首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
过氧化氢加Fe~(3+)作催化剂处理含酚废水的研究   总被引:5,自引:0,他引:5  
采用H_2O_2/Fe~(3+)对合酚废水进行了催化氧化的研究。对于溶液pH值、过氧化氢浓度、铁离子浓度与酚、COD、TOC去除的关系作了探讨。结果表明,在酸性pH值范围内,Fe~(3+)作催化剂可获得不低于Fe~(2+)作催化剂时的催化活性,对酚、COD和TOC都有较好的去除率。而在初始pH=7时,Fe~(3+)作催化剂的反应活性明显降低。自动连续控制溶液pH=7.0±0.2时,无论是高铁或低铁离子都大幅度降低其反应活性。同时也证实,低浓度铁离子不论是Fe~(3+)或Fe~(2+)也都降低其催化反应活性。  相似文献   

2.
研究了铝粉投加量、初始pH、多金属氧酸盐(POM)及Fe~(2+)添加对零价铝/酸/氧体系中H_2O_2浓度的变化和染料降解的影响。研究表明,不同条件下H_2O_2浓度变化呈现出一定规律性。在初始阶段,H_2O_2浓度逐渐上升,达到最大值后开始下降,最终浓度值趋于稳定。增加铝粉的投加量有助于提高零价铝/酸/氧体系中H_2O_2浓度;酸性越强,H_2O_2产生量越多,浓度达到最大值时所用的时间也越短;在实验研究的POM浓度范围内,零价铝/酸/氧体系中H_2O_2浓度随着POM的添加而增大;Fe~(2+)能与H_2O_2发生芬顿反应,产生·OH,因此,零价铝/酸/氧体系中H_2O_2的积累量随着Fe~(2+)浓度的升高而降低,而活性黑5的降解率却随着Fe~(2+)浓度的升高而升高。  相似文献   

3.
文章研究了紫外光(UV)辐射对微量Fe~(2+)活化过硫酸氢钾(PMS)降解罗丹明B(RhB)的增强作用以及其反应机理。考察了初始pH值、Fe~(2+)投加量、PMS初始浓度和RhB初始浓度等参数对UV/Fe~(2+)/PMS体系降解RhB的影响。对反应体系中的活性自由基、水中常见离子和腐殖酸对反应体系的影响以及RhB的矿化情况进行了探究。结果表明,在溶液体系pH值为3、Fe~(2+)投加量为50μmol/L、PMS浓度为500μmol/L的最佳条件下,10 mg/L RhB在体系反应10 min时降解率达到99%。自由基猝灭实验表明了硫酸根自由基和羟基自由基是攻击RhB分子的活性自由基,硫酸根自由基起到主要作用。水体中常见的碳酸氢根离子和腐殖酸在低浓度会促进降解而高浓度则抑制降解,氯离子则抑制降解反应。对TOC进行分析,60 min时RhB的矿化度达到48%。通过评估UV/Fe~(2+)/PMS体系降解RhB,验证了UV辐射对降解反应的增强作用,表明了UV/Fe~(2+)/PMS体系降解RhB的有效性。  相似文献   

4.
王昶  张宗鹏  曾明 《环境工程》2015,33(12):49-53
采用均相Fenton高级氧化技术对苯甲酸废水进行降解,考察了p H值、H2O2投加量、Fe~(2+)的用量、苯甲酸溶液的初始浓度等因素对苯甲酸降解的影响。结果表明:在室温条件下,最佳初始pH=3,H_2O_2最佳的经济投加量(Qth)为12.3 mmol/L,Fe~(2+)最佳投加量为0.41 mmol/L(即c(H_2O_2)∶c(Fe~(2+))=30∶1);经60 min反应后,100 mg/L苯甲酸基本可完全去除,TOC去除率也可达41.9%以上;当苯甲酸浓度为200 mg/L时,TOC去除率最大,可达45.4%;当苯甲酸浓度高于200 mg/L时,可以采取分批投加H_2O_2的方式以获得较高的去除率。  相似文献   

