首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
沈阳市人为源挥发性有机物排放清单研究   总被引:1,自引:0,他引:1  
对沈阳市各类人为源VOCs进行分类,收集活动水平数据,应用国内外最新研究成果,采用排放因子法建立了沈阳市2015年人为源VOCs排放清单。结果表明:2015年沈阳市人为源大气VOCs排放总量为13.75万t,其中,化石燃料燃烧源、工艺过程源、移动源、溶剂使用源、生物质燃烧源、储存运输源、废弃物处理源和其它排放源排放量分别占VOCs排放总量的5.35%、55.02%、12.70%、16.51%、8.87%、1.41%、0.24%和0.17%。化学原料和化学品制造业、石油加工、炼焦和核燃料加工业、橡胶和塑料制品业和纺织业为工艺过程源重点排放行业,VOCs排放量占到工艺过程源排放总量的97.16%;表面涂层和其他溶剂使用是溶剂使用源的重点排放行业,VOCs排放量占到溶剂使用源总排放量的81.15%。  相似文献   

2.
珠江三角洲天然源VOCs排放量估算及时空分布特征   总被引:16,自引:4,他引:16       下载免费PDF全文
利用实际观测的气象数据和基于遥感图像解译的土地利用现状和植被资料,运用GloBEIS模型,对珠江三角洲2006年度天然源VOCs排放总量进行了估算.结果表明,该区天然源VOCs的年度排放总量达29.6万t,其中异戊二烯7.30万t,占24.7%,单萜10.2万t,占34.4%.其排放量具有夏季高冬季低的典型特征,夏季占全年排放量的40.5%,冬季占11.1%.其空间特征与土地利用和植被分布密切相关,天然源VOCs排放主要集中在城镇化程度较低和林区较密集的区域.此外,对天然源VOCs排放估算过程中可能的不确定性来源进行了讨论.  相似文献   

3.
西安市人为源挥发性有机物排放清单及研究   总被引:12,自引:1,他引:11  
对西安市各类VOCs人为源进行系统分类,收集活动水平数据,应用国内外排放因子研究的最新成果,采用排放因子法建立了西安市2014年人为源VOCs排放清单.结果表明:2014年西安市人为源大气VOCs排放量为11.51×104t,其中,固定燃烧源、生物质燃烧源、工艺过程源、有机溶剂使用源、移动源、油品存储与销售源和废弃物处理源的排放量分别占VOCs排放总量的2.53%、3.32%、13.30%、51.50%、23.64%、4.82%和1.02%.油墨印刷、建筑涂料和汽车喷涂为有机溶剂使用源重点排放行业,VOCs排放量占到排放总量的48.89%;工艺过程源中化学药品、医药制造、原油加工和化学纤维为重点排放行业,VOCs排放量占到排放总量的10.19%.各区县中,长安区、雁塔区、未央区、碑林区VOCs排放量明显较高,其分担率分别为16.53%、14.88%、14.47%和12.99%.  相似文献   

4.
我国工业源VOCs排放的源头追踪和行业特征研究   总被引:15,自引:1,他引:15       下载免费PDF全文
按照“源头追踪”思路,采用排放因子法,对我国工业源VOCs排放量进行了计算.工业VOCs污染产生于4个环节:VOCs的生产,储存和运输,以VOCs为原料的工艺过程,含VOCs产品的使用和排放.结果表明, 2009年我国工业源VOCs排放量约为1206万t.4个环节的污染排放贡献分别为18.1%、6.8%、24.7%和50.3%.合成材料生产、石油炼制和石油化工、机械设备制造等17个排放源的年排放量达20万t以上,其排放量之和占全国总排放量的94.9%.2007~2009年我国工业源VOCs排放量分别为1023,1079,1206万t,年均增长率8.6%.  相似文献   

