首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
岳岩裕  周悦  王晓玲  祝波 《环境科学学报》2018,38(12):4612-4619
基于2013—2016年93次冷锋影响过程,研究了冷锋和降水对武汉市PM_(2.5)浓度增加和降低的影响机制,并对浓度下降幅度开展了定量分析.结果表明:受冷锋影响PM_(2.5)浓度变化表现为"两类五型",其中,PM_(2.5)浓度下降占比为62%,平均下降幅度为41μg·m~(-3),主要发生在中等强度冷锋过程中,下降幅度最大时24 h变温、24 h变压和极大风速的区间分别为-4~-2℃、8~12 hPa和8 m·s~(-1);而PM_(2.5)浓度上升主要出现在弱冷锋影响下,上升幅度最大的相应区间分别为-2~0℃、6 hPa和4 m·s~(-1).直接下降型风速最大,直接上升型冷锋强度偏弱,先升后降型PM_(2.5)浓度平均值最高.71%的冷锋过程伴有降水.对于重污染过程,污染持续时间最长的天气型为低压倒槽,PM_(2.5)浓度值最大的天气型为均压场.同时,清除方式中冷空气和降水共同作用占44.4%,单纯冷空气影响占37.0%,仅冷空气作用时的清除速度最快,下降速度为71.1μg·m~(-3)·d~(-1),但结束时的浓度最高;配合降水时清除效果明显,结束浓度一般在46μg·m~(-3)左右,但清除速率较小.  相似文献   

2.
通过分析肇庆市2013—2018年国控大气环境监测站的PM_(2.5)连续监测数据,发现肇庆市区PM_(2.5)浓度在干季(10月—次年4月)明显高于其余月份,轻度以上污染基本发生在干季,且PM_(2.5)浓度对年总浓度贡献达70.8%.基于Era-interim再分析资料采用K-means聚类分析法对2013—2018年干季逐日的海平面气压和10 m水平风进行分型,揭示了肇庆市易出现PM_(2.5)污染的6种大气环流形势,包括冷锋前部(CF)、变性高压脊(THR)、脊后槽前型(BRFT)、高压底后部(HSW)、弱冷高压脊(HR)和台风外围型(TP).2013—2016年易污染天气型影响天数呈明显减少趋势,2017—2018年呈增加趋势.不同天气型PM_(2.5)浓度与局地气象要素相关性不一致,其中CF、HR、HSW、TP天气型与湿度相关性最好,THR与风速、BRFT与气压相关性最好.PM_(2.5)污染除BRFT天气型主要以本地排放累积影响为主,其余易污染天气型存在不同尺度的外来输送影响,HSW、HR主要来自广州、清远、韶关, CF主要来自佛山、中山,THR来自广州、清远、佛山.同一污染天气型在不同月份的污染影响差异较大,其中HSW、THR污染型主要影响1月和10月,CF为1月和12月,HR为2月和12月,TP为10月,BRFT为1月和10—11月.不同年份的同一月份造成不同程度的PM_(2.5)污染除了排放影响,还与天气环流类型和同一天气型下的局地气象要素密切相关.  相似文献   

3.
2014年10月太原市一次空气重污染过程分析   总被引:1,自引:0,他引:1  
采用数值模拟(CAMx)与污染物、气象观测资料相结合的方式,对太原市及周边区域2014年10月6—12日一次典型空气重污染过程的大气环境背景、气象条件和形成原因进行了分析.结果表明:2014年10月8—10日太原ρ(PM_(2.5))日均值平均为175μg·m~(-3),太原城区约1460km~2的国土面积处于重度污染(ρ(PM_(2.5))150μg·m~(-3))之下,而京津冀约20×104km2的国土面积达到重度污染水平;区域稳定的气象条件是形成重污染的主要原因,重污染过程中大气层结稳定,逆温明显(2.14℃/100m)、风速小(1.91 m·s~(-1))、湿度大(68.13%)、负变压(-0.74 h Pa)、正变温(0.92℃).模拟结果显示,8—10日重污染期间区域输送对太原PM_(2.5)的贡献率在17%~24%之间,太原市PM_(2.5)浓度以本地贡献为主;估算的2014年太原城区PM_(2.5)排放量是其大气环境容量的1.4倍,重污染期间大气环境容量的大幅降低又加剧了空气污染的程度.  相似文献   

