首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过现场观测研究西安市和平路街谷内的PM_(2.5)浓度时空变化特征及其影响因素.在2015年4月8~10日进行了街谷内PM_(2.5)浓度、车流量、风速、温湿度等参数的日变化规律和PM_(2.5)浓度空间分布规律的观测实验.观测结果显示西安市和平路街谷内PM_(2.5)浓度值较高,日间PM_(2.5)浓度呈"凹"字形变化,早晚PM_(2.5)浓度相对较高,在16:00前后PM_(2.5)浓度到达一天当中的最低值.PM_(2.5)浓度与温度、湿度有良好的相关性,对应R2值分别达到0.75和0.81.静风天气条件下,由温度变化引起的大气边界层伸缩运动被发现是影响街谷内污染物扩散的主要因素.  相似文献   

2.
为了弄清冬季山谷风、海陆风对京津冀地区大气污染时空分布的影响,利用2016年12月地面加密自动气象站逐时观测数据和中国环境监测总站发布的逐时PM_(2.5)浓度数据,计算平均风矢量场和平均PM_(2.5)浓度场,分析山谷风、海陆风变化规律及其对PM_(2.5)浓度分布的影响.结果表明,在山谷风日,中午至下午谷风将位于河北太行山东部地区的污染物向北输送.傍晚以后,在北京西部、北部,以及河北太行山山前出现的山风与偏南风构成"人字形"辐合线,辐合线的汇聚作用使北京地区、廊坊,以及保定、石家庄、邢台等地大气污染加重.在海陆风日,下午至前半夜,河北中东部沿海地区出现东南向海风,深入内陆到达天津东南部地区,海风前缘区域大气污染加重;通过对中国科学院大气物理研究所铁塔0~325 m风向风速与PM_(2.5)浓度时间变化关系分析,以及利用Cressman法插值得到的地面风向风速和PM_(2.5)浓度二维格点场,分析北京地区重霾污染过程中近地层山谷风和海陆风对大气污染形成的影响:中午至下午,谷风将大气污染物向北京输送.傍晚以后,大气污染物在山风与偏南风形成的辐合线附近汇聚,在北京地区及以南地区形成PM_(2.5)高污染区.凌晨至早晨北京被山风控制,大气污染物被吹离北京、滞留在北京以南至天津西北地区.冬季,山谷风的输送和汇聚作用使大气污染物以日为周期不断循环和累积,对北京地区至北京以南地区、河北太行山东部地区的大气重污染形成起重要作用.  相似文献   

3.
精确识别污染物浓度的空间分布是进行区域大气污染防治的重要基础。利用MODIS卫星数据,采用基于地面气象和环境空气质量监测站点观测数据为基础的反演模型,反演获取2013年12月珠三角地区典型大气污染过程1 km分辨率的PM_(2.5)浓度数据,对比分析遥感反演及基于环境空气质量监测站点观测数据的空间插值方法对区域、城市和乡镇尺度PM_(2.5)浓度空间分布特征的再现效果差异。结果表明,珠三角地区PM_(2.5)遥感反演结果与地面观测数据的相关性达到0.74,相关性水平较好,遥感反演结果可描述区域、城市和乡镇尺度上PM_(2.5)污染浓度的空间分布特征,识别不同空间位置的污染程度差异;基于站点观测数据的空间插值方法对PM_(2.5)浓度空间分布特征的再现能力有限,在区域尺度PM_(2.5)浓度空间分布特征分析时效果尚可,在站点有限的城市和乡镇尺度分析中效果不佳,容易产生对高浓度污染地区的误判;在需要利用站点观测数据分析区域尺度PM_(2.5)浓度空间分布特征时,析取克里金、反距离权重或径向基函数插值方法的效果相对较好。  相似文献   

4.
天津大气污染物日变化特征的WRF-Chem 数值模拟   总被引:7,自引:2,他引:5       下载免费PDF全文
利用大气化学完全耦合模式WRF-Chem 对天津市环境空气中特征污染物CO、NOx、O3、PM2.5 的时间变化规律和空间分布特征进行了数值模拟研究,并与实际观测资料进行了对比.结果表明,天津市CO、NOx、O3、PM2.5 具有明显的时空变化特征:O3 浓度在中午出现最高值,夜间浓度较低;NOx、O3、PM2.5 在晚上和清晨出现高浓度,午后至傍晚浓度较低.O3 在空间分布上表现为中午市区比郊区浓度高,夜间郊区浓度高.其他污染物则均表现为市区浓度高于郊区.在当日东北风情况下,周边地区对天津市污染的影响较小,4 类污染物主要是受本地源的影响.  相似文献   

