首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以西北某沙漠地区的废水排放场地为例,利用Visual MODFLOW 2010.1软件构建污染物溶质运移模型,模拟废水中硝态氮在该场地饱和带地下水中的迁移、扩散和衰减规律,从而定量模拟预测未来20年内污染晕的扩散范围和浓度变化趋势。结果表明:含硝态氮废水在进入含水层后对地下水造成明显污染。随着时间延长,地下水中污染晕的范围在水平方向上呈椭圆状缓慢扩大,污染中心区地下水硝态氮浓度明显降低。受场地地下水水力梯度的限制,地下水流动缓慢,污染晕的空间扩散范围非常有限。废水进入含水层后第1年、第5年、第10年和第20年年末,污染晕的水平分布面积分别为18.52万,21.25万,24.15万,28.24万m~2,面积平均扩散速率为0.512万m~2/a;硝态氮的最大浓度分别为1.32,0.68,0.27,0.14 mg/L。污染晕中心相对于第1年、第5年、第10年和第20年分别沿地下水流线方向迁移447.21,948.68,1 755.63 m,距离平均迁移距离为87.78 m/a。在切断污染源后,随着时间延长,废水排放对地下水水质产生的影响将逐渐减弱,最终能够达到可接受水平。  相似文献   

2.
基于氮肥企业退役地块土壤、地下水、土壤气和室内空气中氨氮的实测数据,分析了氨氮在各地块中的污染水平和分布特征,评估了氨氮污染的人体健康风险,分析了氨挥发造成的刺激性异味风险和对室内空气质量的影响,及氨氮迁移转化对附近地表水和下游地下水水质的污染风险.分析发现,4个地块中土壤和地下水氨氮含量均表现较强的变异性,土壤中氨氮最高浓度分别高达12700.00,2420.00,2920.00,2370.00mg/kg,地下水中氨氮最高值分别高达7550.00,5100.00,847.00,3760.00mg/L.在平面分布上,4个地块中土壤和地下水较高浓度氨氮均主要分布在生产区和污水处理区,在垂向分布上4个地块间存在差异,氮肥厂I的土壤以黏土为主,多数点位氨氮含量随深度增加而递减,氮肥厂II、III和IV的土壤以粉土/粉砂或粉土夹粉黏为主,氨氮含量总体呈现随深度增加而增加的趋势.4个地块中,仅氮肥厂I在最保守条件下土壤中氨氮的最高危害熵(1.54)略超可接受风险水平(1.0).氮肥厂II和IV的土壤气和室内空气中检出氨浓度范围分别为≤ 9.88mg/m3和≤ 0.18mg/m3,对室内空气质量未产生不利影响.氮肥厂I和II紧邻河流监测井中的氨氮浓度超《地表水环境质量标准》中IV类(1.5mg/L)标准1.05~409.33倍,氮肥厂III和IV污染区地下水中氨氮浓度在至少4次监测结果中有轻微降低,且在下游监测井中发现硝态氮的积累.分析结果表明,4个地块在现状条件下土壤和地下水氨氮污染的人体健康风险较低,对室内空气质量影响较小.但地块地下水中氨氮是附近地表水和下游地下水环境的长期污染源,氨氮转化的硝态氮更易向下游迁移.建议今后处理氮肥企业退役地块氨氮污染时将其对地表水和下游地下水环境的污染风险纳入考虑.  相似文献   

3.
使用海水进行水产品加工的企业所排放的废水盐度、氨氮浓度高,在此环境下,微生物的活性受到影响,增长速度慢,产率系数低,处理难度较大,文章结合工程实例介绍了"水解酸化 两级生物接触氧化"处理高盐度水产品加工废水的运行效果,结果表明:对Cl-浓度平均8000mg/L的高盐度水产品加工废水,系统对COD、SS、氨氮的去除率分别超过了88%、90%、85%,出水COD、SS、氨氮分别低于100mg/L、70mg/L、15mg/L,出水完全可以达到《污水综合排放标准》(GB8978-1996)一级排放标准.  相似文献   

4.
对于低浓度含氨氮废水,铵离子交换工艺具有高效、低耗的优点。在实验室利用固定床离子交换装置处理氨氮废水,在20L/h条件下,铵交换量达到最大,为6.1mg/g。分别选用氢氧化钠和氯化钠的混合液以及碳酸钠溶液作为再生液,连续处理石化含氨废水。在进水氨氮浓度小于50mg/L条件下,出水氨氮小于1mg/L;在进水氨氮浓度60-80mg/L条件下,出水氨氮小于2mg/L。再生液用量约为床层体积的4倍。  相似文献   