4.
降水和风对大气PM2.5、PM10的清除作用分析   总被引:2,自引:0,他引:2  
对合肥2015—2017年的降水、风和PM_(2.5)、PM_(10)浓度观测数据统计研究发现,降水对PM_(2.5)、PM_(10)有一定的清除作用,尤其在秋冬季节.秋冬季节小雨、中雨分别导致PM_(2.5)和PM_(10)浓度降低23.1%、40.4%和32.0%、63.7%.雨日PM_(2.5)/PM_(10)比例上升8.4%,表明降水对PM_(10)清除作用更显著.降水前后PM_(2.5)浓度变化与降水前PM_(2.5)浓度、降水强度、降水时长密切相关.当降水强度大于4 mm·h~(-1)或PM_(2.5)初始浓度高于115μg·m~(-3)时,降水对PM_(2.5)产生明显清除作用;而降水强度小于1 mm·h~(-1)或PM_(2.5)初始浓度低于115μg·m~(-3)时由于吸湿增长作用极易造成PM_(2.5)浓度反弹升高;且持续3 h以上雨强介于1~4 mm·h~(-1)的降水也对PM_(2.5)产生清除作用.降水前后PM_(10)浓度变化与初始浓度密切相关,而与雨强相关性较弱.当PM_(10)初始浓度大于50μg·m~(-3),降水就对PM_(10)产生明显清除作用,且PM_(10)初始浓度越高,降水后PM_(10)浓度下降越多.风速大于2 m·s~(-1)可显著降低PM_(2.5)浓度,因此,当风速大于4 m·s~(-1)时合肥较少出现中度及以上污染,但易造成地面起尘,使PM_(10)浓度不降反升.合肥冬季严重污染主要出现在西北风向,夏季中度以上污染天气较少,主要出现在风速低于3 m·s~(-1)的东南风向.  相似文献   

5.
利用2012年全年北京市SO_2、NO_y、O_3、CO和PM_(2.5)监测数据,讨论PM_(2.5)和反应性气体的变化特征及其与气象条件的相关关系.结果表明:北京地区2012年PM_(2.5)平均质量浓度为52.0μg/m~3,年波动范围较大,特别是秋冬两季,呈现出慢累积而快清除的变化特征;NO_y、NO、CO、SO_2与PM_(2.5)质量浓度增减呈相同的变化趋势,O_3变化趋势相反;PM_(2.5)质量浓度0~25μg/m~3之间出现的频率最高,为27%;NO_y、NO、CO、SO_2和PM_(2.5)在风速小于3m/s时,随风速增大均呈显著的下降趋势,其中PM_(2.5)的下降率约为25%/m/s,风速大于3m/s后,污染物下降到较低浓度后趋于平缓;清洁天,相对湿度增大对PM_(2.5)质量浓度的影响不显著,而污染天,在较高相对湿度下,PM_(2.5)的质量浓度迅速升高.  相似文献   

6.
运用WRF-CMAQ模式对2016年1月1日~1月7日青岛市的PM_(2.5)重污染天气进行了模拟研究,分析了青岛市PM_(2.5)重污染形成、持续和清除过程的主要影响因素.与观测对比表明,模式能够较好地模拟出青岛市主要气象要素和近地面PM_(2.5)浓度的变化特征.在重污染形成期,持续的西南气流将山东南部、安徽、江苏等地PM_(2.5)及其前体物传输至青岛地区;逆温层的出现及大气边界层高度的降低使得输送至青岛地区的PM_(2.5)在近地面积累,浓度升高.由山东西南部、安徽北部、河南东部等地传输至山东西北部和京津冀地区的PM_(2.5)及其前体物,在重污染持续期沿近地面传输至青岛,加之液相化学过程生成了大量的二次气溶胶,导致PM_(2.5)浓度一直维持在200μg/m~3以上.重污染清除期,风速加大,水平传输作用加强,高浓度的PM_(2.5)污染带向下风向转移.区域传输对此次青岛市PM_(2.5)重污染事件具有重要贡献,3个时期的贡献率分别为87.0%、68.5%和57.6%.  相似文献   