5.
长江经济带湖北省人为源VOCs排放清单及变化特征   总被引:3,自引:1,他引:2  
以人为源挥发性有机物(VOCs)为研究对象,以5类源活动水平数据为基础,采用排放因子法建立了长江经济带湖北省2018年人为源VOCs排放清单,并进一步研究了2009~2018期间工艺过程源VOCs排放特征及变化趋势.结果表明,湖北省2018年人为源VOCs排放总量为6.52×105 t,约占全国总排放量的6.41%;化石燃料固定燃烧源、工艺过程源、溶剂使用源、移动源和废弃物处理源对湖北省的贡献分别为3.26%、76.39%、4.54%、14.72%和1.09%.涉及9个行业45个子类的工艺过程源在VOCs排放中占比突出,其中武汉市和宜昌市的VOCs排放量较高.从经济水平和区域面积分别分析了各市州工艺过程源VOCs排放强度,天门市和神农架林区单位GDP的VOCs排放量较高,而武汉市、鄂州市和天门市单位面积VOCs排放量较高.2009年VOCs排放量从2.45×105 t逐年递增,2015~2017年趋于稳定,最大排放量达7.01×105 t,2018年VOCs排放量降至4.98×105 t,与全国人为源VOCs排放趋势相同.化学原料及化学制品制造业、橡胶和塑料制造业是其变化的主要驱动力,10年间贡献分别为33.85%~51.55%和7.07%~38.13%.其中化学药品原药、化学农药原药生产在10年间对VOCs排放贡献占据重要优势,而泡沫塑料生产排放量变化大,在2015~2017年突增到2.00×104 t以上.湖北省在国家及地方相关政策引导下,重点行业VOCs减排效果显著.  相似文献   

6.
嘉兴市2015年人为源VOCs排放清单   总被引:2,自引:2,他引:0  
郝欢  万梅  戎宇  兰亚琼  熊传芳  晁娜 《环境科学》2018,39(11):4892-4900
根据收集的嘉兴市人为源活动水平数据,采用科学合理的估算方法和排放因子,建立了该地区2015年人为源挥发性有机物(VOCs)排放清单.结果表明,嘉兴市2015年VOCs排放总量为10.21×104 t,其中工业源、移动源、生活源、储运源、废弃物处理源、农业源的排放量分别占排放总量的78.15%、12.08%、5.83%、3.24%、0.26%和0.44%.工业源中包装印刷、表面喷涂、纺织印染、化学原料制造、石化是重点排放行业.海宁市、桐乡市和平湖市VOCs排放量位居前三,约占嘉兴市总排放量的50%,经开区、海宁市、南湖区VOCs平均排放强度均超过30 t·km-2.  相似文献   

7.
浙江省人为源VOCs排放清单   总被引:1,自引:0,他引:1  
基于挥发性有机物(VOCs)活动水平数据和相关排放因子,建立了浙江省人为源VOCs排放清单。结果表明:2009年浙江省VOCs排放总量为1.47×10~6t,其中工业排放源1.34×10~6 t,生活排放源1.176×10~5t,生物质燃烧源1.18×10~4t,分别占排放总量的91.17%、8.03%和0.8%;VOCs排放量最大的行业为纺织印染业、金属制品制造业、化学药品原药制造业、石油炼制、石油化工业等9大行业,其VOCs排放量均在5×10~4t以上,占全省总排放量的比例高达90%,为浙江省主要排放源;VOCs排放量最高的城市分别为杭州、宁波、温州、绍兴、嘉兴和湖州。  相似文献   