5.
以燃煤电厂较为集中的鄂尔多斯为研究区域,选取目前易被忽视的2种电厂污染物氨氮、氟离子作为污染因子,探究此类污染物在区域内非饱和带土壤细砂、砂质粉土层的运移规律。通过室内实验、Hydrus-1D软件建立模型进行模拟预测,以获得污染物垂向分布规律。由动态淋滤实验可知:污染物在细砂中的完全穿透时间小于砂质粉土;Hydrus-1D模拟值与实测值相关性较好,相关系数为0. 950~0. 996;模型校准后,获得用于模拟预测的最佳参数值,细砂土与砂质粉土弥散度α分别为0. 937,0. 75 cm;氨氮在细砂土与砂质粉土中溶质反应参数Kd、Nu分别为2. 5 mg/m L,50. 9 m L/mg,氟离子分别为4. 83 mg/m L,28. 91 m L/mg;模拟持续排放污染物情况可知,短时间内可穿透10 m厚细砂土层,砂质粉土层对污染物截留能力相对较优;高浓度污染物一次性入渗时,高浓度污染物一次性入渗时,污染物10天时穿透10 m砂土层,180 d时氨氮污染物穿透砂质粉土层,氟化物未能穿透。模拟预测可判断污染物是否能够穿透非饱和带进入地下水取决于污染物浓度、土层质地与厚度、污染物排放时间等因素的共同影响。  相似文献   

6.
介绍了“水解酸化+两级生物接触氧化”处理水产品加工废水的运行效果和工程实例,结果表明:对C l-浓度平均6000mg/L的高盐度水产品加工废水,系统对COD、SS、氨氮的去除率分别超过了88%、90%、85%,出水COD、SS、氨氮分别低于100mg/L、70mg/L、15mg/L,出水完全可以达到《污水综合排放标准》(GB8978-1996)一级排放标准。  相似文献   

7.
通过厌氧毒性测定试验,研究模拟废水及猪场原水氨氮对厌氧微生物活性的影响。结果表明,模拟废水氨氮对厌氧颗粒污泥产甲烷活性的影响具有多重性,当氨氮浓度低于400mg/L时,表现为促进产甲烷作用。当氨氮浓度为800mg/L时,开始表现为抑制产甲烷作用,并且随着氨氮浓度的升高,抑制作用增强。猪场原水在进水浓度下均表现为抑制作用。模拟废水50%抑制浓度为1900.1mg/L,猪场原水50%抑制浓度为1725.9mg/L;在相同的抑制程度下,模拟废水氨氮浓度均高于猪场原水,平均相差594.1mg/L。  相似文献   

8.
特种化工废水的生物毒性、抑制性研究   总被引:1,自引:0,他引:1  
某厂特种有机废水 ,含季铵盐和羟乙基纤维素。研究表明 ,他们在浓度分别超过 1 2 0 mg/L和 2 2 0 mg/L时 ,呈现生物毒性或抑制性 ,且随浓度增高而严重影响废水生化处理效果。当水样中季铵盐浓度小于 1 2 0 mg/L,羟乙基纤维素浓度小于 2 2 0 mg/L时 ,它们不具生物毒性 ,可作为营养物质被微生物利用。废水动态模拟试验表明 ,进水 CODCr30 0 0 mg/L的废水 ,用接触厌氧—好氧生化法能使出水达到当地排放标准。  相似文献   

9.
详细介绍了采用常温循环吹脱-移动床吸附工艺处理湖南某钒厂V2O5生产过程排放的高盐高浓度氨氮废水的工艺流程,分析了氨氮去除率的影响因素,并提出了最佳工艺条件。工程实际应用表明:吹脱-吸附工艺对高浓度氨氮废水(Na+浓度为50g/L、NH3-N浓度为13 000mg/L)具有很好的处理效果,出水氨氮浓度低于15mg/L,可达到《污水综合排放标准》(GB8978—1996)的一级排放标准,且高纯度氯化铵的回收利用也大大降低了工程成本。  相似文献   

