首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
气溶胶与气候的相互影响随全球变暖趋势日渐显著,生物质燃烧(Biomass burning,BB)对气候环境的影响同样不容小觑.基于MODIS气溶胶与火点遥感数据和MERRA-2再分析数据,研究了亚洲气溶胶光学厚度(Aerosol optical depth,AOD)、黑碳(Black carbon,BC)、有机碳(Organic carbon,OC)与BB分布变化特征,并分析了亚洲BB与碳质气溶胶的相关性.结果表明:①亚洲AOD高值集中于阿拉伯半岛(春季:0.815,夏季:0.947)、中国中东部和青藏高原南侧,阿拉伯海海域夏季AOD由岸向海降低,青藏高原南侧冬季BC较为突出(6.517μg·m-2),中南半岛OC高值时间上不连续.②亚洲BB多发于印尼群岛(夏、秋两季)、中南半岛(冬、春两季)、青藏高原南侧和俄罗斯部分地区.③中南半岛秋、冬、春三季碳质气溶胶与BB密切关系:柬埔寨秋季西南部出现BB与BC的正相关高值,相关系数为0.602;缅甸、老挝地区冬季为正相关关系区(BC:0.773,OC:0.839);老挝北部春季表现为负相关高值(BC:-0.745,OC:...  相似文献   

2.
秸秆燃烧排放的正构烷烃及其碳同位素组成特征   总被引:2,自引:0,他引:2       下载免费PDF全文
刘刚  孙丽娜  李久海  徐慧 《中国环境科学》2012,32(12):2184-2191
为了探讨生物质燃烧过程中正构烷烃化学组成及其碳同位素的变化规律,对4种玉米秸秆进行了室内焚烧实验,用GC-MS和GC/C/IRMS方法对燃烧前后的样品进行测定.结果表明,秸秆中正构烷烃的碳数为C13~C35,分布形态为单峰型,主峰碳数为C31.正构烷烃的碳优势指数(CPI)值为1.1~5.3,平均碳链长度(ACL)为25.1~28.8.明火烟尘中正构烷烃的碳数为C14~C35,呈双峰型分布,2个主峰碳数分别是C18和C31.其CPI值为1.0~2.4,ACL值为23.0~26.8.正构烷烃单体碳同位素比值为-20.1‰~-33.5‰.闷烧烟尘中正构烷烃的碳数是C12~C35,CPI值为2.2~4.8,ACL值为26.6~28.9.其含量呈双峰式分布,2个主峰碳数分别是C22/C23、C31.正构烷烃单体碳同位素比值为-21.5‰~-32.5‰.在明火烟尘和闷烧烟尘中,正构烷烃的单体碳同位素组成与原秸秆中同碳数正构烷烃的差值分别为-13.8‰~5.4‰、-6.7‰~ -5.1‰.2种烟尘中正构烷烃的化学组成与碳同位素分布都与原玉米秸秆有着显著的差别.  相似文献   

3.
选取北京市地区典型生物质燃料(玉米芯、玉米秆、黄豆秆、草梗、松木、栗树枝、桃树枝)以及民用煤(烟煤、蜂窝煤)在实验室内进行了模拟燃烧实验,对燃烧产生的颗粒物及气体样品进行采集,采用Model 2001A热/光碳分析仪对不同粒径段颗粒物中的有机碳、元素碳进行测定,采用AgilentGC-MS 5977/7890B气质联用仪对燃烧烟气中的挥发性有机物进行分析.研究表明:除蜂窝煤OC、EC的排放因子在2.5~10μm粒径范围内达到最大,其他8种固体燃料燃烧产生的OC、EC的排放因子最大值均在0~2.5μm粒径范围内.薪柴(栗树枝、桃树枝、松木)、秸秆(玉米芯、玉米秆、黄豆秆、草梗)和民用煤(蜂窝煤、烟煤)3类物质燃烧排放VOCs的物种分类差异较大.薪柴和民用煤燃烧排放的卤代烃以及含氧有机物的质量分数明显高于秸秆的质量分数;在同一类别中VOCs物质分布趋势一致.3种薪柴平均总VOCs的排放系数为2.02g/kg,4种秸秆平均总VOCs的排放系数为6.89g/kg,2种民用煤平均总VOCs的排放系数为2.03g/kg,秸秆类的排放因子最大.玉米芯、玉米秆、黄豆秆和草梗的臭氧生成潜势较高,而栗树枝、桃树枝、松木、烟煤以及蜂窝煤的臭氧生成潜势较低,且分布类似.烯烃类、烷烃类、芳香烃类是固体燃料燃烧臭氧生成潜势贡献较大的VOCs物质.  相似文献   

