首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用中尺度天气-化学预报模式WRF-Chem,基于重点源(八大重点行业与交通)一般与强化两组减排情景,针对2013年开展长三角地区重点源减排对PM2.5浓度影响的模拟研究。长三角地区SO2、NOx、PM2.5和NMVOC排放在一般减排情景下分别减少36.3%、26.3%、32.0%、14.6%,强化减排情景下分别减少51.4%、39.6%、37.6%、28.4%。模拟结果表明,两组减排情景下长三角地区国控点PM2.5年均浓度分别下降-1.4~26.7μg·m-3和2.1~32.3μg·m-3,降幅分别为2.7%~23.1%和3.9%~27.5%,二次无机盐中硝酸盐对年均PM2.5浓度的降低贡献最大。PM2.5及二次无机盐浓度变化的季节特征均体现为冬季降幅最小,夏季降幅最大,并且随着减排力度的增强,夏季降幅的进一步降低程度最显著,导致削减效果的季节差异增大。重点源强化减排即可使得上海、江苏夏季PM2.5浓度降低约20%。对大气氧化性的进一步分析表明,减排对四季大气氧化性均有不同程度的增强,加大减排力度后,大气氧化性进一步增强,有利于二次PM2.5的生成,从而阻碍了PM2.5浓度的降低。其中,冬季的阻碍作用最强,导致PM2.5污染改善效果最差。夏季大气氧化性受减排影响较小,从而使得PM2.5污染改善在四季中最有效。此外,春、秋季的阻碍作用也不容忽视。  相似文献   

2.
利用Model-3/CMAQ及京津冀地区高分辨率排放源清单,选取文献[19]中污染峰值当天启动50%污染源削减方案的同时,进一步设置了3种污染源控制方案(峰值当天启动75%源削减;峰值日前1d、2d开始启动25%源削减),比较了峰值日前启动适量减排与峰值日当天启动大幅度减排的效果差异.结果表明:污染峰值当天启动50%、75%减排时,北京市PM2.5浓度下降率分布不均匀,高值区集中于PM2.5浓度高值区,减排后PM2.5浓度分布较减排前均匀.提前1~2d启动25%源削减时,峰值日北京市PM2.5浓度整体下降.城、郊PM2.5下降率均表现为当天减排50%小于提前1d开始减排25%;当天启动减排提高到75%时,城区PM2.5下降率大于提前2d启动25%减排,郊区表现为峰值前2d启动25%削减优于当天减排75%.将峰值前1d、2d启动25%减排分别与当天启动50%、75%减排时北京市峰值日PM2.5浓度下降率相减,北京市绝大部分区域下降率差值为正;峰值前1d、2d启动25%减排分别比峰值日启动50%、75%减排时北京市平均PM2.5多下降4.7μg/m3(6%)、2.9μg/m3(4%).综上所述,在污染峰值来临之前采取适量减排较污染当天才启动大幅度减排更有利于北京市整体空气质量达标.  相似文献   

3.
为研究南京市典型交通源冬季PM_(2.5)的污染特性,于2016年1月9日到2月4日在南京市四平路采集了大气中PM_(2.5)样品,分析了样品中的重金属元素、水溶性离子、有机碳和元素碳的浓度。结果表明,采样期间南京市大气PM_(2.5)中日平均质量浓度为85.3μg/m~3。重金属元素锌(Zn)的浓度最高,其次是铅(Pb)和锰(Mn)的元素浓度,平均浓度分别为104.72 ng/m~3、60.88 ng/m~3,再者是钡(Ba)和铜(Cu)的元素浓度,平均浓度分别为30.23 ng/m~3、45.26 ng/m~3。样品中水溶性离子的平均质量浓度水平为:NO_3~-SO_4~(2-)NH_4~+Cl~-K~+Na~+Mg~(2+)Ca~(2+),其中NO_3~-、SO_4~(2-)和NH_4~+的质量浓度均在10μg/m~3以上,是水溶性离子的主要组分,分别占总离子浓度的37.18%、29.34%、17.42%。  相似文献   