5.
为研究北京市跑步人群运动过程中主要空气污染物的人体呼吸暴露情况,根据2016年4月、7月、10月和2017年1月北京典型的公园跑步区域(天坛公园、奥体中心)、路跑区域(前门东大街、永定内大街)、背景区域(定陵)PM_(2.5)、CO、O3和NO2等污染物在线监测站点数据,分析各污染物的质量浓度时空变化特征,并对102位跑步爱好者进行调查,采用人体呼吸暴露数值模型,研究跑步爱好者污染物吸入剂量的时空差异.结果表明,典型跑步区域CO、NO2和PM_(2.5)浓度冬季高,春季和夏季较低,O3浓度则呈现春季和夏季高、秋季和冬季低;下午时段(16:00~18:00)CO、NO2、PM_(2.5)浓度较低,早晨(06:00~08:00)和晚上(18:00~20:00)时段O3浓度较低,适宜跑步;道路与邻近公园的污染物浓度呈线性相关,CO路侧浓度与公园内基本一致(c路/c园=1.01,R2=0.93),NO2和PM_(2.5)路侧浓度较公园内高,c路/c园分别为0.56和1.19,O3浓度路侧低于公园内(c路/c园=0.74,R2=0.97);92%的跑步爱好者在中度及以上污染天气情况下停止户外运动,选择在公园内和晚上跑步的跑者占比分别为62.7%和66.7%,64.7%的跑者单次跑步里程在10~20 km;下午和晚上跑步时个体的CO、NO2、PM_(2.5)吸入剂量较晨跑低,但O3吸入剂量较高,春季、夏季夜跑时可选择20:00以后时段,能降低O3吸入剂量;路跑条件下个体的CO、NO2和PM_(2.5)的吸入剂量总体要高于公园跑,但O3吸入剂量刚好相反.  相似文献   

6.
该文分析了西安地区的AQI指数以及PM_(2.5)、PM_(10)、CO、NO、O_3、SO_2 6种污染物浓度在2013年7月到2014年4月的每小时观测数据,利用统计方法研究了各污染物不同时间尺度(小时、日、周、月)的浓度变化特征,分析了各个污染物之间的相关系数,对各个污染物之间的相互关系和相互作用进行了探讨。结果表明,PM_(2.5)、PM_(10)、CO、NO_2、O_3、SO_2的平均浓度和标准差分别为:(92.37±75.59)μg/m~3、(166.79±106.27)μg/m~3、(2.16±2.39)mg/m~3、(51.01±20.84)μg/m~3、(36.85±34.44)μg/m~3、(36.97±30.62)μg/m~3、(39.99±31.27)μg/m~3。PM_(2.5)、PM_(10)以及CO浓度都是在中午12时以及夜间12时左右达到峰值,在下午或傍晚达到低谷;O_3则是白天浓度高,夜间浓度低,清晨达到一天中的极小值;研究还发现,O_3浓度在周末要高于工作日,CO、SO_2却是周末浓度低于工作日浓度;PM_(2.5)和PM_(10)浓度都在冬季达到峰值,在夏季达到低谷,O_3浓度则是在夏季明显高于冬季。O_3与其他所有污染物之间都呈负相关,而其他污染物之间都是正相关。  相似文献   

7.
北京市PM2.5时空分布特征及其与PM10关系的时空变异特征   总被引:1,自引:0,他引:1  
PM_(2.5)时空分布特征及其与其它污染物的相关关系是PM_(2.5)时空统计分析的主要研究内容.然而,现有的方法直接从监测站点的角度对时空分布特征进行分析,难以有效地揭示PM_(2.5)浓度的聚集分布特征;同时,常用的地理加权回归在对PM_(2.5)与其它污染物间关系进行建模的过程中,缺乏同时考虑时间异质性与空间异质性,从而不能准确地描述依赖关系的时空变异特征.为此,首先借助于空间聚类分析技术,对北京市2014年PM_(2.5)浓度的聚集结构进行探测,在此基础上,通过聚集结构来分析PM_(2.5)季节性时空分布特征.然后,利用地理时空加权回归对北京市PM_(2.5)与PM_(10)季节平均浓度间关系进行建模,依据回归结果分析PM_(2.5)-PM_(10)间关系的时空变异特征.实验结果表明,春夏季节PM_(2.5)污染程度及空间变异程度均低于秋冬季节,各季节PM_(2.5)浓度均表现为北部浓度低、南部浓度高的空间分布特征;地理时空加权回归具有更好的拟合效果,由回归系数进一步可发现,春夏季PM_(2.5)-PM_(10)相关性低于秋冬季PM_(2.5)-PM_(10)相关性;各季节均表现为西北部PM_(2.5)-PM_(10)的相关性高于东南部PM_(2.5)-PM_(10)的相关性.  相似文献   