8.
山西省人为源VOCs排放清单及其对臭氧生成贡献   总被引:2,自引:2,他引:2  
闫雨龙  彭林 《环境科学》2016,37(11):4086-4093
根据统计年年鉴中主要的人为挥发性有机物(VOCs)排放源的行业活动水平和文献中查阅到的VOCs排放因子和组分特征,计算了山西省2013年的人为源VOCs的排放量,计算了臭氧生成潜势.计算结果显示山西省2013年人为源VOCs排放量为72.37万t,最主要的排放行业是工业排放源和移动源,分别占总排放量的36.47%和24.28%;在工业源中,焦炭生产和化学品生产的VOCs排放量分别为19.06万t和3.88万t,分别占工业排放行业总排放量的72.22%和14.72%,是工业排放行业中最大的排放源;2013年山西省各个排放源排放的臭氧前驱VOCs共43.59万t,所产生的臭氧生成潜势总量为176.99万t,对总臭氧生成潜势贡献最大的是移动源、燃烧源和工业排放,分别占总臭氧生成潜势总量的40.35%、26.43%和24.95%.结果表明:煤化工行业VOCs排放量显示了山西省独特的以煤为主的单一化、重型化的产业结构;机动车保有量快速增长导致了机动车的VOCs排放量巨大;移动源和工业排放源排放的VOCs所产生的臭氧生成潜势巨大.总之控制山西省的VOCs排放及其带来的臭氧污染应主要关注于控制工业排放和机动车排放.  相似文献   

9.
“十三五”挥发性有机物总量控制情景分析   总被引:2,自引:1,他引:2  
总量控制制度是一种行之有效的污染控制手段,我国从2016年开始对挥发性有机物(volatile organic compounds,VOCs)进行总量控制.采用"排放因子法"和"回归分析法",估算和预测我国2015年和2020年人为源VOCs排放量,结果表明,2015年我国人为源VOCs排放量约为3 111.70万t;2020年基准情景VOCs排放量预计为4 173.72万t,相比于2015年增长了34.13%.根据"十三五规划纲要"中的减排要求,全国2020年VOCs总量控制目标为2015年排放量的90%,即2 800.53万t,"十三五"期间,全国至少需减少排放1 373.19万t的VOCs.在此基础上,以2015年为基准年、2020年为目标年,通过情景分析法,设置我国"十三五"期间可能推行的3种总量控制情景:重点区域全面推进VOCs减排、重点行业全面推进VOCs减排、重点区域重点行业推进VOCs减排,并对每种情景下的控制总量进行分配.结果表明,3种情景的减排潜力与削减任务均存在一定的缺口,实现"十三五"总量减排目标难度大,需要加大VOCs污染控制力度.  相似文献   

10.
采用排放系数法与“自下而上”的活动水平数据收集方法,建立了鹤壁市化石燃料固定燃烧源、工艺过程源、溶剂使用源、储存运输源、废弃物处理源等固定源、移动源、餐饮油烟和生物质燃烧等面源的VOCs排放清单.结果表明:鹤壁市2017年VOCs排放总量为8829.7t.其中,工艺过程源排放量最大(3052.5t),占VOCs总排放量的32%;其次是移动源(2712.8t)和溶剂使用源(1447.1t),分别占总排放量的29%和15%;从空间分布看,浚县的VOCs排放量最大(3444.0t),其次为淇滨区(1519.4t)、山城区(1516.0t)、淇县(1103.8t)和鹤山区(1041.9t);其中,机动车(1932.0t)、建材冶金(903.6t)、化学制品制造(829.6t)、橡塑(646.8t)等VOCs排放量较大.对比河南省省会郑州市、同为煤炭资源型城市焦作市,鹤壁市的VOCs排放总量是郑州市的1/11,焦作市的1/3.但鹤壁市单位面积的VOCs排放量较大,是郑州市的1/3,焦作市的1/2,且鹤壁市单位GDP的VOCs排放量与郑州市和焦作市非常接近.说明鹤壁市VOCs排放总量低,但排放强度较高,仍需要加大减排力度.根据本清单的研究结果,建议鹤壁市可着重加强工艺过程源和移动源的减排,重点减排区域为浚县、鹤山区和淇滨区的交汇地带,重点减排机动车、建材冶金、化学制品制造等;此外,还应关注橡塑、餐饮油烟、工业生物质锅炉等行业的VOCs排放.  相似文献   