5.
树脂负载草酸铁光助类芬顿降解水中孔雀石绿   总被引:2,自引:4,他引:2  
张瑛洁  马军  陈雷  赵吉  吴培瑛 《环境科学》2009,30(12):3609-3613
为了强化多相类芬顿反应的速率,在可见光下采用以草酸盐为配体的三价铁草酸络合物(Fe~(3+)C_2O_4/R)为催化剂催化过氧化氢降解水中孔雀石绿.结果表明,与Fe~(3+)/R相比催化剂Fe~(3+)C_2O_4/R具有更强的催化活性,能强化羟基自由基(·OH)的产生. 过氧化氢的初始浓度越高,反应速率越快,反应遵循一级反应动力学,反应速率常数与过氧化氢浓度具有很好的相关性.在pH值3~9的范围内,催化剂Fe~(3+)C_2O_4/R都能有效地对MG进行降解,最佳pH值为6.随着催化剂投量的增加,MG的去除效率明显提高.随着MG初始浓度的增加,MG的去除也由吸附为主转化为以氧化为主,但总体影响不大.催化剂重复使用后仍然具有较好的催化活性,说明铁在树脂表面负载比较牢固,催化剂具有反复使用的能力.反应中的氧化活性物种是羟基自由基和高价态铁同时共存.  相似文献   

6.
氧化法烟气脱硝技术在超低排放背景下很有应用前景,解决氧化吸收后亚硝酸盐的水体二次污染问题有助于推广该技术。该文验证了碱液吸收NO_2后,亚硝酸盐生成机制。通过对比试验选定最佳NO_2~-检测方法。考察了Fenton试剂液相催化氧化NO_2~-效果。探讨了pH值、H_2O_2浓度、Fe~(2+)浓度、微波敏化等因素对NO_2~-转化效率的影响。结果显示:Fenton试剂能够氧化亚硝酸盐,其中pH值、H_2O_2浓度、Fe~(2+)浓度,以及是否施加微波等条件,是NO_2~-转化效率的重要影响因素。当NO_2~-的浓度为452.51 mg/L时,加入0.03 mol/L H_2O_2和3 mmol/L的Fe~(2+)与之反应(无微波及活性炭敏化条件),可使NO_2~-转化效率高达94.88%;pH值、H_2O_2浓度、Fe~(2+)浓度等是NO_2~-转化效率的重要影响因素,最佳p H值是3,H_2O_2浓度、Fe~(2+)浓度的增加可提高NO_2~-转化效率;微波可提高NO_2~-转化效率,施加微波可将NO_2~-转化效率从58.88%提高至68.89%,且活性炭的添加可强化微波敏化效果,其中果壳基活性炭强化效果优于椰壳基活性炭。  相似文献   

7.
NO的排放严重影响大气环境,其溶解度低不易被液相吸收。芬顿法产生的羟基自由基氧化性极强但寿命很短,超重力机具有混合速率快、液体停留时间短的特点,该文创新性地结合二者优势,对NO气体进行液相氧化吸收。分别研究了芬顿溶液pH值、浓度、H_2O_2与Fe~(2+)浓度比值、超重力机转速以及NO与芬顿溶液体积流量比等条件对NO脱除效果的影响。超重力机双进液口处即时混合H_2O_2与Fe~(2+)溶液,在1 400 r/min转速下使用pH=2,H_2O_2浓度0.2 mol/L,H_2O_2与Fe~(2+)浓度比为4的芬顿溶液对NO的脱除效果最优。当H_2O_2与Fe~(2+)液流量均为15 L/h,500×10-6 NO气流量为200 L/h时,NO的脱除效率可以达到75%。  相似文献   

8.
以考察超声-类Fenton法预处理焦化废水的影响因素为目的,研究了初始pH、Fe_3O_4投加量、H_2O_2投加量和超声波功率对COD去除率的影响。结果表明,预处理焦化废水的最优条件如下:pH为3. 0,Fe_3O_4的质量浓度为1. 0 g/L,H_2O_2(质量分数为30%)的体积分数为1. 0 mL/L,超声波功率为490 W,反应时间为120 min。在此条件下COD的去除率可达70%。  相似文献   

