地区区域代表性较强且观测时间序列较长的3个AERONET站点(SACOL、香河和太湖),分析了其气溶胶微物理参数特征. 香河和太湖多年平均气溶胶光学厚度(AOD)分别为0.67±0.66和0.72±0.44,是SACOL AOD平均值(0.38±0.27)的近2倍,且AOD变化范围较大. SACOL春冬季AOD较大,夏秋季AOD较小;而香河和太湖夏春季较大,秋冬季较小.结合尺度分布、体积浓度等参数特征说明沙尘是SACOL春季最主要的气溶胶类型,香河春季受沙尘的影响也较严重,而太湖受沙尘影响的频率较香河要小的多;香河和太湖AOD最大值出现月份与细模态粒子体积浓度最大值出现月份一致,是由于细模态粒子的消光效率是粗模态粒子的3~4倍.细模态体积比(Vf/Vt)的年变化趋势与?ngstr?m波长指数(?)的年变化趋势相似,Vf/Vt和?均可以用来分析粒子尺度大小的年变化特征.但?1.7时,Vf/Vt大于0.6,以细模态粒子为主;而0.75相似文献   

16.
黄土高原是重要的降尘区还是沙尘源区这一科学问题至今未有确切定论.本文利用北半球气溶胶区域气候模式NARCM,根据1995~2004年10a的模拟数据,分析了中国区域沙尘起沙量、沉降量以及沙尘的盈亏空间分布及风场,得到如下结论:1)沙漠及沙漠化地区是起沙量最大的区域、沉降量高值区集中在沙漠、沙漠化地区及其下风方向.黄土高原起沙量很小,而沉降量远大于起沙量.2)沙尘源区是沙漠及沙漠化地区,其余的地区则是沙尘汇区,降尘量由西北向东南递减.3)黄土高原因太行山和秦岭阻挡,处在最大的沙尘汇区.黄土高原的黄土是冰期和间冰期交替、经过漫长年代沙尘沉降的结果,模拟分析结论为黄土的风成学说提供了有力的证据.  相似文献   

17.
FY-4A提供的高时间分辨率沙尘强度产品为分析沙尘过程中气溶胶分布提供了新的思路.本研究使用MODIS暗像元/深蓝/合成算法的AOD产品以及FY-4A沙尘强度产品,分析了2018年春季中国西北地区的两次典型沙尘过程,并使用CALIPSO后向散射系数产品研究了这两次事件中气溶胶的垂直分布特征.研究结果表明:①风云四号沙尘强度产品与MODIS深蓝算法产品以及合成算法产品在西北沙漠地区的沙尘分布情况上具有很好的空间一致性;②对于沙尘有明显向东输送的沙尘过程而言(如2018年4月4—6日),沙尘主要分布在2~6 km,有些地区甚至只有4 km以上才存在沙尘,在沙尘输送的下游地区,沙尘主要分布在2 km以下的低空;而对于沙尘没有向外扩散的沙尘过程(如2018年5月21—23日),沙尘粒子则主要分布在0~5 km高度处.  相似文献   

18.
京津冀地区气溶胶季节变化及与云量的关系   总被引:5,自引:2,他引:5  
利用2000年3月—2008年2月中分辨率成像光谱仪(MODIS)的卫星资料,分析了京津冀平原地区大气气溶胶光学厚度(AOD)和气溶胶细粒子组分比率(FMF)的时空分布特征. 结果表明:通过AOD与FMF的组合特征可判别气溶胶季节变化特征.冬、春季以粗粒子为主,但冬季AOD偏小,而在春季急剧增大;夏、秋季均以细粒子为主,但夏季AOD达到最大,秋季较小. 大气环流和气流后向轨迹分析表明,冬季到达北京的气流以西北冷空气为主,西北路径的气流轨迹占冬季气流轨迹总数的67%;春季主要受偏西、西北及偏北气流影响,这3类对沙尘天气有贡献的气流轨迹占春季气流轨迹总数比例之和达到60%;夏季主要以偏南气流和局地环流占优,这2类气流轨迹分别占夏季气流轨迹总数的52%和34%;秋季气流轨迹与春季的相似,但途经沙源的气流传输速度较春季慢.京津冀平原地区夏季AOD与云量(CF)呈正相关,AOD增加,特别是细粒子增加可能导致局地云量增多.   相似文献   

19.
天山北坡城市群气溶胶光学特性时空分布特征   总被引:4,自引:0,他引:4  
为探究天山北坡城市群大气气溶胶光学特性时空分布特征,本文利用卫星遥感MCD19-A2气溶胶产品分析了2000~2019年研究区气溶胶光学厚度(aerosol optical depth,AOD)时空分布特征及变化趋势,针对AOD较为稳定的2016~2019年,利用多波段太阳光度计地基遥感技术,对AOD及Angström波长指数(α)等参数进行特征分析.结果表明:①空间上,研究区AOD空间分布与地形呈现较好的一致性,高值现象主要分布在低海拔地区;AOD空间分布表现出较强烈季节变化,春季(0.15±0.03) > 秋季(0.14±0.03) > 夏季(0.14±0.02);②时间上,2000~2019年间研究区AOD年均值为0.12,年增幅1.03%,整体呈现增加趋势;AOD月均值的年际变化表现为双峰型,5月和11月为第一峰值和第二峰值,自然尘源粉尘的释放和传输以及人类社会燃煤供暖是造成AOD增加的主要原因;③受沙尘天气的影响,春季AOD的变化幅度较为剧烈,气溶胶主控粒子粒径及变化幅度均大于夏季;研究区AOD高值主要受粗模态粒子气溶胶的影响,细模态粒子吸湿增长会引起AOD的波动,但不易导致AOD高值.  相似文献   

20.
利用Aqua/MODIS C006大气气溶胶光学厚度(AOD)产品分析胡焕庸线两侧时空分布与变化特征,并结合2010年土地利用类型探究二者之间的响应.结果表明:(1)胡焕庸线一方面可作为中国气溶胶分布的重要分界线,两侧AOD呈现东高西低的特点;另一方面,亦可作为AOD成因的分界线,胡焕庸线东侧气溶胶主要以人为活动排放为主,胡焕庸线西侧气溶胶主要是以沙尘为主的自然气溶胶构成.(2)10年来,胡焕庸线东侧AOD以0.0768/10 a的速率下降,高值区面积也以6.41万km2·a-1的速率逐年萎缩;而胡焕庸线西侧只呈现微弱的下降趋势,高值区、低值区面积无显著变化.(3)胡焕庸线以东地区,土地覆盖类型为耕地和建设用地的区域AOD较高.而在胡焕庸线以西地区,AOD与未利用土地及其周边草地地区的响应较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号