4.
基于乌鲁木齐市大气污染物数据,对乌鲁木齐市2016年空气质量变化做趋势分析。利用乌鲁木齐市2016年同期气象要素,通过相关分析和主成分分析方法探讨了气象要素对PM_(2.5)浓度的影响。结果表明:1)PM_(2.5)、PM_(10)、SO_2、NO_2、CO的浓度全年变化趋势与空气质量指数(AQI)的变化趋势基本一致,O_3的浓度变化趋势与AQI变化趋势完全相反;2)PM_(2.5)浓度与CO、气压和相对湿度呈显著正相关,降水量、风速、气温和水气压与PM_(2.5)浓度呈显著负相关。  相似文献   

5.
<正>广州日报讯(记者杜娟)珠三角96.3%天数空气达标,"灰霾元凶"细颗粒物PM2.5浓度同比下降。根据昨日广东省环保厅公布的2015年第二季度广东省城市环境空气质量状况,第二季度广东各市空气质量达标天数比例平均为96.3%,无重度污染和严重污染,臭氧成最常见首要污染物,其次为细颗粒物PM2.5。据悉,今年第二季度珠三角9个地级以上市和顺德区空气质量达标天数比例在92.3%~100%之间,平均达标天数比例为96.0%,同比去年上升5.2%,其中优占65.9%,良占  相似文献   

6.
利用中流量空气颗粒物采样器在武汉市青山区进行连续采样,分析了2013年冬季大气PM_(2.5)的质量浓度,并采用ICP-AES方法研究了样品中19种金属元素的组成和特征。结果表明,PM_(2.5)质量浓度为47~353μg/m~3,参照《环境空气质量标准》(GB 3095-2012)中的二级标准,其中88.6%的样品质量浓度超标;富集因子分析结果表明Ca、Cu、Pb、Zn、Cd、Ni、Mn、Ti、V、As和Hg在PM_(2.5)中明显富集,主要来自人类活动;运用正定矩阵因子分解法(PMF)对PM_(2.5)来源进行了解析,结果表明交通源,工业源,路面扬尘,燃煤源和建筑源是武汉市青山区冬季PM_(2.5)的主要来源。  相似文献   

7.
采集了镇江环境监测站1月份的PM2.5样品,用SPAMS 0515对PM2.5来源进行解析,结果显示,对镇江市区冬季环境空气有明显贡献的颗粒物来源是汽车尾气、燃煤、工业排放和扬尘,4者的贡献率分别为汽车尾气占22.5%、燃煤占16.3%、工业源占13.6%、扬尘占11.8%。镇江市区冬季PM2.5颗粒中,汽车尾气、燃煤分布在小粒径段,扬尘分布在大粒径段。日间汽车尾气和扬尘对PM2.5增高的影响增大,早高峰、晚高峰汽车尾气贡献增长。PM2.5中含的Mn、Fe、Cr、Zn、Pb 5种金属元素颗粒中含Pb颗粒数量最大。  相似文献   

8.
通过对太原市2013年冬季SO2、PM10和PM2.524小时浓度均值实时数据的整理和分析,结果表明,各项污染物浓度在城区和郊区差异显著。由于城郊地形条件、气象条件基本一致,各项污染物24小时浓度月变化曲线趋势基本相同。城郊PM2.5和PM10浓度比值范围与均值差别较小,比值月变化曲线趋势基本相同,城郊颗粒物污染物来源相同或相近。相关性分析表明PM2.5分别与PM10和SO2浓度均为高度正相关关系,三者污染源存在较大一致性,冬季区域污染主要以燃煤排放大气污染物为主要特征。  相似文献   