7.
通过分析2013—2015年上海地面PM_(2.5)质量浓度观测资料,发现11、12、1月3个月对PM_(2.5)年总浓度的贡献达到36.4%,对总污染日数的贡献达到50.4%,对PM_(2.5)环境质量的影响最显著.采用T-mode斜交旋转分解方法(PCT),对2012—2015每年11月、12月和次年1月的海平面气压场和10 m风场进行大样本客观分型研究,揭示了4种秋冬季上海PM_(2.5)易污染的天气环流类型,分别为冷锋(Cw)、高压后部弱气压场(WGh)、高压前部弱气压场(WGl和WGf).对上海而言,冷锋、高后弱气压、高前弱气压分别表现为有利于上游污染输送、本地静稳累积、以及本地积累和上游输送相叠加的天气学特征.对比2个典型污染月(2013年1月和12月)和清洁月(2014年11月和2015年11月)的逐日分型结果发现,Cw环流控制下污染输送对秋冬季上海PM_(2.5)环境质量影响显著,高前弱气压的维持是导致上海3次连续重度污染的重要原因.  相似文献   

8.
为了研究河北省边界层气象要素与PM2.5的关系,综合利用常规气象探测资料、逐小时地面自动站气象观测资料、环境监测站逐小时AQI及ρ(PM2.5)资料等进行了统计分析.结果表明:①冬季海平面气压低于1 030 hPa、24 h变压为-3.0~-2.0 hPa、地面相对湿度高于60%、露点温度高于-10 ℃时发生全省性重污染天气的可能性较大;而海平面气压高于1 040 hPa、24 h变压在4.0 hPa以上、地面相对湿度低于40%、露点温度低于-10 ℃时,有利于清洁天气的出现.清洁天气下边界层的盛行风向多与冷空气活动有关;污染天气下盛行风向有区域性差别,边界层小风(<3.0 m/s)的风速频率高于90%. ②过程雨量达到中雨及以上量级的降水对PM2.5具有较明显的清除作用,中雨量级降水对PM2.5清除速率约为2 h,但优良空气质量持续时间短,平均为15 h;大雨及以上量级的降水对PM2.5清除率达67.8%,并且优良空气质量可以持续27 h. ③与降水相比,风对PM2.5的清除作用更为显著.较强偏南风对空气质量有一定改善,但优良空气质量仅持续16 h;大于3.0 m/s的系统性偏北风对PM2.5清除率高达85.1%,优良空气质量持续长达32 h,空气质量的改善最为彻底.研究显示,PM2.5与边界层气象要素关系紧密,不同级别的风和降水对PM2.5的清除程度存在显著差异.   相似文献   