9.
超声协同Fe0@Fe3O4降解四氯化碳   总被引:1,自引:0,他引:1  
采用附着在Fe_3O_4纳米颗粒上的纳米零价铁(n ZVI)对四氯化碳(CCl4)还原脱氯.同时,利用SEM和BET等技术对Fe~0@Fe_3O_4的表面形貌和粒径进行表征,探究了不同反应条件如Fe~0@Fe_3O_4投加量、超声功率、初始pH值、温度和CCl4初始浓度对CCl4去除率的影响.最后,比较了Fe~0@Fe_3O_4、n ZVI和Fe_3O_4颗粒对CCl4的去除效果.结果表明,Fe~0@Fe_3O_4比n ZVI比表面积更大、分散性更好.超声功率和温度的提高对CCl4的降解有明显的促进作用.在最佳条件(催化剂投加量0.5 g·L-1,超声功率300 W,初始pH=7.0,温度30℃,CCl4初始浓度2 mg·L-1)下,Fe~0@Fe_3O_4复合材料在60 min内对CCl4的去除效率为88.5%,明显高于n ZVI(60.9%)和Fe_3O_4颗粒(13.2%).Fe~0@Fe_3O_4对CCl4去除过程符合伪一级动力学模型.  相似文献   

10.
本文采用Fenton试剂法对垃圾渗滤液进行了研究,探讨了pH、H_2O_2/Fe~(2+)的比值和Fe~(2+)的量等因素对CODcr去除率的影响。结果表明:Fenton法对垃圾渗滤液中COD具有良好的处理效果,最佳条件是:初始pH值为3,H_2O_2/Fe~(2+)的比值为2,Fe~(2+)的量在300mg/L时,垃圾渗滤液的COD去除率可达47%。  相似文献   

11.
UV/PMS降解水中罗丹明B的动力学及反应机理   总被引:1,自引:1,他引:0  
采用紫外(UV)活化过硫酸氢钾(PMS)产生强氧化性硫酸根自由基(SO_4~·-)降解人工染料罗丹明B(RhB).考察了溶液初始p H、氧化剂剂量、RhB初始浓度、天然有机物(NOM)、Fe~(2+)浓度、自由基淬灭剂(甲醇和叔丁醇)及水体中常见阴离子对降解效果的影响,并探测反应体系中生成的无机阳离子及小分子有机酸的种类和浓度.结果表明,降解反应遵循准一级反应动力学,其降解速率受到溶液初始pH的显著影响,当溶液酸性越强或碱性越强时,RhB的降解效果越好,且酸性条件下降解效果优于碱性条件.同时,加大氧化剂剂量及降低底物浓度也会对RhB的降解起促进作用.体系中投加过渡金属Fe~(2+)可显著促进RhB的降解效果,当Fe~(2+)与PMS的浓度比为1∶1时,降解效果最佳.水体中的NO_3~-对RhB的降解有着显著的促进作用,而H_2PO_4~-、C_2O_4~(2-)、Cl~-和NOM则对RhB的降解有抑制作用.采用离子色谱分析了UV/PMS体系降解RhB所产生的NH_4~+,以及甲酸、乳酸、乙酸和草酸,推测RhB在UV/PMS体系中的降解主要是通过共轭结构的破坏、N-位脱乙基并伴有苯环结构的破坏进行的.综合分析表明,UV/PMS工艺可有效运用于罗丹明B污染水体的修复处理过程.  相似文献   

12.
张剑桥  迟惠中  宋阳  罗从伟  江进  马军 《环境科学》2016,37(8):3067-3072
研究了Ce~(3+)与Cu~(2+)协同强化芬顿体系在不同初始条件下对水中苯酚的氧化效能与机制.结果表明,在p H适用范围的宽度和H_2O_2浓度变化方面,Ce~(3+)/Cu~(2+)/Fe~(2+)/H_2O_2体系比传统的芬顿体系更具有优势,该体系在p H=5.0、H_2O_2浓度为2.0mmol·L-1的条件下,仍可以对苯酚保持相对较高的氧化效能;Cu~(2+)可能会借助反应过程中的中间产物(醌类物质)生成Cu+,Cu+催化H_2O_2分解生成·OH,Ce~(3+)可能促进体系内醌类物质的形成,加快Fe~(3+)与Fe~(2+)的循环效能,在一定程度上提高了芬顿体系中H_2O_2分解生成·OH的速率,说明Cu~(2+)与Ce~(3+)对芬顿体系的强化作用具有协同性;自由基终止剂依然可以抑制Ce~(3+)、Cu~(2+)强化的芬顿体系对苯酚的降解,由此说明体系中起到氧化作用的活性物种仍然是羟基自由基(·OH).  相似文献   