11.
北京市园林绿地植被挥发性有机物排放的估算   总被引:5,自引:1,他引:4       下载免费PDF全文
根据北京市2000年城市园林绿化普查结果,对北京市园林绿地植被挥发性有机物(VOCs)的排放情况进行研究,建立了北京市园林绿地天然源VOCs排放清单.结果表明,2000年北京市园林绿地VOCs的年总排放量(以C计)约为3.85万t,其中异戊二烯为3.09万t,单萜烯为0.59万t,其他VOCs(OVOC)为0.16万t.排放具明显的季节依赖性,其中夏季排放量最大,为2.49万t,占全年的64.7%;冬季最少,为0.0086万t,占全年的0.2%.城八区总排放量比远郊区县高,排放量最高的是朝阳区,为1.37万t,占全市的36.0%,其次为海淀、丰台、石景山区,分别占16.2%、13.8%、4.7%.  相似文献   

12.
四川省天然源VOCs排放量的估算和时空分布   总被引:5,自引:0,他引:5  
利用遥感影像解译的土地利用现状和植被资料,对四川省天然源VOCs的排放情况和时空分布进行研究,建立了四川省天然源VOCs的排放清单.2012年四川省天然源VOCs的排放量为1413.74kt.其中异戊二烯占29.4%,为415.53kt,单萜烯占30.2%,为427kt,其他VOCs占40.4%,为571.215kt.排放量具有夏季高冬季低的典型特征,夏季占全年排放量的44%,冬季占9%.天然源VOCs的排放主要集中在林地密集和日照时间长的达州、巴中、广元、绵阳、乐山、眉山、攀枝花等地.研究表明,四川省天然源臭氧潜势为6134kt, 二次气溶胶的生成潜势为136kt.这说明其对环境空气质量的影响不容忽视.  相似文献   

13.
为了解河南省人为源挥发性有机物(VOCs)的排放特征,识别以臭氧(O3)污染治理为目的的关键VOCs物种及其排放源,以五大类人为源活动水平数据为基础,采用排放因子法建立了2019年河南省县级人为源VOCs组分化排放清单,并利用最大增量反应活性(MIR)估算其臭氧生成潜势(OFP),基于OFP识别O3污染治理的关键VOCs物种及其排放源.结果表明:(1)河南省2019年人为源VOCs排放总量为175.62×104 t,其中工艺过程源、移动源、生物质燃烧源、溶剂使用源和化石燃料燃烧源对VOCs排放总量的贡献率分别为28.6%、25.2%、20.8%、19.1%和6.3%.(2)空间分布显示,以郑州市为中心的豫北排放量远高于豫南,呈“一高三低”的空间分布特点,郑州市排放量最高,其排放量为27.7×104 t,漯河市、三门峡市和鹤壁市排放量最低,其排放量均小于5.0×104 t.(3)芳香烃是排放量最高的化学组分,其排放量为47.5×104 t,其次为烷烃(46.3×104<...  相似文献   

14.
根据收集厦门市所辖6个区的工业源活动水平数据和厦门市环境统计数据等相关资料,运用排放因子法计算得到2019年厦门市6个辖区的8个行业的工业源VOCs排放清单,分析了厦门市各辖区VOCs排放强度的空间分布格局.在工业源VOCs排放清单的基础上结合企业调研,分析排放清单企业VOCs污染处理技术情况并提出相应的控制对策建议.结果表明,2019年厦门市工业源VOCs产生总量为16027.88 t,排放总量为5514.58 t,其中厦门岛外的海沧区、同安区、翔安区和集美区VOCs排放量分别为1648.35、2111.13、667.52和750.48 t,岛内的湖里区和思明区VOCs排放量较少,分别为292.42 t和44.68 t.除了湖里区,厦门市排放强度呈现岛外大于岛内的空间分布特点.厦门市8个行业中,VOCs排放主要来自于涂装、印刷、化工和橡胶行业,分别占厦门市总排放量的51.21%、20.18%、13.63%和10.67%.厦门市VOCs废气处理工艺情况分析结果表明,从源头控制层面,企业使用低(无)产生VOCs的原辅材料,可有效地从源头控制VOCs产生和排放;从末端处理工艺层面,UV光解/光催化、吸附处理、低温等离子体和生物法的实际处理效率均低于80%,吸附与催化燃烧等组合工艺以及燃烧法的实际处理效率均高于90%.  相似文献   

