首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
模拟配水管网中悬浮颗粒物对生物膜形成的影响   总被引:1,自引:1,他引:0  
郑丹  刘文君  徐洪福 《环境科学》2007,28(6):1236-1240
分别采用2 μm、8 μm醋酸纤维滤膜过滤活性炭柱出水,滤出水分别通入BAR反应器,以活性炭出水做对照试验通入BAR反应器,加氯(次氯酸钠)量均为0.5 mg·L-1(总氯),对比3种水质情况下生物膜的形成过程,采用颗粒计数仪测定BAR进水的颗粒物分布.结果表明,悬浮颗粒物能携带大量细菌避开消毒剂的作用,且对生物膜上的细菌量有直接影响.生物膜上的细菌量为:活性炭出水>8 μm滤出水>2 μm滤出水.颗粒物的存在使生物膜结构不稳定,推迟了达到最大生物量的时间,且颗粒物数量越多,粒径越大,生物膜稳定性越差,达最大生物量的时间越长,试验中2号BAR生物膜达最大生物量的时间比1号BAR中生物膜迟4 d,3号BAR生物膜达最大生物量的时间比2号BAR生物膜迟8 d;进水颗粒物数量对出水的细菌量影响很大,颗粒物数量越多,出水细菌量越多.  相似文献   

2.
为探究供水系统中氯/氯胺与低压紫外顺序消毒对抗生素抗性基因(ARGs)分布特征的影响,采用生物膜反应器模拟供水管网,对管网出水和生物膜进行60mJ/cm2低压紫外线(254nm)消毒,并利用高通量定量PCR技术检测模拟管网进、出水及生物膜内的典型ARGs和遗传原件(MGEs).结果表明,管网反应器运行150d,氯和氯胺管网出水ARGs总相对丰度分别为0.13和0.137,生物膜ARGs分别为2.45和0.277,表明供水管网中低剂量的氯或氯胺可有效降低水相和生物膜相中ARGs的相对丰度达90%,且氯胺消毒对生物膜中的ARGs控制作用更显著.氯和氯胺消毒后管网出水再经低压紫外线照射后,ARGs相对丰度分别为0.0682和0.0537,管网生物膜中ARGs的相对丰度分别为2.01和0.194.ARGs与MGEs间的相关性发生显著变化,转座子与strBmepA的相关性增强,与ermXtetM相关性减弱,而整合子与acrF、cmlA1-01、oprJtolC-01的相关性增强.研究表明,将紫外线消毒工艺设置在用水终端可以显著降低氯和氯胺管网水中ARGs丰度,但对管网生物膜中的ARGs影响较小.  相似文献   

3.
抗生素抗性细菌(ARB)作为新兴污染物受到了广泛关注,但紫外线(UV)消毒对ARB去除效果的研究尚不够充分。以某城市污水处理厂过滤后的二级出水为研究对象,通过分析UV消毒前后水中四环素、氨苄西林、氯霉素及链霉素抗性细菌丰度的变化,探究了UV消毒对ARB的去除作用及ARB的光复活与暗修复潜能。结果表明:UV对过滤后二级出水中的4种ARB具有一定灭活能力,4种ARB对UV消毒的耐受能力由高到低分别为:氨苄西林抗性细菌>四环素抗性细菌>链霉素抗性细菌≈氯霉素抗性细菌。当UV消毒剂量为20 mJ/cm2时,氯霉素与链霉素抗性细菌可被完全灭活,消毒后24 h内,这2种ARB未出现光复活或暗修复现象,这一剂量的UV不能完全灭活氨苄西林与四环素抗性细菌,且被灭活后的ARB可实现部分光复活及暗修复。当UV消毒剂量达到80 mJ/cm2时,这4种ARB均被全部灭活,消毒后6 h内,氨苄西林抗性细菌出现了复活现象。不论是在光照还是避光的条件下,UV消毒24 h后水中的总异养菌群中有超过70.32%的细菌对氨苄西林具有抗性,因此,单独UV消毒并不能有效地控制ARB从污水处理厂向环境中的传播。  相似文献   