8.
重庆市都市功能核心区秋季大气污染物时空分布特征   总被引:3,自引:2,他引:1  
为研究重庆市都市功能核心区大气污染物浓度水平及变化规律,统计分析了2014年9月至2014年11月5个监测站(解放碑、高家花园、杨家坪、新山村和南坪)24 h连续监测PM_(2.5)、PM_(10)、SO_2、NO_2、CO和O_3浓度数据.结果表明,观测期间,大气颗粒物污染严重,5个站点PM2.5日均浓度超标率分别为30.8%、37.4%、38.5%、37.4%和31.9%,5个站点PM10日均浓度超标率分别为23.1%、22.0%、18.7%、19.8%和19.8%;重庆市都市功能核心区细颗粒物(PM_(2.5))污染严重,5个站点PM2.5占PM10比例分别为60.2%、64.6%、64.1%、75.4%和62.8%;PM_(2.5)、PM_(10)、NO_2和CO早晚出现高峰值;SO_2和O_3浓度日变化曲线呈现单峰型,峰值分别出现在中午和午后;降水量、气温和水汽压与PM_(2.5)、PM_(10)、SO_2和NO_2呈显著负相关;相对湿度与O_3呈显著负相关,气温、水汽压和风速与O_3呈显著正相关;CO与相对湿度呈显著正相关;风向也影响着大气污染物浓度的时空分布,南偏西、南偏东和东北偏北风利于PM_(2.5)、PM_(10)、SO_2、NO_2和CO浓度积累,西北风利于PM_(2.5)、PM_(10)、SO_2、NO_2和CO扩散;但西北风控制下利于O_3浓度积累.  相似文献   

9.
刘炳杰  彭晓敏  李继红 《环境科学》2018,39(12):5296-5307
土地利用回归(LUR)模型是模拟大气污染物浓度时空分异最主要、最体系化的方法之一,为了探索LUR模型在中国国家尺度空气污染物模拟的适应性,挖掘中国2015年空气细颗粒物(PM_(2.5))的时空变化特征及其与不同地理要素相关关系,以2015年国家控制监测站点PM_(2.5)数据为因变量,土地利用类型、地形地貌、人口、道路交通与气象要素等影响因素为自变量,构建基于地理加权的LUR模型,通过模型回归制图得到2015年全国月均与年均PM_(2.5)浓度分布图,以胡焕庸线为参考线分析中国2015年PM_(2.5)浓度的时空变化特征.结果表明,引入地理加权算法的LUR模型残差Moran'sⅠ显著降低,残差空间自相关性明显减弱,判别系数R2明显提高,更好地揭示出PM_(2.5)空间分布和各影响因子间的复杂关系;耕地、林地、草地和城镇居民工矿用地以及气象要素、主干道路对PM_(2.5)浓度的影响比较显著.不同地理要素的不同空间分布对PM_(2.5)影响作用不同;胡焕庸线两侧PM_(2.5)表现出明显的时空差异,人口规模大、工业化水平高的发达城市PM_(2.5)浓度较高; PM_(2.5)浓度在冬季月份较高,秋季、春季、夏季月份污染情况逐渐减弱.  相似文献   