9.
发展可再生能源发电是《大气污染防治行动计划》的一项重要措施,有助于推进PM10和PM2.5减排,改善空气质量。从生命周期来看,各类可再生能源发电的PM10和PM2.5排放系数均低于燃煤火电,各类可再生能源发电单位发电量的PM10和PM2.5减排因子由高到低依次为水电并网风电太阳能发电生物质发电。通过生命周期评价计算可知,以可再生能源发电替代燃煤发电,PM10和PM2.5在2012年已经实现了较好的减排效果,减排量分别为37.87×104和18.94×104ta;未来仍将具有较大的减排潜力,2015年PM10和PM2.5可分别减排44.21×104和22.10×104ta,2020年PM10和PM2.5可分别减排65.41×104和32.71×104ta。  相似文献   

10.
PM2.5是公路机动车主要污染物之一,对沿线居民的呼吸健康有直接的危害,因此有必要在公路建设环境影响评价中增加对交通源PM2.5扩散浓度的评估。本文通过分析空气质量模型AERMOD、PM2.5排放清单测算模型MOVES以及建模数据需求,在交通量调查、气象数据预处理以及道路源PM2.5排放清单测算的基础上,应用AERMOD模型评估了我国某高速公路沿线PM2.5的浓度分布水平。结果表明:在研究路段沿线下风向距路肩400m范围内,均受到公路交通源PM2.5污染(PM2.5净浓度≥4μg/m3)的影响;AERMOD模型可以精细化地评估道路机动车PM2.5对空气质量的影响,为道路沿线PM2.5浓度分布评估提供了一套研究方法,其评估结果对道路规划环境影响评价具有重要的参考价值。  相似文献   

11.
为更好地区分大气污染物浓度变化中气象与源排放因素的影响,使用中尺度气象模型WRF和三维空气质量模型CAMx,通过固定源清单的方法模拟研究了广东省各地区不同时期气象因素对PM_(2.5)浓度变化的影响,并结合实测的PM_(2.5)浓度变化,计算出源排放因素对PM_(2.5)浓度的贡献。结果表明:相对于2014年,2015年广东省夏季的气象条件不利于PM_(2.5)浓度的下降,春季和秋季的气象条件有利于PM_(2.5)浓度的下降,就全年各季度平均而言,珠江口附近地区气象条件较有利于PM_(2.5)浓度的下降;源排放变化对肇庆市、韶关市和揭阳市等城市PM_(2.5)浓度变化有较强的削减作用,可使其浓度下降30%以上,显示这些城市的减排工作较为有效,深圳市、珠海市、东莞市、中山市与顺德区等市(区)PM_(2.5)污染改善主要是由于有利的气象条件的影响,源排放变化对珠海市和湛江市等城市污染起加剧的作用,表明不利的源排放变化抵消了部分有利气象条件对PM_(2.5)污染的改善作用,应加强对这些地区源排放的控制。  相似文献   

12.
利用江西省南昌市2015年6月1日—2016年5月31日逐日空气质量数据,结合同时期的气象观测资料,对南昌市大气污染特点及其与气象要素的相关性进行分析研究。结果表明,南昌市轻度污染、中度污染、重度污染天气天数占全年天数的15%,其中首要污染物主要为PM_(2.5),且主要集中在10月—次年3月期间。通过相关性分析,表明PM_(2.5)的浓度与日平均气温、日20—20时降水量、日平均相对湿度、日平均风速呈显著负相关关系。  相似文献   

13.
利用对区域的PM2.5的浓度与气象因子的监测,对影响PM2.5浓度的气象因子进行研究,研究结果表明,PM2.5浓度存在一定的季节性变化规律,同时通过对其与气象因子之间的多元线性回归,得出了具有一定吻合度的未来24h PM2.5预测模型。  相似文献   