4.
芳烃作为原油的主要组分之一,蕴含丰富的地球化学信息,常用原油中芳烃的分布及其碳稳定同位素组成来评价原油的有机质来源和热成熟度等指标。为了补充油品化学指纹的基础鉴别指标和数据,找出适用于油样鉴别的芳烃地球化学指标以及碳稳定同位素组成,本文主要测定了来自不同地区七种原油芳香烃组分的相对含量以及碳稳定同位素组成,并计算分析了甲基萘比值(MNR)、二甲基萘比值(DNR)、三甲基萘比值(TNR)、甲基菲比值(MPR)、甲基菲指数(MPI1)和甲基菲分馏系数(MPDF)等常见的芳烃特征比值。从原油中芳烃组分相对含量分布来看,七种原油均显示出了各自的特点;从原油芳烃的特征比值来看,成熟度参数(MNR、TNR1、TNR2、MPR、MPI1、MPDF1和MPDF2)均反映出所有原油的高成熟度,其它芳烃参数如DNR1、DNR2和TNR4等比值反映原油的母质来源及生物降解等信息,由芳烃特征比值的单因素方差分析(ANOVA)结果可知,与成熟度参数MNR和MPI1相比,DNR1、DNR2和TNR4在不同原油间的差异更加明显;从原油芳烃碳稳定同位素组成来看,不同地区原油间差别较大,其中巴西原油最富集13C,阿曼原油和委内瑞拉原油最亏损13C,二甲基萘和菲的碳稳定同位素组成在不同油样间的差异最明显。将显著性差异大的芳烃参数与芳烃δ13C值联用,结果表明,该方法可以更加有效区分七种原油。最后使用主成分分析方法分析原油芳烃碳稳定同位素组成,七种原油显示出各自不同的碳稳定同位素组成特征和明显的区分效果,利用不同油样芳烃的碳稳定同位素组成差异可实现对油样来源的鉴别。  相似文献   

5.
为识别不同类型工程机械排放碳质气溶胶组成,选取叉车、压路机、平地机、推土机和挖掘机5种工程机械,并考虑怠速、行走、运行三种工况以及国Ⅰ前、国Ⅱ和国Ⅲ三种不同排放标准,对其排放细颗粒物(PM2.5)进行采集,采用热光碳分析仪分析PM2.5碳质组分.结果表明,有机碳(OC)平均占比为(70.1±13.2)%,元素碳(EC)的占比为(11.9±7.5)%.叉车、压路机、推土机和挖掘机排放OC中OC1占比最高为(58.0±9.5)%.而OC2为平地机OC主要部分,占比为(42.3±8.1)%.工程机械OC/EC比值的平均值为12.7±9.5,表明受工程机械排放影响的大气环境条件下,用最小比值法会高估大气中二次气溶胶的占比.不同类型工程机械的OC/EC比值在不同状态下变化范围较大,为3.0~36.3.叉车3、压路机、平地机和推土机排放的PM2.5中OC/EC的比值在行走状态下比值最高,分别为24.9,15.7,36.3和5.3.叉车2和挖掘机1碳组分排放的比值在运行状态下达到最大值,分别为18.1和14.9.叉车1和挖掘机2中比值...  相似文献   