13.
以Al_2O_3为载体,采用浸渍-焙烧法制备了Fe_2O_3-TiO_2-MnO_2/Al_2O_3催化剂,使用SEM、EDX、BET和XRD方法对其进行了表征.以化工园区污水处理厂二级出水为目标降解物,考察了该催化剂在臭氧催化氧化过程中的催化活性.结果表明,浸渍液中Ti~(4+)、Mn~(2+)、Fe~(3+)的摩尔比为2:2:1、焙烧时间为4h和焙烧温度为500℃下制备出的催化剂对化工园区废水有较好的催化性能,在臭氧投加量为50mg/L,催化剂填充率为50%的条件下,反应60min后废水COD的去除率达到52.2%.三维荧光谱图显示,废水经臭氧催化氧化后,水中可见腐殖质类和UV腐殖质类物质可完全降解,同时有少量类富里酸生成.  相似文献   

14.
水体中的有机质、无机盐及酸碱度是影响纳米材料迁移转化的主要因素.考察了Na~+、Mg~(2+)、Ca~(2+)、Sr~(2+)和Ba~(2+)对Fe_3O_4磁性纳米材料(Magnetic Nanoparticles,MNPs)的沉降作用.结果表明,Fe_3O_4MNPs的沉降作用是水体pH、金属离子化合价、离子强度共同影响的结果.整体上,碱土金属离子较Na~+更能加速Fe_3O_4MNPs的沉降.当pH为5.0时,浓度低于1.0 mmol·L~(-1)的Na~+、Mg~(2+)和Ca~(2+)有助于Fe_3O_4MNPs的悬浮;当浓度大于1.0 mmol·L~(-1)时,较强的离子强度促使Fe_3O_4MNPs团聚,发生沉降.当pH为9.0时,碱土金属离子较Na~+更能促使Fe_3O_4MNPs聚沉.因此,纳米颗粒在水体中的扩散和聚沉需要综合考虑金属离子种类和浓度.  相似文献   

15.
Fe3O4/TiO2-H2O2非均相类Fenton体系对3,4-二氯三氟甲苯的降解   总被引:1,自引:1,他引:0  
用Fe_3O_4/Ti O_2-H_2O_2体系对3,4-二氯三氟甲苯(3,4-DCBTE)进行降解反应研究,同时考察了pH值、催化剂投加量、H_2O_2投加量、温度等因素对3,4-DCBTE降解效率的影响.实验结果表明,Fe_3O_4/Ti O_2-H_2O_2非均相类Fenton体系对3,4-二氯三氟甲苯的处理效果极佳;并且在H_2O_2投加量为45.0 mg·L~(-1)、Fe_3O_4/TiO_2的物质的量比为1∶1、pH=3.0、温度为40.0℃的条件下反应效果最佳,去除率高达99.1%.同时从实验结果可以看出,pH在2.0~7.0范围内该体系对3,4-二氯三氟甲苯均有降解效果,说明该体系相比于传统的Fenton体系有较宽的pH适用范围.目标污染物的降解符合一级反应动力学,其发生反应所需的活化能为36.9 k J·mol~(-1).  相似文献   

16.
微纳米气泡比表面积大,气泡内部压力远高于外部压力,在液相中停留时间长,具有强氧化等特性。利用微纳米气泡发生器将水、空气和NO混合产生微纳米气泡气液体系用于NO的吸收。结果表明,NO体积浓度为1 250×10~(-6),pH=7,NO的氧化吸收效率可以达到50.1%。在水相中加入Fe~(2+)后,NO体积浓度为3 750×10~(-6),pH=5,NaCl质量浓度为0.5 g/L,十二烷基硫酸钠(SDS)质量浓度为6 mg/L时,Fe~(2+)摩尔浓度为2 mmol/L,NO的吸收效率可以达到82.1%。加入Mn~(2+)后,其他条件不变,当Mn~(2+)摩尔浓度为2 mmol/L时,NO吸收效率可以达到92.3%。  相似文献   