4.
供水管网中微生物生长和生物膜形成可对管网水质和运行造成重要影响.利用MPN-Griess方法检测了上海某供水系统生物膜中氨氧化细菌的数量,分析了管网中氨氧化细菌与管网水中硝化作用和消毒剂之间的相关性.通过室内实验分析了氨氧化细菌和异养菌对氯胺消毒剂的抗性和消耗影响.结果表明,管网中氨氧化细菌数量(以生物膜干重计)在1.0×102~4.3×105 MPN/g之间,与氨氮、亚硝酸盐氮和硝酸盐氮浓度的相关系数分别为-0.563、 0.603和-0.563;与总氯和一氯胺浓度的相关系数分别是-0.659和-0.571.氨氧化细菌对氯胺消毒剂的抗性明显高于异养菌,对氯胺消毒剂的消耗能力也强于异养菌.  相似文献   

5.
利用膜曝气生物膜外层的厌氧状态与厌氧折流板反应器内部环境相融合的特性,分别启动驯化厌氧折流板反应器和膜曝气生物膜反应器,将驯化好的膜组件置入运行稳定的厌氧隔室内构成耦合反应器.当进水COD和NH+4-N浓度分别为1 600mg/L和80 mg/L时,膜组件置入后反应器出水中的COD和VFA含量分别降低了59.5%和68.1%,对含氮污染物的去除率达到83.5%.当进水有机负荷提高50%时,耦合反应器出水COD浓度仍处于60 mg/L以下,具有良好的抗有机负荷冲击能力.因为流入液体中有机底物的减少和硝态氮的增加,使得3号隔室的沼气产量和甲烷含量均明显减少,但是取而代之的是更为稳定和优良的出水水质.此工艺实现了单一反应器处理中高浓度有机含氮废水的同时去碳脱氮功效.  相似文献   

6.
A/O生物膜法强化处理石化废水及生物膜种群结构研究   总被引:1,自引:0,他引:1  
采用A/O生物膜反应器处理石化综合废水.反应器在O段添加装有改性聚氨酯泡沫的多孔塑料球载体,强化有机物的降解效率.反应器进水分别为水解酸化池出水(阶段I),石化工业废水与生活污水比例为3:1(阶段II)以及单纯的石化工业废水(阶段III). 结果表明,尽管进水COD和氨氮波动较大,但出水COD和氨氮的去除率保持稳定,说明生物膜反应器具有较好的抗冲击负荷能力.在HRT为30h, COD和氨氮的去除率为74%~77%和96%~93%,总氮和总磷的去除率为58%和79%.第II阶段进水为工业废水和生活污水混合的处理效果最好,出水COD和氨氮浓度分别为(63±12)mg/L和(0.75±0.28)mg/L.出水总氮主要为硝酸氮,亚硝酸氮的浓度很低(小于0.1mg/L),表明硝化作用进行得较为完全.进水中有机物的分子量主要分布在小于1kDa(70.9%)和大于100kDa(10.4%).出水中大于10kDa的有机物所占比例减小,分子量主要分布在小于1kDa(56.6%)和1~5kDa(26.2%),表明A/O生物膜反应器对大分子有机物的降解较好.454高通量测序结果表明: 生物膜中变形菌门菌群所占比例最大(60.0%),其次是浮霉菌门(16.9%)和拟杆菌门(9.8%).在属的水平检测到氨氧化菌(AOB)Nitrosomonas和亚硝酸盐氧化菌(NOB) Nitrospiraceae Nitrospira以及反硝化菌Azospira和Thermomonas.NOB的比例较高,这与反应器较好的硝化作用相一致.  相似文献   

7.
采用疾病控制中心(CDC)生物膜反应器模拟给水管网系统,选取聚氯乙烯(PVC)和聚碳酸酯(PC)2种材质的挂片,通过微生物粘附碳氢化合物(MATH)实验和Illumina高通量测序相结合的方法,对反应器水相、生物膜相和颗粒物相中微生物的疏水性进行了研究.结果显示,PVC材质挂片反应器中优势菌为厚壁菌门,相对丰度为68.31%~81.00%,PC材质挂片反应器中优势菌为变形菌门,相对丰度为24.39%~64.40%.PVC材质挂片反应器中优势菌包含3类致病菌,PC材质挂片反应器中包含8类致病菌.PC材质挂片生物膜相较于PVC材质疏水性更高,利于微生物吸附形成生物膜,而PVC材质不易形成生物膜,对控制输送过程中的二次污染具有积极作用,但在管网实际应用中还应考虑其他工程因素的影响.  相似文献   