10.
某场地三氯甲烷污染分布特征及垂向迁移分析   总被引:1,自引:0,他引:1  
通过对土壤和地下水的布点采样和测试,研究了南方某三氯甲烷污染场地土壤和地下水中三氯甲烷的污染特征,并结合土壤-水分配系数、相对迁移率等因素对三氯甲烷在包气带中的垂向迁移进行了分析。结果表明:(1)调查场地地下水中三氯甲烷的浓度范围为0.5~31 300μg/L,土壤中三氯甲烷的污染主要分布在0~8m,最大浓度检出深度在0.5~2.5m;(2)土壤-水分配系数数值大小表现为粉质黏土粉土中砂,三氯甲烷对水的相对迁移率为2.34倍,三氯甲烷在包气带垂向迁移速率比水快,且三氯甲烷的垂向迁移能力表现为粉质黏土粉土中砂。  相似文献   

11.
微波技术处理焦化废水中的氨氮研究   总被引:3,自引:1,他引:3  
分别以中等浓度氨氮的焦化生化处理外排水和含高浓度氨氮的焦化蒸氨废水为处理对象,采用微波技术进行脱氮处理研究。结果表明:对于初始浓度为331mg/L的生化外排水,当pH值11时,微波处理3min后氨氮浓度降为6mg/L;对于初始浓度为1350mg/L的高浓度蒸氨废水,当pH值为11时,微波处理5min后氨氮浓度降至54mg/L。该研究为中高浓度氨氮废水处理提供了新思路。  相似文献   

12.
宋薇  臧海龙  张峰  刘长青  毕学军 《环境工程》2013,(Z1):307-309,328
以青岛市某规模化养鸡场冲洗废水为研究对象,考察以"A/O生化+混凝沉淀+MBBR(Moving Bed Biofilm Reactor)氧化"三段式处理工艺处理该类废水达标排放的可行性。试验结果表明:A/O生化段可以有效去除废水中有机污染物,COD的去除率可达92.86%,出水COD浓度可以达到DB 37534—2005《山东省畜禽养殖业污染物排放标准》第三阶段要求;对BOD5、SS、氨氮及TP去除效率分别可以达到90.81%、89.04%、68.42%及80.79%,但出水尚达不到排放标准要求。混凝沉淀可以有效去除废水中SS及TP,处理后出水浓度分别为44 mg/L及2.26 mg/L,可以达到排放标准要求;经济有效的混凝剂为聚合硫酸亚铁,最优投加量为15 mg/L。MBBR氧化对BOD5及氨氮有着较好的去除效果,水力停留时间8 h时BOD5及氨氮出水浓度分别为42 mg/L及19.40 mg/L,出水可以达到排放标准要求。  相似文献   

13.
含超细颗粒物废水的处理方法,是添加 Fe~(+3)、用碱调节 pH,而后以聚合物凝絮剂进行凝絮处理。本方法可有效地除去和回收很细的氧化铁颗粒。实例:将来自铁氧体生产过程的含55mg/L Fe_2O_3的排放废水,以≥10mg/L Fe~(3+)配料,调节至 pH8,用聚丙烯酰胺在5mg/L浓度的条件下凝絮。上层清液中悬浮的固体浓度为≤3mg/L,而对含50mg/L Fe_2O_3的废水,只用聚合物凝絮剂处理时上层清液中悬浮固体浓度的对照值为5mg/L。  相似文献   

14.
以氨氮浓度为7000mg/L以上的甘氨酸废水为研究对象,采用吹脱法去除氨氮,对比了pH=10.0时,加脱氮剂和不加脱氮剂条件下的氨氮去除效果,结果表明加脱氮剂的在吹脱时间为5.5h时剩余氨氮浓度为11.4mg/L,达到国家一级标准的排放要求(小于15mg/L),不加脱氮剂的剩余氨氮浓度为112.3mg/L,无法达标;降低废水pH至9.5,投加脱氮剂进行吹脱,通过延长吹脱时间2.0~2.5h,也可使废水氨氮含量达标。  相似文献   

15.
采用大孔树脂白球固定化微生物强化SBR处理含对甲苯胺废水,考察了降解过程中对甲苯胺与氨氮浓度变化的相关性.结果表明当反应器中氨氮浓度由上升转为下降的时候,对甲苯胺基本完全降解.在进水中蔗糖浓度为0~500mg/L,曝气量为0.6~1.2L/min,温度为10~25℃的实验条件下,氨氮与对甲苯胺浓度变化表现出良好的相关性.  相似文献   