10.
文章基于2016~2017年武汉城市圈各城市站点PM_(2.5)逐时监测数据,主要利用空间自相关、核密度法和空间计量模型,从不同的时空尺度来分析武汉城市圈PM_(2.5)的空间分布格局和影响因素。结果表明:在年尺度上,2016~2017年武汉城市圈PM_(2.5)浓度整体上呈下降趋势,空间分布上呈中东部高、西南部低、局地略有突出的分布特征并表现出明显的空间集聚性,城市圈内部各城市PM_(2.5)污染浓度差异明显,且各城市之间存在一定的空间溢出效应;从年内尺度上看,武汉城市圈PM_(2.5)浓度总体上呈"U"字型分布,冬春季污染最为严重,秋季、夏季次之,且4个季节的PM_(2.5)浓度值存在较强的空间自相关性,表现出不同程度的空间集聚现象;从影响因素上看,无论是自然环境要素还是社会经济要素均对城市圈PM_(2.5)浓度变化起重要作用,按其贡献强度依次是温度民用汽车拥有量风速能源消费水平城镇化率第二产业占比湿度节能环保支出,而森林覆盖率和海拔高度对PM_(2.5)没有表现出明显的直接效应;从大气污染物本身关系上看,PM_(10)直接作用于PM_(2.5)的浓度变化,且起关键性的作用,CO和NO_2则主要是通过PM_(10)对PM_(2.5)浓度间接地产生影响,而O_3对PM_(2.5)浓度影响较小且呈负相关关系。  相似文献   

11.
根据2015年1—12月深圳市城区11站点PM_(2.5)小时浓度监测数据,探讨了深圳市PM_(2.5)浓度的时空分布特征。结果显示:监测期间深圳市城区PM_(2.5)平均浓度为29.8μg/m~3,PM_(2.5)平均浓度整体呈现出:冬季>秋季>春季>夏季的特征,PM_(2.5)质量浓度日变化整体呈现出双峰型分布,午后12:00—16:00浓度较低。空间分布上,年均浓度从东南至西北方向依次升高,梯度特征明显。PM_(2.5)浓度与PM_(10)呈高度相关,与SO_2、NO_2、CO呈显著正相关,与O_3呈实相关。相邻城市间空气污染物浓度呈现出一定的相关性,区域污染突出。建立的PM_(2.5)回归统计模型对深圳市2015年PM_(2.5)临近预报的级别准确率在70%以上,能较好地反映PM_(2.5)浓度变化趋势。  相似文献   

12.
近年来,随着气候变化以及工业化程度的加深,城市的大气污染问题日益突显。作者收集了2013-2018年南京地区首要大气污染物资料,对该地冬季大气污染物的时空分布特征及各污染物之间的相关性进行分析。结果表明:(1)从时间分布来看,除O_3外,南京冬季各污染物浓度均在2月达到最小值,AQI、PM_(10)、SO_2和NO_2浓度均在12月达最大,1月次之。PM_(2.5)、PM_(10)与AQI日变化趋势高度一致,在上午10∶00-11∶00出现峰值,在下午17∶00出现最低值。SO_2日变化呈单峰式变化特征,在上午11∶00出现峰值。NO_2浓度的日变化趋势与O_3正好相反,在下午14∶00-15∶00,NO_2出现低值,而O_3出现峰值。(2)从空间分布来看,南京冬季AQI与PM_(2.5)、SO_2的空间分布特征类似,呈东南高、西北低的分布特点,而PM_(10)呈西南-东北向递增的分布特点。(3)AQI与PM_(2.5)、PM_(10)的相关性最好,与SO_2、NO_2的相关性次之,而AQI与O_3没有明显的相关性,即影响南京冬季空气污染的主要是PM_(2.5)、PM_(10)、SO_2和NO_2。  相似文献   

13.
文章基于WRF-CMAQ空气质量数值预报系统,对石家庄地区未来3 d逐小时SO_2、NO_2、CO、O_3、PM_(10)和PM_(2.5)6种污染物浓度进行预报,选取2014年5-11月市区7个国控点的监测数据对模式预报能力进行评估检验。结果表明,CMAQ模式预报系统对CO的日均浓度预报准确率较高,而对其他污染物浓度的预报均有不同程度高估,其中PM10的预报效果相对较好,对SO_2、NO_2和PM_(2.5)这3种污染物浓度的预报值均明显大于观测值,O_3的预报效果最差。这与石家庄市排放源清单的不确定性及污染物日浓度变化幅度较大有关。为提高模式预报的准确性,采用非线性自适应偏最小二乘回归滚动法建立订正模型对逐小时污染物浓度预报值进行订正,结果明显改善了CMAQ模式预报值,对县市级的精细化预报有一定指导意义。订正结果对首要污染物PM_(10)和PM_(2.5)浓度的日变化特征表征较好,日变化曲线及波峰波谷值与观测结果基本一致,订正后的污染物浓度能反映出其在石家庄的区域分布特征,有利于预报分析不同天气背景下污染物的空间分布特征及输送变化过程。  相似文献   