9.
上海典型持续性PM2.5重度污染的数值模拟   总被引:6,自引:1,他引:5  
本研究针对2013年1月23~24日的上海PM_(2.5)持续重污染过程,采用WRF-Chem大气化学模式以及PM_(2.5)质量浓度、能见度、气象要素等地面实测资料相结合的方式,揭示了造成上海冬季PM_(2.5)持续性重污染的一类"天气学必要成因",即一次弱冷空气活动过程导致了两种不利污染天气条件——"弱气压场(静稳形势)"和"弱冷空气扩散(输送形势)",两者先后影响上海造成PM_(2.5)浓度持续上升.主要过程如下:首先弱冷空气影响之前,上海处在不利的局地气象扩散条件下,受弱气压场控制10 h后本地PM_(2.5)质量浓度达到重度污染水平,之后夜间稳定边界层(地面静风和低层逆温)使得PM_(2.5)重度污染维持了7h,期间PM_(2.5)平均质量浓度为172.4μg·m~(-3).后期弱冷空气影响上海,虽然改善了局地扩散条件但是同时产生了明显的周边污染物输送,使得本地PM_(2.5)质量浓度升高并达到峰值(280μg·m~(-3)),继续加重污染水平,期间PM_(2.5)平均质量浓度为213.6μg·m~(-3).WRF-Chem模拟结果进一步表明,整个污染过程周边区域输送对上海PM_(2.5)平均贡献率为23%,其中两个阶段周边区域输送的平均贡献率分别为17.2%和32.2%,可见在不同的污染天气条件下周边污染源的贡献存在显著差异,因此可以根据对污染天气类型的预判制定应急减排方案.  相似文献   

10.
天津地区污染天气分析中垂直扩散指标构建及运用   总被引:2,自引:2,他引:0  
蔡子颖  韩素芹  张敏  姚青  刘敬乐 《环境科学》2018,39(6):2548-2556
基于255 m气象塔风、温和PM_(2.5)质量浓度数据获取天津地区大气稳定度特征,利用中尺度大气化学模式构建垂直扩散指数β和φ,开展天津地区污染天气预报中垂直扩散分析方法的研究,以期提高天津地区重污染天气预报预警准确率.结果表明,综合运用大气稳定度、基于边界层平均PM_(2.5)质量浓度与近地面PM_(2.5)质量浓度比值构建的垂直扩散指数β,基于数值模式chemdiag功能(以CO为示踪物)构建的垂直扩散指数φ,可以在污染天气预报中较好的进行大气污染物垂直扩散能力分析.当07:00~08:00和18:00~20:00大气稳定度为D及以上时,相比大气稳定为C及以下时,出现重污染天气的概率成10倍的增加;使用垂直扩散指数β和风速双重指标判断重污染天气,比单一的风速指标判断准确率提升67%;垂直扩散指数φ与近地面PM_(2.5)质量浓度相关系数达到0.8,当垂直扩散指数φ小于0.52时,重污染天气概率75%,可识别59%的重污染天气.  相似文献   

11.
文章选取2016年3月28日-4月4日(积累型)及2016年1月18-21日(输送型)两次霾天气过程,分析福建省沿海典型霾天气过程特征和成因结果表明:积累型过程持续时间长,福建沿海受地面倒槽暖区天气形势控制,不利于污染物扩散,ρ(PM_(2.5))积累升高导致霾天气出现,受到较高ρ(PM_(2.5))和相对湿度的共同影响,能见度最低降至2 km以下,从霾生成、维持到消散具有增温、增湿、风速小的特点,大气垂直结构中出现逆温层更加不利于污染物扩散,加剧霾的严重程度。输送型霾天气过程持续时间较短,受东北冷涡和高空槽影响,低层PM_(2.5)受东风回流影响输送至福建省沿海,导致福建省沿海自北而南出现霾天气,在污染物输送过程中,大气垂直结构中出现低层逆温不利于污染物向地面输送,会延迟霾天气出现的时间。  相似文献   

