首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同水力条件下排水管道生物膜中氮元素分布特性   总被引:1,自引:0,他引:1  
在壁面剪切力为1.0,1.5,2.0Pa条件下培养排水管道生物膜,利用微电极测试技术对生物膜进行生长过程及成熟生物膜内部DO、NH4+、NO2-、NO3-分布规律进行研究.结果表明:1.0,1.5,2.0Pa条件下培养的生物膜厚度分别为(2.3±0.1),(1.9±0.1),(1.6±0.1)mm;1.0,1.5Pa条件下的生物膜内存在好氧、缺氧环境,在其中发生了硝化和反硝化反应,而2.0Pa条件下的生物膜内只存在好氧环境,只发生了硝化反应.生物膜厚度影响着溶解氧在膜内的分布,继而影响着N在膜内的迁移转化过程.  相似文献   

2.
1.前言附着在生物转盘上的生物膜,混杂着多种多样的细菌;在膜内的环境条件(是否存在DO、NH_4—N、NO_2—N和有机物等)下,还发生相应的化学反应。为此,作者进行了生物转盘的模拟实验研究。附着在转盘上的生物膜内氧的侵入深度,是  相似文献   

3.
餐厨废水具有高NH_4~+-N、低C/N的特性,采用传统生物脱氮工艺需要消耗大量碳源,而采用短程硝化-厌氧氨氧化组合工艺可以较好地处理此类废水,通过控制DO浓度来实现废水半短程硝化可为组合工艺提供进水条件。采用自制SBR反应器,控制ρ(DO)在0.5~0.6 mg/L,温度为(30±1)℃,可实现废水的半短程硝化,NO_2~--N累积率可达90%以上,出水n(NO_2~--N)∶n(NH_4~+-N)约为1,系统COD去除率维持在65%左右。系统稳定后对1个周期内的系统进行观察,发现0~1 h内系统中COD得到迅速降解,1~8 h内COD降解速率放缓,出水NO_2~--N累积,较低的DO浓度可有效地限制NOB的活性,反应周期内NO_3~--N浓度基本处于较低水平。当DO浓度过低时,系统中AOB和NOB同时受到抑制,氧化一定量的NH_4~+-N所需时间更长;ρ(DO)浓度高于1.5 mg/L时,NOB活性逐步恢复,系统中NO_3~--N浓度增加。因此,通过控制DO浓度实现低C/N餐厨废水半短程硝化是可行的,可为后续试验创造条件。  相似文献   

4.
2014年3-12月,对遵义丁字口(市区点)和凤凰山(背景点)按季节进行了PM_(2.5)的样品采集,对其中二次水溶性无机离子(NH_4~+、NO_3~-、SO_4~(2-))分布特征及存在形态进行研究。结果表明,NH_4~+、NO_3~-和SO_4~(2-)是遵义市PM_(2.5)的主要离子,其季节变化规律明显:NO_3~-、SO_4~(2-)的质量浓度表现为秋冬春夏;NH_4~+则表现冬秋春夏。丁字口PM_(2.5)中NH_4~+、NO_3~-和SO_4~(2-)的质量浓度均高于凤凰山。相关性分析表明,遵义PM_(2.5)中NH_4~+、NO_3~-、SO_4~(2-)在春、冬季主要以(NH_4)_2SO_4和NH_4NO_3的形式存在;夏季主要以NH_4HSO_4和NH_4NO_3的形式存在;秋季主要以NH_4HSO_4的形式存在。PM_(2.5)的酸碱度分析显示遵义PM_(2.5)主要呈酸性。SOR(硫表观氧化率)和NOR(氮表观氧化率)均值大于0.1,且丁字口SOR、NOR值略高于凤凰山;丁字口、凤凰山NO_3~-/SO_4~(2-)年均值分别为0.46±0.08和0.43±0.10,说明遵义市大气中的硫和氮主要来自于固定源。  相似文献   