14.
基于江苏省2013年12月-2014年11月期间71个监测点PM_(2.5)日数据以及2014年土地利用数据,以年、季为时间尺度,利用泰森多边形划分研究区域,在系统分析PM_(2.5)时空分异规律基础上,揭示PM_(2.5)浓度变化及其与土地利用的关系。结果表明:(1)PM_(2.5)浓度分布存在明显的时空变化趋势。时间上,冬季浓度最高,达109.72μg/m~3,春季次之,为70.13μg/m~3,秋季最低,仅53.20μg/m~3;空间上,从各监测点一年PM_(2.5)浓度看,南京、泰州和宿迁数个监测点是PM_(2.5)高浓度区域,浓度范围81~85μg/m~3。盐城开发区管委会浓度最低,仅49.75μg/m~3,全省呈现"内陆高,沿海低;内陆南高北低"的趋势。(2)土地利用类型及景观格局对PM_(2.5)浓度分布有一定影响。耕地、草地、水域和未利用地与PM_(2.5)呈负相关,林地和建设用地则呈正相关。景观面积、密度、破碎度和聚散性是影响PM_(2.5)的主要因素,冬夏季较为敏感。  相似文献   

15.
本文分析了2015年3月至2016年2月广州某区细颗粒物(PM_(2.5))和气态污染物(SO_2、NO_2、CO、O_3)质量浓度的日变化特征,并对PM_(2.5)和气态污染物之间质量浓度的相关性进行分析,结果表明:PM_(2.5)、SO_2、NO_2、CO、O_3大气污染物存在一定规律的日变化特征。PM_(2.5)与SO_2、NO_2、CO、O_3全年质量浓度的相关系数范围分别为0.184~0.219,0.271~0.436,0.170~0.368和0.051~0.318,存在一定的线性正相关关系。  相似文献   

16.
该文选择北京城区12个空气质量监测点,研究APEC前后及期间污染物时空变化特征及相互关系,并从不同角度分析污染物时空变化的影响因素,探讨APEC期间采取的临时减排措施对污染物的影响。结果表明:除O_3外,APEC期间污染物浓度低于非APEC期间,各污染物浓度在会间逐日变化呈"M"型、日变化最为平稳(α=0.05,Sig0.05),基本呈从北至南、从西至东的递增趋势,O_3浓度空间变化和NO_2的相反耦合度最高(p=0.01,r-0.80);PM_(2.5)、SO_2、NO_2和CO相互间在不同时段呈不同水平的正相关关系,但O_3在和其他污染物呈负相关。大气污染物浓度主要受排放源、气象因素、区域传输及污染物相关性等综合因素的影响,通过回归分析发现SO_2、NO_2、CO浓度和温度负相关性显著(α=0.05,Sig0.05),NO_2、CO、PM_(2.5)和湿度负相关性极显著(α=0.05,Sig=0.000.05)。PM_(2.5)为APEC期间首要污染物,PM_(2.5)浓度在各因素综合影响下降低,使得会间空气质量达到优良水平,因此,APEC期间采取的减排措施取得成效,可为相关环保部门采取合理有效的环保手段提供指导。  相似文献   

17.
基于地理加权模型的我国冬季PM2.5遥感估算方法研究   总被引:3,自引:0,他引:3  
为了分析冬季我国区域范围内近地面PM_(2.5)质量浓度时空分布特征,根据卫星遥感反演PM_(2.5)质量浓度的基本原理,综合考虑我国不同地区的PM_(2.5)污染特征的空间差异性,基于卫星遥感、气象模式资料及同期地面观测的PM_(2.5)质量浓度数据采用地理加权模型进行回归分析,研究构建了我国区域范围内近地面PM_(2.5)遥感反演模型.结果表明:在冬季暗像元反演AOD算法受限制的情况下,深蓝算法产品可以一定程度上弥补暗像元算法的不足,将二者有效融合能同时提高AOD产品的精度和空间覆盖度;利用地理加权回归模型进行全国区域PM_(2.5)遥感估算,既能体现全国PM_(2.5)时空分布的全局变化特性,又能从局部体现全国PM_(2.5)组分、污染程度及垂直分布结构特征的空间差异特性,基于地理加权回归模型的PM_(2.5)遥感反演结果(R2=0.7)明显优于多元线性回归模型(R2=0.56);2013年12月—2014年2月份全国PM_(2.5)空间分布呈现明显的区域特征,PM_(2.5)浓度较高的地方主要分布在华北南部、长三角中部和北部、华中东部及四川东部等地,西部和北部地区PM_(2.5)污染相对较轻;从时间变化来看,全国冬季12月份PM_(2.5)污染最重,1月份次之,2月份相对最低.这可为全国PM_(2.5)区域联防联控提供有力的信息支撑.  相似文献   