12.
北京野鸭湖湿地观测站大气颗粒物变化特征   总被引:1,自引:0,他引:1  
利用北京延庆野鸭湖湿地生态气象观测站2013年PM_(2.5)和PM_(10)连续观测资料,统计分析野鸭湖地区大气颗粒物的变化特征及气象影响因素。研究结果表明:野鸭湖观测站PM_(2.5)和PM_(10)年平均浓度分别为45.7μg/m3和80.2μg/m~3,超标率分别为17.8%和11.4%,以《环境空气质量标准》二级标准统计。PM_(2.5)和PM_(10)均在1月达到峰值,7月出现最低值。各季PM_(2.5)/PM_(10)值在37.8%~69.9%之间,春季以PM_(10)污染为主,冬季以PM_(2.5)为主。各季节PM_(2.5)和PM_(10)日变化中夏季出峰最早,冬季最晚,冬春季PM_(2.5)浓度为双峰型,夏秋季为单峰型;PM_(10)的日变化仅春季与PM_(2.5)略有不同,晚上峰值强度远大于早上。野鸭湖地区颗粒物污染受本地源和外来源的共同影响,东北气流易造成颗粒物积累,而西南气流有利于颗粒物稀释扩散。典型污染过程显示,持续的东北风控制、风速2.0 m/s左右、平均相对湿度在80.0%左右利于颗粒物浓度的增加;而偏西气流和较高温度、较低湿度能共同起到缓解污染的作用。  相似文献   

13.
采用杭州市近7年的气象与环保监测资料,综合考虑2 m相对湿度、10 m水平风速、日均海平面气压、24 h变压、24 h变温、低层逆温等气象因子,通过历史样本统计划分阈值范围再权重求和的方法,构建了静稳天气指数(SWI).经过实况回算检验,分析所建指数与污染天气的对应关系,并应用到重污染天气成因分析、空气质量预报和污染减排评估等方面.结果表明:①SWI可以综合反映大气静稳程度,与PM2.5浓度有较好对应关系,SWI越大越容易出现污染天气,SWI大值最易出现在冬季,其次为秋季和春季,夏季主要污染物往往是臭氧,不易发生中度以上的污染天气.②SWI可用于判断杭州秋冬季重度及以上污染天气的成因,平均而言SWI<6.7时不易出现重度及以上污染;若SWI<6.7时仍出现重污染天气,可判断主导风向上游的外来污染物输入是引起重污染的主要原因,根据前期SWI的相对大小可判断有无叠加前期本地污染物积累;若SWI持续大于6.7且出现重度及以上污染天气,可判断由大气静稳而产生的本地污染物堆积是主要成因.③依据预报数据计算的SWI对空气质量分级预报有较好的参考价值,在短期和中期预报时效内均有表现力.④将SWI应用到G20会议期间污染减排效果评估中发现,在气象条件静稳程度相当时,减排措施有效降低了污染程度.  相似文献   

14.
文章对2013年9~11月金沙区域大气本底站的PM_(2.5)连续在线数据日变化和同期的气象资料的平均日变化进行了分析,并与过去的5年同期数据进行对比分析。结果表明:金沙区域秋季PM_(2.5)质量浓度有明显的日变化规律,受局地排放和气象条件的共同影响,颗粒物质量浓度在凌晨、夜间显著上升。降水对PM_(2.5)的清除量与初始质量浓度、降水量均呈正相关关系,金沙站的云下清除更多取决于PM_(2.5)的初始质量浓度;风向风速对细颗粒物影响明显,来自金沙站北部和东部的气流使大气颗粒物质量浓度升高,而来自西部和南部的风使大气颗粒物浓度降低,大于7 m/s的东风对PM_(2.5)有稀释作用,而北风对细颗粒物几乎无稀释作用。  相似文献   

15.
基于污染物浓度、颗粒物化学组分及气象参数等观测数据,综合分析天津市2015年冬季典型重污染过程成因及污染特征,结果表明:天津市冬季重污染期间风速0~4.0m/s,相对湿度80%以上,混合层高度仅为清洁天气的1/3~1/2,静稳高湿的大气环境对重污染影响较大.重污染过程NO_2/SO_2比值较清洁天气低,NO_3~-/SO_4~(2-)比值大于1,表明重污染期间天津市移动源与固定源并重.重污染PM_(2.5)/PM_(10)比值较清洁天气高,PM_1/PM_(2.5)比值较清洁天气低,可能与重污染过程期间细粒子的吸湿增长以及散煤燃烧排放有关.污染初期NOR大于SOR,随着重污染持续,甶于受制于氨,SOR要高于NOR,需关注气态前体物尤其是SO_2排放.OC与EC浓度高时二者相关性较低,SOC占OC的20%~54%,说明冬季重污染期间散煤燃烧源和二次有机化学反应对冬季重污染影响较大.  相似文献   