6.
本文应用GC/MS、GC/IRMS和EA/IRMS等方法对6种不同产地原油的特征比值, 全油和正构烷烃组分的碳稳定同位素组成进行分析, 研究不同产地原油的碳稳定同位素组成特征, 并探讨其原因。结果显示, 6种原油的C19+C20/(C19~C22)、OEP1和CPI13-22特征比值不存在显著性差异, 不能作为区分这6种原油的有效指标。原油全样的δ13C值差异明显, 阿曼δ13C值最轻为-33.4‰, 巴西最重为-24.5‰, 其余4种原油介于两者之间。GC/IRMS分析结果显示不同油种具有不同的碳稳定同位素组成特征, 6种原油的正构烷烃δ13C值和分布曲线明显不同。单因素方差分析结果显示除个别油样外, 不同原油两两之间全油δ13C值和nC20的δ13C值差异性显著(P < 0.05)。实验结果表明, 特征比值和碳稳定同位素组成相结合能更加有效的区分不同种类原油, 油品中同位素组成特征差异可为原油种类鉴别和溯源提供一个有效的技术支撑。  相似文献   

7.
于鸣媛  王谦  付明亮  戈畅  谢锋  曹芳  章炎麟 《环境科学》2023,44(7):3771-3778
机动车尾气是大气碳质气溶胶的重要人为来源,其排放因子与稳定碳同位素组成是重要的基础数据.选取多辆不同类型在用机动车,进行多种工况、冷/热条件下启动的台架试验,收集各测试阶段尾气分析其碳质组分含量与稳定碳同位素比值,并探讨其影响因素.结果表明,总碳排放因子大小为:重型柴油车>轻型柴油车>轻型汽油车,轻型天然气车虽然在低速与中速阶段排放因子极低,但高速行驶阶段可达到重型柴油车的排放水平.各型车冷启动的排放因子均高于热启动,NEDC工况的排放因子整体低于WLTC工况,应与其测试车速有关.汽油车和天然气车各测试阶段排放有机碳(OC)均远高于元素碳(EC),柴油车OC与EC排放因子相近,各类车辆OC/EC都随测试车速的提高而上升.稳定碳同位素EC重于OC,同位素比值大小关系均呈现:汽油车<天然气车<轻型柴油车<重型柴油车,现有源解析的稳定碳同位素源谱较难反映汽油车与天然气车特征.在排放治理与源解析工作中,应注意替代燃料的使用与机动车老化过程所造成的排放因子与同位素特征值的变化影响.  相似文献   

8.
选取山西省典型焦化厂开展不同生产工序苯系物(BTEX)样品采集,分析5种主要BTEX组分的排放特征及稳定碳同位素组成(δ13C),并对我国焦化行业BTEX排放量及不确定性进行了估算.结果表明:炼焦过程BTEX总排放因子为16649mg/t焦炭,其中焦炉烟气BTEX排放因子最高(7167mg/t),其次为出焦(6454,1825mg/t)、污水处理(1096mg/t)和化产回收废气(112.7mg/t);与燃煤不同,苯是炼焦过程排放的优势特征物种(86.12%),其次是甲苯(11.45%);炼焦过程排放BTEX的δ13C值为-27.10‰~-32.58‰,不同生产工序δ13C值无显著差异;煤焦化过程排放的苯/甲苯比值(B/T)和苯的δ13C值具有特异性,可作为区分炼焦与其他污染源的指示物;2020年我国焦化行业BTEX排放量为7844t,其中山西(22.27%)、陕西(10.39%)、河北(10.24%)和内蒙古(8.96%)贡献最大.  相似文献   