8.
给水管网管壁铁细菌生长特性模拟及控制对策研究   总被引:2,自引:0,他引:2  
王洋  张晓健  陈雨乔  陆品品  陈超 《环境科学》2009,30(11):3293-3299
利用AR反应器对管壁铁细菌的生长特性、影响因素以及悬浮铁细菌与管壁铁细菌的相关关系进行了研究.管壁铁细菌在反应器运行12 d后达到稳定生长,出水中铁细菌数量比进水增加1 lg,剪切力对于铁细菌达到稳定生长的时间有影响,但对稳定生长后挂片上的铁细菌数量没有明显的影响.稳定余氯0.3 mg/L可以有效控制悬浮和管壁铁细菌的生长,数量降低1 lg;对于管垢内的铁细菌即使余氯增加到1.0 mg/L仍无法杀灭;余氯浓度0.05 mg/L无法有效控制悬浮和管壁附着铁细菌的生长.对于稳定生长下的管壁铁细菌,增加余氯浓度至1.25 mg/L,可使管壁铁细菌数量降低2 lg~3 lg.稳定生长状态下,悬浮铁细菌与管壁铁细菌数量具有线性关系.并在试验基础上提出给水管网铁细菌生长控制对策:维持管网余氯0.3 mg/L;定期采用较高浓度消毒剂冲洗管道;采用新型防腐管材或加快旧管网改造,提高管网抗腐蚀性能等.  相似文献   

9.
生物脱氮新技术在垃圾渗滤液工程化处理中的应用   总被引:12,自引:0,他引:12  
针对渗滤液中高浓度氨氮的处理问题,采用厌氧折流板反应器(ABR)和复合生物膜(HBR)组合工艺对广州市大田山垃圾渗滤液生物处理系统进行改造.具体分析了工程改造后厌氧折流板反应器和复合生物膜反应器的氨氮处理效果及其微生物的状况.现场采用ABR-HBR组合生物脱氮工艺,通过合理控制HBR的溶解氧浓度,并将HBR出水以大比例回流到ABR,以促进部分硝化和厌氧氨氧化过程的发生.结果表明,在进水氨氮浓度高达336.24~685.09 mg/L的条件下,启动60 d后,ABR反应器成功地培养了厌氧颗粒污泥和厌氧氨氧化细菌,其平均氨氮去除率为34.9%.ABR反应器稳定运行30 d后,HBR反应器中氨氧化细菌的数量(MPN)高达6.4×107 个/mL,其平均氨氮去除率为95.1%.经组合工艺整体处理后,系统出水氨氮浓度稳定在25 mg/L以下,总氮的去除率也高达80%以上.  相似文献   

10.
探讨了城市污水SNAD生物膜反应器在高溶解氧工况下的脱氮性能.SBR反应器以城市生活污水为进水,反应器内放置鲍尔环生物膜载体,控制温度为30℃,采用间歇曝气方式,曝气阶段曝气量为500L/h,溶解氧浓度达5mg/L.阶段1控制曝气和非曝气时间都为20min,生物膜的NOB活性较低,反应器具有良好的脱氮性能.反应器的总氮平均去除率和出水总氮浓度平均值分别为89%和llmg/L.阶段2、阶段3和阶段4研究了曝气时间对反应器脱氮性能的影响.曝气时间对生物膜的厌氧氨氧化活性影响较小,对生物膜的NOB活性影响较大.阶段3控制曝气时间为60min,生物膜的NOB活性较低,反应器的总氮平均去除率和出水总氮浓度平均值分别为83%和14mg/L.阶段4控制曝气时间为160min,生物膜的NOB活性较高,反应器的总氮平均去除率降低至50%,出水总氮浓度平均值为35mg/L.  相似文献   

11.
张悦  张广山  王鹏 《中国环境科学》2016,36(5):1463-1468
采用自制微波无极紫外连续式消毒反应器,对二沉池出水进行消毒.紫外光源为自制圆柱形无极灯,灯内充汞10mg、氩气压强666.61Pa紫外光强5.07mW/cm2,进水流量0.072L/s,出水细菌总数2CFU/mL,大肠菌群数0.微波无极紫外作用过程中,微波破坏细胞壁细胞膜结构使蛋白质、K+等胞内物质产生渗漏,这种不可逆的破坏过程有效抑制紫外光复活现象.  相似文献   