14.
针对郑州市2017年12月~2018年2月的冬季气象数据和大气污染物质量浓度在线监测数据,分析了气象条件对颗粒物浓度的影响。通过混合型单粒子拉格朗日综合轨迹(HYSPLIT)方法模拟了郑州市冬季48 h的气流后向轨迹,同时进行了聚类分析,并使用潜在源贡献因子(PSCF)方法和浓度权重轨迹(CWT)方法分析了郑州市冬季PM2.5的潜在污染来源和不同潜在源区对郑州市大气PM2.5浓度的贡献。结果表明,低风速、高湿度和较少的降水是造成颗粒物污染严重的重要气象因素;超过60%的后向轨迹来自西北方向,其次是来自京津地区的轨迹占比为25.6%,而来自南边和东边的轨迹只占7.5%和6.1%,但对应着较高的PM2.5浓度;郑州市冬季PM2.5的潜在源区主要是北部的京津冀传输通道城市,包括焦作、开封、新乡、鹤壁、濮阳、安阳、邯郸和邢台,此外,相邻省份包括山西省、湖北省和安徽省部分区域对郑州市大气PM2.5污染水平也有着较大的影响和贡献。  相似文献   

15.
为考察相对湿度对激光粉尘仪测量室内PM_(2.5)的影响,更客观真实地评价室内PM_(2.5)的污染状况。室温下在实验室环境舱内分别以去离子水、NaCl溶液、CaCl_2溶液、大肠杆菌溶液为水源在加湿器发生的过程中同时记录环境舱内相对湿度和PM_(2.5)的变化情况,考察激光粉尘仪PM_(2.5)实时测量值与相对湿度的关系。结果表明:加湿器加湿过程中相对湿度急剧变化对PM_(2.5)实时测量值有显著影响;初始PM_(2.5)浓度越大相对湿度对PM_(2.5)实时测量值干扰越敏感,当初始浓度为500μg/m~3时,PM_(2.5)实时测量值变动的敏感点相对湿度为60%;水中盐离子、微生物等物质大大增加了液滴对激光的散射作用,水中杂质浓度越高,PM_(2.5)实时测量值越大,NaCl溶液浓度为250mg/L时,PM_(2.5)实时测量值达到1 000μg/m~3以上对应的相对湿度值仅36%。  相似文献   

16.
准确的空气质量数值预报模式依赖于精确的气象条件模拟,尤其依赖于大气边界层的准确模拟.为理解边界层过程如何影响空气污染物的传输与混合,利用WRF-Chem模式不同边界层方案(YSU和MYJ)进行敏感性试验,针对山西冬季典型静稳天气,对地面温度场、地面风场、PM_(2.5)浓度及边界层内部的动力和热力层结进行模拟分析,并与观测资料进行对比,分析不同PBL方案对于气象要素和PM_(2.5)浓度分布的模拟能力,探讨边界层内部热力层结和湍流输送差异对PM_(2.5)浓度模拟的影响.结果表明:2种边界层方案均能较好模拟出冬季静稳天气背景下地面温度、风速及PM_(2.5)浓度的空间分布和日变化特征,气温模拟的较大误差主要出现在夜间,而地面风速和PM_(2.5)浓度的模拟结果在午后误差较大;相对于YSU方案,局地MYJ方案模拟的温度、风场和PM_(2.5)浓度的误差更小,模拟结果更接近于实况观测.地面PM_(2.5)浓度的模拟误差可能与近地面逆温层、混合层及地面风速等的模拟误差有关;不同边界层参数化方案导致的边界层内热力层结和湍流输送的模拟差异,可能是影响近地面PM_(2.5)浓度模拟差异的主要原因;夜间MYJ方案逆温层厚度较厚,地面PM_(2.5)模拟浓度较低;午后MYJ方案混合层高度较低,加之地面风速较弱,导致地面PM_(2.5)模拟浓度较高.  相似文献   