9.
随着全球经济的快速发展,海洋大气受到了人为污染物的严重影响,并引起了广泛的关注.碳组分是海洋大气气溶胶的重要组成,对全球气候变化和海洋碳循环有着重要的影响.由于采样困难,有关偏远海域海洋气溶胶中总碳(TC)在传输过程中发生的化学反应及其污染来源的研究相对较少.因此,本研究于2014年12月-2015年3月期间搭载西北太平洋观测航次收集海洋大气气溶胶样品,并测定总碳(TC)浓度及其稳定碳同位素组成(δ13C).结果表明,海洋大气气溶胶TC平均浓度为(4.0±4.4)μg·m-3δ13C平均值为-26.6‰±0.8‰.近岸与远海的TC平均浓度分别为(6.0±6.8)、(3.1±2.7)μg·m-3δ13C平均值分别为-26.0‰±1.1‰、-26.9‰±0.4‰.根据后向轨迹分析结果可知,近岸与远海TC浓度和同位素的差异可能是由不同气团的来源导致,近岸总悬浮颗粒物(TSP)中TC主要来源于大陆的生物质燃烧和机动车尾气,而远海可能与二次有机气溶胶(SOA)的形成比例相对较高有关.  相似文献   

10.
笔者对南阳、泌阳及倪丘集三个凹陷不同时代、不同沉积环境的62个干酪根样品进行了元素分析、透射和反光镜鉴定及碳同位素分析,结果表明:(1)干酪根的碳同位素组成与其化学类型之间不存在明显的依赖关系;(2)海相碳酸盐岩中的干酪根富含~(12)C(δ~(13)C<-28%),干酪根的δ~(13)C值不能有效地反映海、陆相有机质的相对输入;(3)随沉积-成岩过程中有机质氧化程度的加深,干酪根的碳同位素组成变重(δ~(13)值增大)。  相似文献   

11.
森林生物质燃烧烟尘中的有机碳和元素碳   总被引:2,自引:2,他引:2  
选取10种乔木制备风干树枝、新鲜树枝两种类型的样品,通过自制的生物质燃烧装置模拟阴、明燃两种燃烧方式燃烧制备的树枝样品,采集排放的烟尘,并使用DRI2001A热/光分析仪测定样品中的有机碳(OC)、元素碳(EC).结果表明,风干树枝明燃排放烟尘中OC的排放因子(EFOC)、EC的排放因子(EFEC)、PM的排放因子(EFPM)均值分别为6.8、2.1、16.5g·kg-1,阴燃排放烟尘中均值分别为57.5、11.1、130.9 g·kg-1;新鲜树枝明燃排放烟尘中EFOC、EFEC、EFPM均值分别为13.6、3.3、30.5 g·kg-1,阴燃排放烟尘中均值分别为57.6、9.6、125.6 g·kg-1.树枝(风干树枝、新鲜树枝)阴燃时EFOC、EFEC、EFPM均高于明燃时,在明燃(高温度)条件下含水率与树枝燃烧时EFOC、EFEC、EFPM是呈正相关关系.树枝燃烧烟尘中OC、EC、TC(TC=OC+EC)占PM的百分比约为45%、10%、55%,乔木树枝阴燃排放烟尘中OC的质量分数高于明燃,EC的质量分数低于明燃.新鲜树枝排放烟尘中OC的质量分数高于风干树枝,EC的质量分数低于风干树枝.风干树枝明燃条件下OC/EC的均值为3.3(2.5~5.2),阴燃条件下均值为5.2(4.3~6.3);新鲜树枝明燃条件下OC/EC的均值为4.1(3.1~5.3),阴燃条件下均值为6.2(4.2~8.4),乔木树枝阴燃时OC/EC的值高于明燃,含水率高的乔木树枝(新鲜树枝)燃烧排放烟尘中OC/EC的值高于含水率低的树枝(风干树枝).风干树枝燃烧烟尘中OC、EC的相关系数为0.985,新鲜树枝燃烧烟尘中OC、EC的相关系数为0.915,含水率不同的乔木树枝(风干树枝、新鲜树枝)在不同燃烧条件下(明燃、阴燃)排放烟尘中OC与EC都具有良好的相关性.  相似文献   