12.
废水生物强化中基因工程菌的流失和环境生存状况研究   总被引:5,自引:2,他引:3  
刘春  黄霞  杨景亮 《环境科学》2008,29(9):2571-2575
在废水生物强化处理中,基因工程菌从生物反应器向环境的流失会造成潜在生态风险.在传统活性污泥法反应器(CAS)和膜一生物反应器(MBR)中,考察了1株降解阿特拉津基因工程菌的流失和流失后在模拟自然环境中的生存状况.结果表明,基因工程菌在接种初期从反应器中流失的密度最大.在接种密度为1010CFU/mL时,CAS的最大流失密度接近接种密度,MBR的最大流失密度仅有102CFU/mL.在模拟自然环境中,流失密度是决定基因工程菌生存状况的主要因素.在CAS出水1010CFU/mL流失密度下,高种群密度基因工程菌在水体和土壤中生存时间较长(30 d以上),潜在生态风险较高;在MBR出水102CFU/mL流失密度下.基因工程菌在水体和土壤中很快衰亡,潜在生态风险较小.环境条件对基因工程菌生存状况具有影响,提高土壤的含水率、有机质含量以及环境选择压力的存在有利于基因工程菌生存.  相似文献   

13.
陆孙琴  李轶  黄晶晶  魏斌  胡洪营 《环境科学》2011,32(11):3419-3424
以北京市2座污水处理厂二级出水为研究对象,通过考察总异养菌群、抗性菌比例、浓度及抗生素对细菌的半抑制浓度,研究了二级出水中一般细菌对青霉素、氨苄青霉素、头孢氨苄、氯霉素、四环素和利福平6种抗生素在不同浓度下的耐受性.结果表明,2座污水处理厂出水中青霉素、氨苄青霉素、头孢氨苄和氯霉素抗性菌比例较四环素和利福平高.当抗生素浓度为32mg.L-1时,污水处理厂G二级出水中头孢氨苄抗性菌比例最高为59%,而污水处理厂Q二级出水中氯霉素抗性菌比例最高为44%.头孢氨苄抗性菌在污水处理厂G、Q出水中的浓度分别高达4.0×103 CFU.mL-1和3.5×104 CFU.mL-1,而氯霉素抗性菌浓度分别高达4.9×102 CFU.mL-1和4.6×104 CFU.mL-1.污水处理厂G中异养菌对头孢氨苄的耐受能力最强,其半抑制浓度〉32 mg.L-1;污水处理厂Q中,异养菌对氯霉素的耐受能力最强,其半抑制浓度为23.1 mg.L-1.污水处理厂二级出水中部分抗生素抗性菌污染严重,且稳定存在于低浓度抗生素的处理出水.  相似文献   

14.
无锡市污水处理厂抗生素抗性菌分布与去除特性研究   总被引:2,自引:0,他引:2  
近年来,污水处理厂已成为环境中抗生素抗性菌的重要来源.本研究利用传统的异养菌培养法对无锡市6座污水处理厂进出水中的5种抗生素(氨苄霉素、红霉素、四环素、卡那霉素、环丙沙星)抗性菌进行调查与分析,并对比了在不同工艺和不同季节条件下抗性菌的去除效果.结果表明,5种抗性菌在污水处理厂进出水中均可检出,进水中抗性菌浓度为103~10~5CFU·m L~(-1),出水中抗性菌浓度为10~2~10~4CFU·m L~(-1),其中,氨苄霉素抗性菌最多,占总异养菌的比例超过50%.污水处理工艺没有选择性去除抗性菌的效果,出水中抗性菌占总异养菌的比例相对于进水有增加趋势.相比其它传统工艺(氧化沟、SBR等),MBR工艺对去除氨苄霉素、红霉素抗性菌表现出一定优势;夏季目标污水处理厂对抗性菌的去除量略多于冬季,且只有环丙沙星抗性菌的去除量表现出显著的季节性差异(p0.05).  相似文献   

15.
针对传统消毒技术的安全风险问题,以维护供水管网水质安全为目标,引入茶多酚作为辅助消毒剂和紫外线消毒联用,模拟供水管网系统探究不同管材和水力停留时间下紫外线-茶多酚联合消毒的消毒效果,分析管壁生物膜形貌和菌落分布的变化.结果表明,75mg/L是紫外线-茶多酚联合消毒时茶多酚的较优投加量,可保持48h消毒效果.模拟管网运行过程中整体水质较好,但管材对管网消毒效果的影响较大,30d内球墨铸铁和UPVC管网中细菌量超过100CFU/mL的频率分别为80%和0%,紫外线-茶多酚联合消毒在UPVC管网中消毒持续性较强.与紫外线消毒相比,紫外线-茶多酚联合消毒对管壁生物膜的破坏效果更明显,且对生物膜中的蓝藻菌和肠道致病菌杀灭效果更强,有利于保障管网水质的安全性.  相似文献   