16.
基本案情和处理过程 2007年6月10日,A市环保执法人员在对B公司检查时,发现该公司车间地面冲洗废水和生活污水未进入废水处理系统,通过暗管经排污口直接排放.经监测,外排废水COD浓度为1300毫克/升,超过标准8.6倍:氨氮浓度为37.2毫克/升,超过标准1.48倍.  相似文献   

17.
膜生物反应器处理高浓度含酚废水研究   总被引:1,自引:0,他引:1  
将膜生物反应器(MBR)用于高浓度含酚废水的处理中,探讨了进水中苯酚浓度、水力停留时间和污泥浓度对膜生物反应器处理含酚废水效果的影响。实验结果表明:经过42d驯化后,可以在高浓度含酚废水中正常运行,MBR系统对COD和氨氮的去除率分别可达98%和80.6%。当苯酚浓度为134mg/L时,处理的最佳水力停留时间为3h,最佳污泥浓度(MLSS)为7367mg/L。  相似文献   

18.
本文阐述了稀土分离厂生产中氨氛废水治理的基本原理,采用化学法和生化法相结合治理稀土分离氨氮废水的方法,解决了氨氮废水对环境水体污染问题,使氨氮含量从6800mg/L下降到15mg/L以下,达到国家排放要求,每吨废水处理费用约为2.7元.  相似文献   

19.
采用水解酸化-BAF工艺,以粉煤灰固定化絮凝剂颗粒为填料,采用前置反硝化工艺对印染废水进行处理,以研究在粉煤灰颗粒的吸附、絮凝、沉降、过滤以及微生物协同作用下,该工艺对氨氮和总氮的去除效果.着重对废水中氨氮和总氮量在不同阶段的变化进行了研究,得出了该工艺的最佳工艺参数,并对各过程的影响因素和脱氮机理进行了探讨.试验结果表明,在氨氮进水平均浓度为87.5 mg/L,水力负荷为1.02 m/h,DO浓度为5.0 mg/L,回流比为200%时,氨氮和总氮的去除率分别达到87%和76%左右,出水NH3-N和TN浓度分别可达11.37和32.59 mg/L以下,达到纺织染整工业废水排放标准的Ⅰ级标准.  相似文献   

20.
为探究肥料生产场地的NH3-N(氨氮)分布特征及环境风险,以我国某肥料生产场地为研究对象,在场地调查基础上,对场地土壤和地下水NH3-N的空间分布进行分析,并以人体健康和场地地下水为保护对象分别讨论了土壤NH3-N风险控制目标值的计算方法.结果表明:①目标场地土壤中w(NH3-N)为0.03~15 000 mg/kg,水平方向上高值区集中分布于核心生产区及原辅料堆场,垂向上总体表现为由上至下随深度增加呈先逐步升高后降低的趋势,并且富集于人工填土与原状粉质黏土交界处,粉质黏土阻碍NH3-N向下迁移,并随地层结构变化其迁移深度不同.②场地上层滞水和潜水中ρ(NH3-N)分别为19.10~3 320和0.03~219 mg/L,超标率分别为100%和57.89%,并且地下水与土壤的NH3-N在水平空间分布上具有重叠特征.③因NH3-N主要通过呼吸吸入挥发性气体产生暴露,并且仅有经呼吸暴露的毒性参数,故采用《污染场地风险评估技术导则》中经呼吸暴露途径的非致癌效应风险控制值计算模型来计算土壤NH3-N的控制目标,通过代入场地实测土壤Kd(土-水分配系数),得到居住用地下的土壤NH3-N控制目标值为9 195 mg/kg;若考虑保护地下水水质安全,据三相或两相平衡模型耦合NH3-N在包气带衰减和地下水稀释作用,当目标场地地表无积水的入渗条件下得到的控制目标值为6 203 mg/kg;当地层从上至下呈饱和含水条件时,土壤NH3-N控制目标为811 mg/kg.计算值可用作不同场地进行土壤NH3-N风险管控的参考目标,实际应用中可结合不同地块环境条件、不同受体和保护目标,选择相应的风险控制值对场地进行风险管控.此外,土壤和地下水的NH3-N污染控制均可考虑采用工程措施和制度控制来进行.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号