12.
拉萨市气溶胶中碳同位素的组成及季节变化   总被引:2,自引:0,他引:2  
2006年8月~2007年7月,在西藏拉萨市西郊(29°38′N,91°01′E)采集了30个大气总悬浮颗粒物(TSP)样品,利用14C定量区分了碳质气溶胶的生物和化石来源并分析了其季节变化特征.结果表明,碳质气溶胶中生物碳所占比例的fc值在0.357~0.702之间变化,均值为0.493,明显高于东京和北京等大城市地区的fc均值,但低于Launceston等郊区或偏远地区的fc均值,说明拉萨碳质气溶胶的生物来源占较大比例.fc值季节变化明显,冬季的均值最大,春季逐渐降低,夏、秋季较低.冬季高值与拉萨西郊当地居民使用木材、农业废弃物、干牛粪等燃料的能源结构密切相关;夏、秋季fc值低说明化石碳的增加,与旅游旺季机动车尾气排放增加等相关.δ13CTC变化范围为-26.4‰~-25.1‰,年均值为-25.8‰,其季节变化特征并不明显,但夏季δ13CTC偏大可能与化石碳增多有关.全年碳质气溶胶的δ13CTC变化范围很小,结合fc值的季节变化推断拉萨碳质气溶胶总体上受到生物质燃烧和机动车尾气等几个均匀混合的稳定来源影响.  相似文献   

13.
本文刊举了不同地质时代地层碳酸盐联同位素分析结果,从而推测了古海水中碳同位素特征,并指出根据现有的沉积碳酸盐δ13℃资料,可以发现某些地质历史时期古海水碳同位素组成的变化。  相似文献   

14.
本研究以麻疯树(Jatropha curcas L.)和油桐(Vernicia fordii H.)幼苗为材料,考察了麻疯树和油桐幼苗的生理指标和稳定碳同位素组成对渗透胁迫的响应情况。结果表明,麻疯树比油桐更具有抗渗透胁迫能力,主要体现在:随着渗透胁迫程度的加剧,麻疯树叶片相对含水量与叶绿素含量的下降幅度均小于油桐,脯氨酸含量和可溶性糖含量的增加幅度高于油桐,相对电导率的上升幅度小于油桐;随着渗透胁迫程度的加剧,两种植物幼苗叶片的δ13 C值也都显著升高,但是在同一渗透胁迫水平下,麻疯树幼苗叶片的δ13 C值较油桐高,表明其拥有较高的水分利用效率,能够在干旱胁迫下更好地生长,暗示着植物叶片的δ13 C值在一定情况下可以表征植物的抗旱性。  相似文献   

15.
太原市大气PM2.5中碳质组成及变化特征   总被引:1,自引:4,他引:1  
采用DRI Model 2001A热/光碳分析仪测定了2009年冬季和2010年春季太原市区大气细粒子(PM2.5)中有机碳(OC)和元素碳(EC)的昼夜变化特征,分析了含碳物质的变化特征,并探讨了其来源.结果表明,PM2.5、OC、EC平均浓度水平和OC/EC平均值均呈现出冬季[(289.2±104.8)μg·m-3、(65.2±22.1)μg·m-3、(23.5±8.2)μg·m-3和2.8±0.3]高于春季[(248.6±68.6)μg·m-3、(29.7±6.2)μg·m-3、(20.2±5.4)μg·m-3和1.5±0.3],冬季夜晚[(309.3±150.0)μg·m-3、(74.6±19.5)μg·m-3、(24.3±6.6)μg·m-3和3.1±0.3]高于白天[(234.9±122.1)μg·m-3、(54.9±28.2)μg·m-3、(22.6±10.8)μg·m-3和2.5±0.5],春季白天[(292.5±120.8)μg·m-3、(32.7±10.5)μg·m-3、(22.7±10.1)μg·m-3和1.6±0.5]高于夜晚[(212.3±36.7)μg·m-3、(29.6±6.6)μg·m-3、(20.7±6.4)μg·m-3和1.5±0.2]的污染特征.这是因为冬季处于采暖期,特别是夜晚,煤和生物质燃烧量增加导致碳质颗粒物排放量增加以及大气温度低且稳定不利于污染物扩散;高的OC/EC是OC排放量增加所致而非二次有机碳(SOC)的贡献,因为气温低且太阳辐射弱不利于SOC的生成.春季白天PM2.5、OC和EC浓度水平高于夜晚可能是白天风速比夜晚大且相对湿度比夜晚低而更有利于城市扬尘形成所致,OC/EC高可能是白天温度较高且太阳辐射较强有利于SOC的生成.与国内其他城市相比,太原PM2.5、OC和EC均处于较高的浓度水平,表明太原碳质气溶胶污染严重,可能对城市灰霾形成有重要贡献.  相似文献   