5.
针对海水养殖水生物脱氮效果差的问题,将海洋菌株SF16接种到曝气生物滤池中,构建生物强化海水养殖废水处理系统,以未投加菌株SF16的曝气生物滤池作为对照,研究了水力停留时间(HRT)、盐度、碳氮比、溶解氧(DO)等因素对氨氮去除效果的影响。结果表明,菌株SF16能显著提高曝气生物滤池耐盐性和异养硝化-好氧反硝化脱氮效果。菌株SF16强化曝气生物滤池在HRT为4 h,盐度为3%~5%,高锰酸盐指数/NH_4~+–N为14,DO为4~5 mg/L的适宜工艺条件下,处理初始NH_4~+-N浓度为10 mg/L的模拟海水养殖废水,NH_4~+-N、TN和高锰酸盐指数的去除率分别达到95%、93%和80%以上,NO_3~-–N和NO_2~-–N积累量分别低于0.1 mg/L和0.02mg/L,出水无机氮和高锰酸盐指数达到《海水养殖水排放要求》(SC/T 9103-2007)的一级排放标准。该研究结果能够为菌株SF16在海水(浓海水)养殖系统废水处理工程中应用提供技术支持。  相似文献   

6.
为探究MBBR泥膜复合硝化系统内泥膜竞争关系,通过小试试验研究了水处理过程中常规因素(污泥浓度、DO、温度、C/N)对MBBR泥膜复合系统硝化效果的影响,分析了系统内污泥容积负荷和移动床生物膜反应器(MBBR,Moving-Bed Biofilm Reactor)生物膜容积负荷变化趋势,进而得出泥膜竞争规律.结果表明,MBBR泥膜复合系统容积负荷均大于单一污泥或MBBR生物膜系统的容积负荷.在一定范围内,污泥浓度、DO、温度与MBBR泥膜复合系统容积负荷呈现正相关,且系统内活性污泥在与MBBR生物膜在竞争DO和基质时优势明显,而MBBR生物膜则具有更强的耐低温能力.进水C/N与MBBR泥膜复合系统硝化负荷呈负相关,且活性污泥在应对进水C/N过高时较MBBR生物膜更具优势,MBBR的“镶嵌”则强化了系统SND效果.微生物群落变化显示MBBR泥膜复合系统内的硝化细菌优势菌属为Nitrospira,且悬浮载体生物膜对其富集能力明显高于活性污泥.  相似文献   

7.
为探究MBBR泥膜复合硝化系统内泥膜竞争关系,通过小试试验研究了水处理过程中常规因素(污泥浓度、DO、温度、C/N)对MBBR泥膜复合系统硝化效果的影响,分析了系统内污泥容积负荷和移动床生物膜反应器(MBBR,Moving-Bed Biofilm Reactor)生物膜容积负荷变化趋势,进而得出泥膜竞争规律.结果表明,MBBR泥膜复合系统容积负荷均大于单一污泥或MBBR生物膜系统的容积负荷.在一定范围内,污泥浓度、DO、温度与MBBR泥膜复合系统容积负荷呈现正相关,且系统内活性污泥在与MBBR生物膜在竞争DO和基质时优势明显,而MBBR生物膜则具有更强的耐低温能力.进水C/N与MBBR泥膜复合系统硝化负荷呈负相关,且活性污泥在应对进水C/N过高时较MBBR生物膜更具优势,MBBR的“镶嵌”则强化了系统SND效果.微生物群落变化显示MBBR泥膜复合系统内的硝化细菌优势菌属为Nitrospira,且悬浮载体生物膜对其富集能力明显高于活性污泥.  相似文献   

8.
在模拟太阳光照射条件下,研究了不同浓度的NO_3~-、NO_2~-和NH_4~+对氯贝酸(Clofibric acid,CA)在水环境中光降解的影响,并通过对光屏蔽系数的计算和对活性基团的淬灭实验对它们的影响机理进行了考察.通过模拟水体pE值变化,考察了无机氮离子对CA光降解的复合影响.结果表明,在NO_3~-、NO_2~-和NH_4~+存在时,CA的光降解均符合拟一级动力学方程.甶于抑制.OH的产生,并与CA竞争吸收光子,NO_2~-和NO_3~-对CA的光降解均具有抑制作用,且NO_3~-对CA光降解的抑制作用强于NO_2~-,NH_4~+则对CA的光降解无明显影响.随着水环境中pE值的改变,CA的光降解速率也发生改变.NO_2~-和NH_4~+、NO_2~-和NO_3~-同时存在均对CA光降解的影响具有拮抗作用,而且NO_2~-和NO_3~-之间的拮抗作用强于NO_2~-和NH_4~+之间的拮抗作用.  相似文献   