17.
含超细颗粒物废水的处理方法,是添加 Fe~(+3)、用碱调节 pH,而后以聚合物凝絮剂进行凝絮处理。本方法可有效地除去和回收很细的氧化铁颗粒。实例:将来自铁氧体生产过程的含55mg/L Fe_2O_3的排放废水,以≥10mg/L Fe~(3+)配料,调节至 pH8,用聚丙烯酰胺在5mg/L浓度的条件下凝絮。上层清液中悬浮的固体浓度为≤3mg/L,而对含50mg/L Fe_2O_3的废水,只用聚合物凝絮剂处理时上层清液中悬浮固体浓度的对照值为5mg/L。  相似文献   

18.
H2O2-Fe2+法处理精喹禾灵生产废水的研究   总被引:1,自引:0,他引:1  
采用酸析法先对精喹禾灵生产废水进行预处理然后用H_2O_2-Fe_~(2 )法进行催化氧化,研究了H_2O_2投加量及投加方式、Fe~(2 )投加量、反应时间对处理效果的影响。结果表明,在H_2O_2投加量为12g/L,分批投加,Fe~(2 )投加量为300mg/L,反应时间为90min、pH=2~4的条件下,氧化,出水经活性炭吸附后废水的COD和色度的去除率分别可达94.5%和96.7%,用石灰乳中和后可直接排放,达到了国家二级排放标准(GB8978-1996)。  相似文献   

19.
采用共沉淀法制备纳米级Fe_3O_4,将其包覆在纳米Pd/Fe颗粒表面制成纳米级Fe_3O_4-Pd/Fe复合材料,并用于2,4-二氯苯氧乙酸(2,4-D)的催化脱氯.同时,采用透射电镜(TEM)、扫描电镜(SEM)等方法对复合材料的结构进行分析,并考察了初始pH、钯化率、反应温度、纳米Fe_3O_4投加量等实验参数对n Fe_3O_4-Pd/Fe复合材料催化脱氯2,4-D的影响.结果发现,纳米Fe_3O_4粒径小于Pd/Fe纳米颗粒,具有一定的磁性,包覆于纳米Pd/Fe表面,提高了纳米材料的稳定性及分散性,并有利于复合材料的回收和循环利用.此外,纳米Fe_3O_4具有一定的导电性,可作为良好的电子通道为纳米Pd/Fe颗粒传递电子,促进反应的进行,增强2,4-D的去除效果.实验结果表明,较高的钯化率、反应温度、Fe_3O_4∶Fe质量比及中性pH条件均有利于反应的进行.当纳米Fe投加量为1.0 g·L-1,m(Fe_3O_4)∶m(Fe)为1∶1,初始pH为7.0,钯化率为0.15%,反应温度为25.0℃时,反应90 min后,40.0 mg·L-1的2,4-D的去除率达到100%,苯氧乙酸(PA)的生成率达99.8%.  相似文献   

20.
目的确定Fenton法对焦化废水深度处理的去除率、投药比和反应时间。方法选取生化后的二沉出水,加入硫酸调节水样pH值至3.5,加入H_2O_2氧化剂和FeSO_4催化剂,在充分搅拌条件下,由Fe~(2+)催化H_2O_2反应产生羟基自由基(·OH),利用其超强氧化能力深度分解氧化有机物,从而有效去除废水中生物难分解的COD。通过调节H_2O_2、Fe~(2+)用量以及记录不同反应时间下的结果,从而分析出COD最佳去除率的COD:H_2O_2:FeSO_4的摩尔比以及反应时间,以便确定工程应用时的最佳工艺条件。结果通过试验得知,COD:H_2O_2的摩尔比为1∶4时是比较理想的投加比,随着Fe~(2+)投入量的增加,COD去除效果先增加后下降,继续增加Fe~(2+)用量后COD去除率再次上升随后又下降,其变化曲线呈M状,最高去除率为84.6%。随着反应时间的延长,COD去除率上升,在20~30 min左右基本趋于稳定。结论利用Fenton试剂处理对焦化废水进行深度处理时,Fenton药剂投加比与COD去除率的关联曲线为"M"型;药剂最佳投加摩尔比有两个区间,即COD:H_2O_2:FeSO_4=1:4:2.5~3和1:4:4~4.5区间,应避开效果不理想的1:4:3~4;从技术经济角度考虑,最佳反应时间可取30~45 min;控制好Fenton药剂投加比和反应时间,均能使出水COD降低至80 mg/L以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号