16.
广西北海涠洲岛春季大气颗粒物浓度特征及影响因素   总被引:1,自引:1,他引:0  
高元官  张凯  王体健  陈志明  耿红  孟凡 《环境科学》2017,38(5):1753-1759
为了解我国北部湾区域大气环境特征和可能的跨界输送,于2015年3~4月在涠洲岛开展了对大气颗粒物浓度水平和粒径分布特征的外场观测研究,并结合气象因子和后向轨迹探讨了颗粒物浓度变化原因和来源.结果表明涠洲岛大气PM_1、PM_(2.5)、PM_(10)质量浓度分别为(21±12)、(35±19)、(43±20)μg·m~(-3).PM1、PM_(1~2.5)和PM_(2.5~10)质量浓度分别占PM10的50%、32%、18%.0.5~1、1~2.5和2.5~20μm粒径段颗粒物数浓度分别占总数浓度的93.5%、6.1%和0.4%.颗粒物数浓度与能见度和气压呈弱负相关.后向轨迹模拟分析发现,来自涠洲岛西南方向东南亚一带的气团影响频率最高(45.9%),0.5~1μm、1~2.5μm数浓度和PM_(2.5)浓度最低但NO浓度最高;其次为来自正东方向气团(34.1%),SO2浓度最低但O3浓度最高;来自正南方向的气团(12.5%)NO2、NOx、O3和CO浓度最低;来自东北方向的大陆气团影响频率最低(7.4%),但颗粒物数浓度、质量浓度和气体污染物浓度(除O3和NO)最高.涠洲岛大气细颗粒物和气态污染物主要受大陆和东南亚地区输送影响,来自大陆方向的输送以工业污染为主,来自东南亚方向的输送以港口船舶及航运污染为主.  相似文献   

17.
基于潜江市环境监测站2015-2016年空气污染物(PM_(10)、SO_2、NO_2、CO、O_3、PM_(2.5))浓度与同期气象要素(相对湿度、温度、风速、气压和降水)逐小时资料,分析潜江市空气污染状况及与气象条件的关系。结果表明:潜江市主要污染为PM_(2.5),占总污染日数99.1%。PM2.5污染呈现一定的季节性,冬季春季秋季夏季。5 mm以上降水对PM2.5污染有一定的清除作用,且清除作用随着降雨量的增大而增大。污染日平均气温多集中在15℃以下,气压对PM2.5污染的影响集中在1 000.1~1 020 h Pa之间。PM2.5污染与平均风速呈负相关关系,风速越大越有利于空气中污染物质的稀释扩散。  相似文献   

18.
为研究北京城区PM_(2.5)浓度不同时间尺度的周期及其演变特征,利用2010~2015年PM_(2.5)浓度和常规气象资料,对其进行Morlet小波和交叉小波分析.结果表明,北京城区PM_(2.5)浓度存在显著的周期性变化,主要周期包括24h左右,8d左右和14d左右.14d左右的周期主要受大气准双周振荡的影响,8d左右周期不仅与天气尺度系统周期有关,此外可能还与人类活动引起"星期效应"有关,其中天气尺度系统的影响可能居于主要地位.通过交叉小波分析,PM_(2.5)与平均风速在8d和14d左右存在显著的共振现象,并且二者表征为负位相关系.气象要素日变化、城市居民行为习惯导致的污染物排放差异可能是造成24h左右振荡周期的重要因素.北京城区PM_(2.5)浓度的各周期在秋冬季较为显著,与北京地区秋冬季低层大气更多受强天气系统的影响有关;春夏季PM_(2.5)浓度较低和影响因素较多以及局地中尺度热力环流对于低层大气的影响更为显著是该时期周期性较弱的主要原因;季节内振荡(40~60d)在2014年后减弱可能与北京市开展的减排措施有关.尽管本研究利用小波分析方法得到一些关于北京城区PM_(2.5)浓度振荡周期及其演变特征的有效信息,但所用资料时长较短且站点相对单一,所得结论还需要大量的实测数据或其他分析方法的验证.  相似文献   