9.
谢柄柯  张玉  王晓伟  孙超越  周集体 《环境科学》2016,37(10):3955-3962
微生物的硝酸盐异化还原为铵(DNRA)过程对自然界中铵根离子的存在和转化具有重要影响,然而关于SRB菌株DNRA过程影响和机制尚未探明.本文考察了实验室筛选的SRB菌株Desulfovibrio sp.CMX的DNRA能力、影响因素及其影响机制.结果表明,无外加氮源的情况下,分别以10 mmol·L-1NO_3~-和NO_2~-作为唯一电子受体,菌株Desulfovibrio sp.CMX最终NH_4~+生成率分别达到85.8%和97.3%,且无N2和N2O等副产物产生.实验探究了不同外加氮源、不同初始浓度的SO_4~(2-)、S~(2-)对菌株DNRA过程的影响.酵母浸粉作为外加氮源可促进菌株的生长和代谢从而促进菌株DNRA过程;SO_4~(2-)对于NO_3~-还原为NO_2~-阶段起促进作用,而对NO_2~-还原为NH_4~+阶段起抑制作用,综合两方面影响,最终表现出对菌株DNRA过程的抑制作用;S~(2-)对菌株生长及DNRA过程都表现出抑制作用,且S~(2-)浓度越高抑制作用越强,当S~(2-)浓度达到6 mmol·L-1后,S~(2-)对于NO_3~-还原为NO_2~-阶段的抑制作用强于NO_2~-还原为NH_4~+阶段的抑制作用,NO_3~-还原为NO_2~-速率低于NO_2~-还原为NH_4~+速率,此时体系中不再有NO_2~-的积累.  相似文献   

10.
通过批试实验研究了同步亚硝化、厌氧氨氧化和反硝化(SNAD)生物膜的脱氮性能.SNAD生物膜具有良好的厌氧氨氧化和反硝化活性.厌氧氨氧化NH_4~+-N、NCV-N和总无机氮(TIN)去除速率分别为0.121,0.180,0.267kgN/(kgVSS·d);反硝化和亚硝态氮氧化活性分别为0.211,0.053kg NO_2~--N/(kg VSS·d).SNAD生物膜厌氧氨氧化适宜的pH值范围为5~9,生物膜有助于缓解pH值对厌氧氨氧化菌的抑制作用.SNAD生物膜对NO_2~--N和FNA的抑制作用表现出良好的耐受能力.当NO_2~--N浓度分别为100,150mg/L时,对应的FNA浓度分别为70,100ng/L,厌氧氨氧化NH_4~+-N去除速率分别为0.087,0.029kg N/(kg VSS·d).扫描电镜显示,在SNAD生物膜表面主要是一些短杆菌.在SNAD生物膜内部主要为火山口状细菌,应为厌氧氨氧化菌.  相似文献   

11.
为研究我国中原城市群中心城市郑州市的不同粒径大气颗粒物的组成特征,利用八级撞击式采样器在夏、秋季进行大气颗粒物分级采样,利用离子色谱测定Na~+、Ca~(2+)、NH_4~+、K~+、Mg~(2+)、F~-、Cl~-、NO_3~-和SO_4~(2-)共9种离子的浓度,利用在线离子色谱分析仪监测颗粒物中硝酸盐的实时浓度.结果表明,采样期间郑州市水溶性离子平均浓度为(70. 9±52. 1)μg·m~(-3),其中监测的9种水溶性离子浓度从大到小顺序依次为:NO_3~- SO_4~(2-) NH_4~+ Ca~(2+) Na~+ Cl~- Mg~(2+) K~+ F~-、NO_3~-、SO_4~(2-)和NH_4~+占总水溶性离子的质量分数为79. 9%;无论在秋季或夏季SO_4~(2-)主要集中在≤1. 1μm粒径段上,而NO_3~-主要集中在0. 65~3. 3μm粒径段上. NO_3~-和SO_4~(2-)夏季和秋季均呈双峰分布,主要分布于细粒子中; NH_4~+夏季呈双峰分布,秋季呈单峰分布,表现出季节变化.郑州市夏季臭氧污染严重,O_3与NO_3~-明显地"错峰"现象,表示大气中存在光化学反应;秋季颗粒物污染严重,采样期间[NO_3~-]/[SO_4~(2-)]的比值远大于0. 5,移动源成为颗粒物重要的来源.夏季NOR、SOR峰值在1. 1~2. 1μm粒径段上,秋季两者峰值在0. 65~1. 1μm粒径段上;夏季硫的气-粒转化大于氮的转化,而秋季则相反.  相似文献   