18.
《中国环境科学》2016,(“十一”)
采用垂直观测、地面观测、PM_(2.5)化学组分观测和气团轨迹分析等手段,对2015年10月份北京市一次大气重污染过程进行了分析.结果表明,重污染时近地面层气溶胶消光系数升高,污染物主要积聚在600m以下.重污染期间气象要素特征为:风场弱,湿度大,地面受弱气压场控制,边界层高度极低.重污染期间不同站点PM_(2.5)浓度变化趋势和峰值出现时间较为一致;大部分时段PM_(2.5)中NO_3~-浓度明显高于其他组分;周边区域受重污染的影响面积相对较小,高浓度区主要集中在北京市及近周边地区.多手段的观测结果以及PM_(2.5)浓度与气象要素和各化学组分的相关性分析的结果均表明:区域传输,包括秸秆焚烧,对本次北京市重污染天气过程具有一定的影响,但本地机动车排放在不利气象条件下的积累、二次转化以及垂直方向空间的极端压缩是导致重污染的主要原因.  相似文献   

19.
利用北京城区海淀宝联站(HD)和上甸子本底站(SDZ)2005—2012连续8年的大气污染物(PM_(2.5)、O3、NO2、SO_2和CO)浓度观测数据进行统计分析,揭示北京城区和郊区主要污染物浓度变化特征、超标情况及其差异.主要结论如下:1连续8年北京城区、郊区PM_(2.5)浓度整体呈缓慢下降趋势,但污染水平仍较高.海淀宝联站和上甸子本底站的PM_(2.5)年均浓度从奥运前3年(2005—2007)的平均值87.1μg·m-3和53.4μg·m-3分别下降到奥运后5年(2008—2012)的平均值67.7μg·m-3和42.1μg·m-3.奥运后5年两站PM_(2.5)年均浓度变化不大,其中城区维持在66~70μg·m-3的高浓度水平.城区PM_(2.5)浓度为3级以上的超标日在四季的发生频率相当,4级和5级以上的超标日则多发生在秋、冬季;各季平均日变化趋势均为双峰双谷型,上下班交通高峰期对PM_(2.5)浓度日变化有重要影响.2城区站O3年均浓度前5年(2006—2010)逐年下降,之后浓度开始回升,而本底站O3年均浓度在此期间变化不大,近6年(2007—2012)维持在72.4~76.3μg·m-3.城、郊O3平均日变化均呈单峰型,其中上甸子站峰值出现时刻晚于城区海淀宝联站.32005—2012年北京城区其它气态污染物浓度(NO2、SO_2和CO)总体均呈缓慢下降趋势,但在2012年浓度有所反弹,城区站气态污染物在秋、冬季的平均浓度均显著高于春、夏季.  相似文献   

20.
利用WRF模式(The Weather Research and Forecasting Model)和嵌套网格空气质量模式(NAQPMS)对2016年11月发生在京津冀地区一次PM_(2.5)污染事件进行模拟研究并分析污染过程中的天气形势变化.结果表明,均压场、低空逆温层和偏南暖湿气流输送的存在为北京地区PM_(2.5)形成提供了有利条件,NAQPMS模式能够合理的再现北京大气污染物时空变化,细颗粒物PM_(2.5)和可吸入颗粒物PM_(10)模拟与观测数据相关系数达0.71,模拟数据在观测数据两倍范围内占比(FAC2)达65%.源解析结果表明,在不考虑临时实施减控措施下,11月18日区域外输送对北京PM_(2.5)浓度贡献为55.25%,区域内输送贡献为44.75%,北京东北区域PM_(2.5)外地源主要为河北中部、河北南部、天津和山东,所占贡献为9.67%、9.01%、7.90%和7.99%.污染物主要来源为生活源、交通源和工业源,分别占比39.6%、34.6%和20.0%.而实际上北京在唐山、保定采取一系列控制措施后仍在研究时段内出现高PM_(2.5)浓度,意味着在同样天气形势下需要对河北中部、河北南部、天津和山东等浓度贡献占比大的城市加强减排管控才能有效减缓高PM_(2.5)浓度的出现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号