19.
针对2014年5月24-31日期间江苏省南部的一次典型的灰霾天气过程,结合地面环境空气自动监测站数据(AQI、PM_(10)和PM_(2.5))、近地面能见度数据、激光雷达垂直探空结果、气象条件数据,对此次区域灰霾污染的近地面特征和空间特征进行了分析。发现此次灰霾污染过程可以分为2个阶段:第一个阶段,5月24-25日,空气质量由良逐渐增重为中度污染,其中25日11时AQI峰值达到200,近地面能见度2.2 km。近地面PM_(10)和PM_(2.5)的峰值浓度分别为215μg/m~3和150μg/m~3,该阶段PM_(2.5)/PM_(10)的比值均值达到0.6;无锡地区2.5 km高度范围内分布大量的强消光性粒子,导致消光系数超过0.8 km~(-1),退偏振度不足0.1,以局地球形细粒子为主;第二个阶段,26-31日空气质量再次恶化,污染程度累积,27日23时、29日21时、31日3时达到484、239和231。26-31日,近地面首要污染物是PM_(10),PM_(10)的均值210μg/m3,PM_(2.5)的均值97.7μg/m~3,PM_(2.5)/PM_(10)的比值均值低于0.5;大气中分布的颗粒态污染物粒子的不规则程度增大,大气消光系数略有减弱,约0.6 km~(-1),退偏振度系数大于0.3,说明此阶段大气中含有较多的浮尘粒子。其中,27日消光系数有突然增大的过程,这与江苏地区的秸杆燃烧过程密切。通过后向轨迹与卫星监测的火点分布,表明27、28日的气流轨迹将大量的不完全燃烧的生物质粒子带到观测站点附近。近地面的气象条件分析发现,26-29日,随近地面的大气压力从1 000 h Pa降至993 h Pa,相对温度从80%以上降至不足45%,峰值超过6 m/s,直接使得空气中颗粒物增多。  相似文献   

20.
利用贵阳市2013~2016年空气质量监测及气象观测资料进行分析,研究云贵高原城市空气变化及气象影响作用.结果表明:近4a贵阳区域SO_2、NO_2、O_(3_8h)、PM_(10)、PM_(2.5)和CO年平均浓度分别为(20.78±19.71),(28.32±9.59),(107.59±27.54),(67.56±34.32),(42.53±24.52)μg/m3和(0.74±0.22)mg/m~3,除SO_2浓度接近或超出我国中东部城市之外,其它污染物均表现为相对清洁水平;地面O_3浓度逐年明显上升,但其它大气污染物水平均呈逐年下降趋势,且呈现与我国中东部一致的空气质量年际、月际和日变化特征.各功能区污染物区域差异明显,颗粒物和SO_2、NO_2、CO浓度水平表现为工业区居民区郊区,O_3浓度呈现为郊区居民区工业区的特征,表明人为活动对空气质量的影响.近4a O_3与PM_(2.5)夏季白天呈显著正相关,冬季显著负相关,反映了云贵高原城市空气质量的复合污染特性.大气污染物浓度与温度、边界层高度、太阳直接辐射和气压的相关性显著,而与相对湿度和风速相关性较弱,这不同于中东部地区风速主导大气污染物水平变化的特征.云贵高原夏季作为主要雨季,小雨和中雨量级降水对PM_(2.5)吸湿增长较弱,中雨以上降水对PM_(2.5)具有清除作用;而在PM_(2.5)浓度较高和干冷的冬季,小雨的PM_(2.5)吸湿增长明显,中雨以上降水对PM_(2.5)清除显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号