12.
生活污水低C/N特性导致传统全称硝化反硝化工艺脱氮效率低下,短程硝化-反硝化具有节约碳源,减少曝气量,脱氮效率高的特点。以实际生活污水为探究对象探究了溶解氧对低C/N生活污水短程硝化反硝化的影响。结果表明DO浓度为化学需氧量(COD)去除影响不显著,而高浓度DO有助于氨氮的去除。DO浓度为0.8~1.0 mg/L时,总氮去除效率最高为85%,该DO浓度下,NO_2~--N的最高浓度为6.8 mg/L,显著高于其他DO组别,NO_3~--N的最高浓度随DO含量升高而升高。  相似文献   

13.
采用溶液培养法,设置3个氮浓度20、100、200 mg·L-1和3个NH_4~+/NO_3~-比1∶0、0.5∶0.5、0∶1,研究污水氮浓度和NH_4~+/NO_3~-比对粉绿狐尾藻去氮能力和植物体氮组分的影响.结果表明,粉绿狐尾藻的生物量在第1周增长最快,其中氮浓度20 mg·L-1、100 mg·L-1时,生物量以NH_4~+/NO_3~-=1∶0处理最大;氮浓度200 mg·L-1时,以NH_4~+/NO_3~-=0.5∶0.5处理最大.粉绿狐尾藻在第1周对总氮、铵态氮和硝态氮去除速率最高,且随氮浓度升高而增加;氮浓度20 mg·L-1时,铵态氮和硝态氮的去除率无显著差异,氮浓度100 mg·L-1、200 mg·L-1时硝态氮的去除率高于铵态氮.粉绿狐尾藻氮积累量及对水体和底泥氮去除的贡献率均随氮浓度升高而增加,其氮含量和积累量均以第1周增长最快,氮浓度20 mg·L-1时氮积累贡献率以NH_4~+/NO_3~-=0∶1最大,氮浓度100 mg·L-1、200 mg·L-1时以NH_4~+/NO_3~-=0.5∶0.5最大.粉绿狐尾藻体内蛋白质、氨基态氮和硝态氮的含量均随氮浓度的升高而增加,且蛋白质氨基态氮硝态氮;NH_4~+/NO_3~-为1∶0和0.5∶0.5时蛋白质含量较高,NH_4~+/NO_3~-=1∶0时氨基态氮含量最高,NH_4~+/NO_3~-=0∶1时硝态氮含量最高.由此说明,在试验范围内,粉绿狐尾藻的去氮能力随污水氮浓度升高而提高,可以用于高氮浓度污水修复;粉绿狐尾藻喜铵态氮,但在100 mg·L-1以上的高氮浓度下以硝铵等比时生长和去除氮能力最强;粉绿狐尾藻体内氮组分受硝铵比调节,蛋白氮比例最高,铵态氮和硝态氮则分别随污水NH+4和NO-3比升高而提高.  相似文献   

14.
为联氨(N_2H_4)强化全自养脱氮(CANON,completely autotrophic nitrogen removal over nitrite)工艺性能研究提供基础数据,本研究将好氧氨氧化过程动力学表达分为两步,于氨(NH_4~+)氧化生成羟胺(NH_2OH)步添加启动函数ae~(-bSNH_2OH)用于模拟好氧氨氧化启动加速阶段,建立N_2H_4抑制好氧氨氧化与亚硝酸盐(NO_2~-)氧化过程动力学模型;采用呼吸测量法进行硝化污泥呼吸批次试验,分别得到NH_2OH氧化生成NO_2~-和NH_4~+氧化生成NO_2~-的好氧氨氧化菌(AOB)产率系数[YNH_2OH=(0.437±0.129)mg COD/mg N,YNH_4~+=(0.324±0.0123)mg COD/mg N]及亚硝酸盐氧化菌(NOB)产率系数[YNO=(0.222±0.0112)mg COD/mg N];基于N_2H_4抑制动力学模型模拟硝化污泥外源性呼吸剖面线首次得到N_2H_4好氧氧化半饱和常数[KS,N_2H_4=(7.96±0.811)mg N/L],N_2H_4抑制好氧氨氧化和亚硝酸盐氧化的动力学常数[KI,HON=(7.88±0.783)mg N/L,KI,NO=(1.223±0.555)mg N/L].  相似文献   