16.
利用Tenax TA吸附管采集太原市不同排放源及不同功能区环境空气样品,色谱-质谱、同位素质谱联用技术测定了其挥发性芳香烃化合物的碳同位素组成,并分析了其组成特征.结果表明,柴油挥发源、汽油挥发源、溶剂挥发源、机动车尾气源和民用燃煤源排放的挥发性芳香烃化合物中稳定碳同位素值(δ~(13)C)测定范围依次为:(-30. 79±0. 98)‰~(-29. 10±0. 14)‰、(-30. 96±0. 88)‰~(-28. 02±1. 77)‰、(-32. 13±0. 59)‰~(-27. 67±0. 49)‰、(-27. 58±0. 16)‰~(-25. 50±0. 75)‰和(-25. 14±0. 93)‰~(-23. 44±1. 32)‰,民用燃煤源显著富集13C.仅在民用燃煤源排放烟气中检出苯乙烯,δ~(13)C值为(-23. 44±1. 32)‰.太原市4个不同功能区采样分析显示,居民交通混合区环境空气中挥发性芳香烃的δ~(13)C值为(-25. 61±2. 20)‰~(-23. 91±0. 78)‰,较其他区域富集13C;工业区δ~(13)C检测值为(-29. 15±1. 06)‰~(-24. 53±1. 07)‰,较其他区域贫13C.将环境空气中挥发性芳香烃δ~(13)C值与排放源δ~(13)C值比较可发现,太原市4个环境空气点位的挥发性芳香烃主要来源是机动车尾气源和民用燃煤源,工业区受溶剂挥发影响较大.  相似文献   

17.
吴星麒  曹芳  洪一航  邢佳莉 《环境科学》2023,44(12):6518-6528
碳质气溶胶是大气细颗粒物(PM2.5)的重要组成部分,对空气质量、人体健康和气候变化均有重要影响.针对生物质燃烧(BB)这一碳质气溶胶的重要来源,于2017年11月至2018年10月在广西壮族自治区背景地区采集了PM2.5样品,分析了样品中的碳质组成、糖类化合物和水溶性棕色碳(BrC)的吸光系数(babs).使用气团老化指数(AAM)校正LG浓度以消除LG降解带来的影响,进而结合贝叶斯混合模型与分子示踪剂法量化了BB对有机碳(OC)的贡献率,并通过相关性分析法探讨了BrC的可能来源.结果表明,研究期间AAM指数平均值为0.40±0.28,表示LG存在光化学降解过程.农作物秸秆是广西地区最主要的生物质燃料类型,在未考虑LG降解下,全年玉米、水稻和甘蔗秸秆焚烧排放的OC分别占总OC的22%、23%和18%;考虑LG在大气中的降解后,相对贡献率分别降低至16%、21%和17%.LG的降解会导致BB对OC的贡献率评估被低估,经过AAM指数校正后,全年BB对OC的贡献率平均值为49.0%.水溶性BrC的babs全年的平均值为(8.7±10.7) Mm-1,其中BB、化石燃料燃烧以及初级生物气溶胶排放可能是BrC的重要来源.  相似文献   