17.
本研究基于采样分析与WRF-CAMx-PSAT模式分析了2018年1月北京和唐山PM2.5的组分特征、传输特征和来源解析.结果表明,2018年1月北京和唐山水溶性无机离子占PM2.5质量浓度的49.59%和39.13%,两地NO3-/SO42-分别为2.02和1.51,均受移动源主导,北京和唐山PM2.5外来贡献分别占总浓度的48.74%和30.67%,除此之外主要受到邻近局地、西北通道和西南通道这3个方面的污染输送.在污染日时段,两地受西南通道污染贡献分别上升9.65%和15.02%.北京PM2.5污染浓度贡献最大的是移动源和扬尘源,二次离子受区域输入影响较为明显,唐山则以移动源和工业源为主,且一次颗粒物和SO42-的本地贡献十分显著.与2013年相比,水溶性离子主导组分由SO42-向NO3-转变,主要污染源由燃煤源和工业源向移动源和扬尘源转变,同时2018年气象条件对于污染的缓解也比2013年更为有利,其中二次离子的气象影响变化与这两年的相对湿度变化差异紧密相关.  相似文献   

18.
通过对阜康市2015年1个区控点的PM_(2.5)和PM_(10)的连续自动监测数据分析得出:2015年阜康市大气颗粒物中PM_(2.5)、PM_(10)浓度日均值和小时值的最大值均出现在4月,日均值均超过了环境空气质量标准的二级标准限值;月均值最大值均出现在12月;PM_(2.5)的年均值超过了环境空气质量标准的二级标准限值;PM_(2.5)和PM_(10)冬季的日变化浓度高于其他三季,夏季最低。超标天数高值出现在1、2、11、12月,PM_(2.5)的污染程度比PM10严重;PM_(2.5)和PM_(10)的比值1、11、12月较大。  相似文献   

19.
为了了解太原市PM_(2.5)、PM_(10)的污染水平变化情况及其相关关系,本文基于太原市颗粒物自动监测数据,对太原市2015年12月-2016年11月PM_(2.5)、PM_(10)质量浓度进行分析。分析发现:PM_(2.5)和PM_(10)日均质量浓度变化幅度较大,但其变化趋势非常相似;PM_(2.5)和PM_(10)月均质量浓度均超过年均二级标准,特别是秋季最为严重;PM_(2.5)、PM_(10)小时平均质量浓度呈双峰现象;ρ(PM_(2.5))与ρ(PM_(10))相关系数为0.9371,ρ(PM_(2.5))/ρ(PM_(10))在0.5-0.6之间出现的频率最高达30.33%。  相似文献   

20.
应用中尺度天气-化学预报模式(WRF-Chem),基于重点源(八大重点行业与交通)一般与强化两组减排情景,针对2013年开展长三角地区重点源减排对PM_(2.5)浓度影响的模拟研究.长三角地区SO2、NOx、PM_(2.5)和NMVOC排放在一般减排情景下分别减少36.3%、26.3%、32.0%、14.6%,强化减排情景下分别减少51.4%、39.6%、37.6%、28.4%.模拟结果表明,两组减排情景下长三角地区国控点PM_(2.5)年均浓度分别下降1.4~26.7μg·m~(-3)和2.1~32.3μg·m~(-3),降幅分别为2.7%~23.1%和3.9%~27.5%,二次无机盐中硝酸盐对年均PM_(2.5)浓度的降低贡献最大.PM_(2.5)及二次无机盐浓度变化的季节特征均体现为冬季降幅最小,夏季降幅最大,并且随着减排力度的增强,夏季降幅的进一步降低程度最显著,导致削减效果的季节差异增大.重点源强化减排即可使得上海、江苏夏季PM_(2.5)浓度降低约20%.对大气氧化性的进一步分析表明,减排对四季大气氧化性均有不同程度的增强,加大减排力度后,大气氧化性进一步增强,有利于二次PM_(2.5)的生成,从而阻碍了PM_(2.5)浓度的降低.其中,冬季的阻碍作用最强,导致PM_(2.5)污染改善效果最差.夏季大气氧化性受减排影响较小,从而使得PM_(2.5)污染改善在四季中最有效.此外,春、秋季的阻碍作用也不容忽视.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号