16.
曝气-过滤一体化装置主要由生物反应器、慢性砂滤池及滤布组成。装置对城市污水的处理效果比较好,正常情况下,对COD和NH3-H去除率达90%以上,出水SS为零,出水浊度不超过6 NTU,但对总氮和总磷的去除率分别低于20%和16%,出水细菌总数超过6×104MPN/mL。  相似文献   

17.
基于EPANET-MSX的多组分给水管网水质模型的开发与应用   总被引:2,自引:0,他引:2  
孙傅  陈吉宁  曾思育 《环境科学》2008,29(12):3360-3367
基于EPANET-MSX工具包开发了机制性的多组分给水管网水质模型,模型将管段概化为管壁、生物膜、液膜和液相4个组成部分.模拟过程包括基质利用和微生物生长、微生物衰减和死亡、溶解性物质的液膜传质、不溶性物质的吸附和脱落、余氯与有机物的氧化和卤代反应以及管壁腐蚀消耗余氯等.模拟变量共15个,包括生物膜和液相中各7个变量,即溶解性有机物、不溶性有机物、氨氮、余氯、异养菌、自养菌和惰性颗粒,以及管壁生物膜厚度.利用管段模拟实验数据进行模型验证,模型对余氯和浊度的模拟精度分别为0.1 mg/L和0.3 NTU.案例研究的模拟结果合理地反映了给水管网中余氯和浊度的动态变化特征,而同时考虑水厂出水水质可变性和参数不确定性的Monte Carlo模拟则可用于评价案例给水管网的水质超标风险.  相似文献   

18.
生物膜接触氧化法处理苯胺废水   总被引:8,自引:0,他引:8  
以AN3菌和硝化类细菌构成的复合生物膜降解苯胺 ,研究挂膜过程中苯胺代谢产物的变化情况、生物膜内异养菌与硝化类细菌生态分布情况 ,以及水质条件对苯胺代谢速率的影响 .结果表明 ,挂膜期间苯胺中的氮首先被降解成氨 ,然后进一步生成亚硝酸根或硝酸根 .反应器内的稳定生物膜主要由AN3菌构成 ,但靠近出水位置生物膜中的硝化类细菌密度较进水位置高 10 0倍以上 .生物膜代谢的最佳pH值范围是 6 9— 7 5 .重金属离子 ,尤其是Hg2 ,通常会对生物膜的代谢活性产生抑制作用  相似文献   

19.
通过试验采用铁炭微电解-Fenton试剂联合氧化技术对印染废水进行深度处理,考察了进水pH值、H2O2投加量、水力停留时间、反应器连续运行时间等因素对出水水质及出水中铁元素形态及其含量的影响,试验结果表明:当进水pH值为2、H2O2加入量为3.2 mL/L、水力停留时间为90 min、出水中[Fe3+]较低时,出水水质最好,COD去除率达90%以上,且反应器运行最稳定;反应器连续运行20 d以上时,出水水质有所下降,填料堵塞严重。  相似文献   

20.
以环状膜生物反应器BAR模拟实际输水管道,研究了预氯化对管壁生物膜净水效能的影响及其性能恢复过程.结果表明:冲击性加氯后生物膜中异养菌数量迅速降低,几乎检测不出氨氧化细菌,然而,短时的冲击利于生物膜更新,增加了细菌生长潜能,恢复运行240h及144h之后预氯化生物膜中异养菌和氨氧化细菌数量均高于对照组.氯冲击明显降低了生物膜对氨氮的去除效果,余氯为0.5,1.5,3.0mg/L的BAR对氨氮去除率由对照组的79.01%分别降到32.10%、14.46%和9.88%,并出现了显著的亚硝酸盐氮积累,恢复运行120h和216h,管道生物膜即可恢复对氨氮和亚硝酸盐氮的去除效果.余氯量达到1.5mg/L时造成出水总磷浓度升高,恢复运行264h之后4台BAR对总磷的去除率均达到20%以上.氯对生物膜的氧化作用使得出水高锰酸盐指数升高,运行192h之后生物膜净水效果恢复.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号