18.
民用生物质燃烧挥发性有机化合物排放特征   总被引:20,自引:12,他引:8  
李兴华  王书肖  郝吉明 《环境科学》2011,32(12):3515-3521
民用生物质燃烧是我国人为源挥发性有机物(VOCs)排放的主要来源.采用罐采样-GC/MS和DNPH衍生-HPLC这2种方法联用采集和分析了5种主要民用生物质燃烧排放烟气中的VOCs组分,并利用碳平衡法确定其排放系数.研究表明,秸秆和木柴等民用生物质燃烧总的VOCs排放系数分别为(4.37±2.23)g·kg-1和(2.12±0.77)g·kg-1,秸秆燃烧排放高于木柴燃烧排放;民用生物质燃烧排放VOCs中,最为丰富的物种为芳香烃和醛类,含量均在25%以上;秸秆和木柴燃烧除卤代烃和腈类含量差异较大外,其余物种分布比较类似;秸秆和木柴燃烧VOCs排放总的臭氧生成潜势分别为(16.9±8.2)g·kg-1和(10.8±4.9)g·kg-1;臭氧生成潜势比较高的物种依次为:醛类、芳香烃和烯烃/炔烃,其中醛类贡献基本在50%以上.  相似文献   

19.
西安周边河流溶解无机碳浓度及同位素组成初探   总被引:1,自引:3,他引:1  
郭威  李祥忠  刘卫国 《环境科学》2013,34(4):1291-1297
通过分析西安周边4条主要河流(浐河、灞河、涝河、黑河)的溶解无机碳(DIC)浓度和碳同位素组成,初步探讨了西安周边主要河流溶解无机碳(DIC)的浓度变化及碳源.结果表明西安周边主要河流DIC浓度的变化范围为0.34~5.66mmol.L-1,平均为1.23 mmol.L-1,自源头到下游,DIC浓度呈现升高趋势.4条河流δ13CDIC值的变化范围在-13.3‰~-7.2‰之间,平均值约为-10.1‰,4条河流整体表现为δ13CDIC值在源头偏负(平均值约为-12.6‰),中下游农耕区δ13CDIC值偏正(平均值约为-9.4‰),靠近入渭河河口的城市区δ13CDIC表现为偏负值(平均值为-10.5‰).DIC浓度与河流DIC碳同位素组成的变化规律揭示了河流溶解无机碳来源的变化,土壤CO2的输入可能是源头水体DIC的主要来源;中下游农耕区河水δ13CDIC值偏正是由于农业区农作物存在C4植被(如:玉米),使得农业区土壤CO2和土壤碳酸盐具有偏正的碳同位素组成,进而导致河流水体具有偏正的δ13CDIC值;靠近河口处具有较低δ13C值,污水的大量输入可能导致河水δ13CDIC表现为偏负.结果表明西安周边河流溶解无机碳浓度和同位素组成变化大致指示了河流从源头到下游过程中DIC的可能来源,可为黄土高原小流域河流无机碳来源示踪研究提供参考.  相似文献   

20.
乌鲁木齐空气颗粒物中PAHs碳同位素组成及来源解析   总被引:4,自引:0,他引:4       下载免费PDF全文
报道了乌鲁木齐城区空气颗粒物中多环芳烃(PAHs)化合物的稳定碳同位素组成特征,解析了PAHs的来源.气相色谱/燃烧系统/同位素质谱分析表明,该市空气颗粒物中PAHs化合物的δ13C值为-23.5‰~-31.3‰,随着分子量的增大,PAHs化合物中13C含量降低.利用同位素质量平衡二元模型,计算了燃煤污染源与机动车排气对城区苯并(a)芘、茚并(1,2,3-cd)芘和苯并(ghi)苝的贡献,前者分别为72%、97%和95%,后者分别为28%、3%和5%.苯并(a)芘、茚并(1,2,3-cd)芘和苯并(ghi)苝的相对含量分别为2.8%,29.1%和25.1%,占PAHs总量的57%,计算的三者的燃煤污染源总贡献量为78.6%,与利用化学质量平衡模型计算得出的结果(84%的PAHs源于燃煤)相近.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号