15.
《环境科学与技术》2021,44(8):131-138
为了探究除氨生物滴滤塔中氮转化途径及其生物相特征,以氨气(NH_3)作为研究对象,在填料塔空塔停留时间为5.7 s,循环液喷淋强度为637 L/(h?m~2)条件下,进行了平均进气浓度分别为5.21、11.06和17.32 mg/m~3(以N为计)的3组试验,NH_3平均去除率分别为93.86%、95.12%、96.13%,且出气浓度均低于1 mg/m~3(以N为计)。在3组试验过程中,对进气、出气以及循环液中各种化学形态N元素分别进行了检测,通过N质量平衡分析了生物滴滤塔中氮转化途径,结果表明进气中的NH_3-N经液相吸收后,很大一部分被微生物利用后直接氧化成NO_3~--N、NO_2~--N,少部分N元素被反硝化脱除,还有一部分N元素被转化为N_(org)。应用Illumina平台高通量测序技术对生物滴滤塔内生物膜中的生物种属进行了分析,结果显示优势菌属为芽孢杆菌属Bacillus、产黄杆菌属Rhodanobacter、慢生根瘤菌属Bradyrhizobium、肠球菌属Enterococcus、类芽孢杆菌属Paenibacillus等,生物滴滤塔内微生物群落主要利用硝化菌群将NH_4~+-N氧化成硝氮和亚硝氮,并利用反硝化菌群将硝氮和亚硝氮反硝化成N_2。  相似文献   

16.
研究了不同的C/N比对半悬浮生物填料同步硝化反硝化(SND)过程的影响,并尝试找出能够实现完全脱氮的最佳C/N比.半悬浮生物填料生物膜反应器采用一种新颖的DO微电极技术展开试验,其结果从物质传递和分子生物学角度来阐明SND效率的差别.结果表明,物质传质和微生物的因素对SND效率有联合作用,生物膜的生物量、生物膜的结构和厚度及EPS在SND过程中有着重要的作用.使用半悬浮生物填料明显提高生物膜反应器内的生物多样性,它可以在C/N比20的条件下运行8 h后实现总氮的去除.  相似文献   

17.
通过批试实验研究了C/N比和碳源种类对SNAD生物膜厌氧氨氧化耦合反硝化脱氮性能的影响.SNAD生物膜反应器以生活污水为进水,以鲍尔环为生物膜载体,具有良好的SNAD脱氮性能.以乙酸钠为碳源,研究了COD/NO_2~--N比对SNAD生物膜厌氧氨氧化耦合反硝化脱氮性能的影响.随着C0D/NO_2~--N比的增加,厌氧氨氧化亚硝态氮去除量占总亚硝态氮去除量的百分比逐渐减小.C0D/NO_2~--N比分别为1、2、3、4和5实验组对应的厌氧氨氧化亚硝态氮去除量占总亚硝态氮去除量的百分比分别为87.1%、52.2%、29.3%、23.7%和16.3%.当C0D/NO_2~--N比为0~2时,厌氧氨氧化亚硝态氮去除量占总亚硝态氮去除量的百分比大于50%,SNAD生物膜可以实现良好的耦合脱氮.控制C0D/N0_2~--N为5,研究了碳源种类对SNAD生物膜厌氧氨氧化耦合反硝化脱氮性能的影响.以甲酸钠、乙酸钠、丙酸钠和葡萄糖为碳源实验组对应的厌氧氨氧化亚硝态氮去除量占总亚硝态氮去除量的百分比分别为16.3%、37.1%、74.1%和76.8%.当以丙酸钠或葡萄糖为外加碳源并且C0D/NO_2~--N=5时,SNAD生物膜可以实现良好的耦合脱氮.  相似文献   

18.
在以A/O方式运行的SBR工艺中,研究了3种不同进水碳氮比下硝化与反硝化过程中污泥羟胺氧化酶(HAO)活性变化、N2O的产生/释放规律及两者之间的关联性.结果表明,当C/N=3.5与C/N=9.5时,HAO平均酶活性分别为(283.77±19.64),(348.87±17.94)U/g MLSS,而C/N=6.5条件下的平均酶活性仅为(246.45±23.30)U/g MLSS,总体上3个条件下缺氧阶段HAO活性均较好氧阶段高;反应过程中HAO的活性变化趋势基本与气态N_2O释放速率、溶解态N_2O及亚硝氮的浓度变化趋势成正相关,在C/N=9.5下好氧段HAO活性与后三者呈现完全一致的变化规律.N_2O主要产生于好氧阶段进行的硝化过程,尤其是羟胺氧化是N_2O产生的主要环节;碳源相对不充分的条件下(如C/N=3.5),缺氧段N_2O的释放与HAO活性关系密切;碳源相对较充分的条件下,缺氧段N_2O的产生与HAO酶活性无明显关联.推测可能是因为缺乏电子受体NO_2~-而导致HAO酶未参与反应;在N_2O产生较多的条件下,HAO活性相对也较高.  相似文献   

19.
羟胺(NH_2OH)是一种重要的硝化中间产物,其与污水生物处理系统氧化亚氮(N_2O)的产生密切相关,但目前仍缺乏一种可以简便、快速测定污水生物处理系统NH_2OH的方法。该研究在酸性条件下,以Fe~(3+)为氧化剂,通过将NH_2OH氧化为N_2O,采用N_2O微电极对N_2O浓度进行测定,进而间接测定污水生物处理系统的NH2OH浓度,并研究了亚硝酸根(NO_2~-)对测定结果的干扰以及干扰的消除方法。研究结果表明:(1)NO_2~-会干扰N_2O微电极法的NH_2OH测定结果。由于NO_2~-在酸性条件下会生成N_2O,将导致测定结果偏大;(2)当样品中NO_2~--N浓度低于10 mg/L时,向样品中加入0.1 m L 40 g/L的磺胺溶液,可以消除NO_2~-对测定结果的干扰。该方法可以快速、准确地测定污水生物处理系统的NH2OH浓度,对揭示污水生物处理系统NH_2OH对N_2O产生过程的作用机制有重要意义。  相似文献   

20.
太子河流域中游地区河流硝酸盐来源及迁移转化过程   总被引:5,自引:2,他引:5  
李艳利  孙伟  杨梓睿 《环境科学》2017,38(12):5039-5046
选取太子河中游地区为研究对象,联合硝酸盐(NO_3~-)、氯离子(Cl~-)、硝酸盐氮、氧同位素(δ~(15)N和δ~(18)O)和水的氧同位素(δ~(18)O)识别不同季节2016年5月和8月(对应枯水期和丰水期)地表水硝酸盐来源及迁移转化过程.结果表明通过ManWhitney U检验,枯水期ρ(Cl~-)、ρ(NO_3~-)、ρ(NH_4~+-N)和δ~(18)O-NO_3~-显著高于丰水期,δ~(15)N-NO_3~-无显著时间差异.根据NO_3~-/Cl~-,δ~(15)N-NO_3~-和δ~(18)O-NO_3~-的范围,发现不同采样期,硝酸盐主要来自于多种源的混合.丰水期,细河、蓝河和下达河硝酸盐来源是化学肥料、土壤氮和生活污水及畜禽粪便排放废水.二道河主要是土壤氮和化学肥料.枯水期,下达河硝酸盐主要来自于化学肥料和土壤氮,细河、蓝河和二道河硝酸盐来源主要是土壤氮和生活污水及畜禽粪便的排放.丰水期,ρ(NO_3~-)与ρ(NH_4~+)呈负相关关系,与δ~(15)N-NO_3~-呈正相关关系,说明研究区域发生了氨氮的挥发和硝化过程.二道河和蓝河随着ρ(NO_3~-)和ρ(Cl~-)降低,ρ(NH_4~+)和δ~(15)N-NO_3~-增加,说明有明显的反硝化过程发生.不同采样期NO_3~-和Cl~-呈显著正相关关系,表明各采样河流均发生了混合过程.研究结论为丘陵地区硝酸盐来源的季节差异分析提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号