15.
珠江三角洲大气排放源清单与时空分配模型建立   总被引:10,自引:0,他引:10  
收集整理2012年珠江三角洲地区(简称“珠江三角洲”)各种大气人为源及天然源基础活动数据,以排放因子法“自下而上”为主计算多污染物排放量,并建立本地化污染物空间分配方案及基于行业排污特征的时间分配谱,构建了具备时空分布属性的区域性网格化大气源排放清单.清单结果显示,2012年珠江三角洲SO2、NOx、CO、PM10、PM2.5、VOCs和NH3排放总量分别为55.2万t、102.9万t、349.2万t、95.2万t、38.5万t、153.9万t和17.7万t. 固定燃烧源是珠江三角洲SO2和NOx的最大排放贡献源,其中电厂和锅炉分别贡献了35.0%和41.8%的SO2排放,以及28.2%和16.2%的NOx排放;VOCs的最大贡献源是过程源,其中家具制造、石油精炼、油气码头排放量总和占比为52.4%;扬尘源是颗粒物的主要来源之一,对PM2.5的排放贡献达42.3%;NH3的主要排放源为畜禽养殖和化肥施用源,两者排放量占比分别为50.7%和26.8%.珠江三角洲大气污染物空间与时间分布结果显示,高排放污染源主要集中于“东莞-广州-佛山”一带,呈半环带状结构分布;白天时段(9:00~20:00)的排放强度明显高于夜晚时段(21:00~次日8:00);夏秋季节(4~10月)的排放强度略高于冬春季节(11月~次年3月).  相似文献   

16.
江苏省人为源挥发性有机物排放清单   总被引:3,自引:0,他引:3  
掌握VOCs排放特征是研究区域大气复合污染特征和控制策略的前提.对江苏省VOCs人为源进行系统分类,收集活动水平数据,应用国内外排放因子研究成果及江苏省行业调研结果,采用排放因子法建立了江苏省2010年分行业、分城市的人为源VOCs排放清单.结果表明:江苏省人为源VOCs排放总量约为179.20×104t,其中化石燃料燃烧源、生物质燃烧源、工业过程源、溶剂使用源、移动源、油品储运源的排放量分别占排放总量的24.1%、3.3%、22.3%、25.3%、18.4%和6.6%,工业过程源中石油炼制、有机化工、医药制造是重点行业,溶剂使用源中机械装备制造、电子设备制造是重点行业.南京、苏州、无锡、常州、南通5个苏南城市VOCs排放量明显高于苏北和苏中地区,占全省总排放量的60.0%,苏州、南京、无锡排放量居前3位.各城市化石燃料燃烧源和移动源排放所占比例均超过10.0%,其他重点行业差异显著,其中南京市为石油炼制、有机化工,苏州市为有机化工、机械涂装,无锡市为有机化工、电子设备制造.  相似文献   

17.
江苏省人为源挥发性有机物排放清单   总被引:1,自引:0,他引:1       下载免费PDF全文
掌握VOCs排放特征是研究区域大气复合污染特征和控制策略的前提. 对江苏省VOCs人为源进行系统分类,收集活动水平数据,应用国内外排放因子研究成果及江苏省行业调研结果,采用排放因子法建立了江苏省2010年分行业、分城市的人为源VOCs排放清单. 结果表明:江苏省人为源VOCs排放总量约为179.20×104t,其中化石燃料燃烧源、生物质燃烧源、工业过程源、溶剂使用源、移动源、油品储运源的排放量分别占排放总量的24.1%、3.3%、22.3%、25.3%、18.4%和6.6%,工业过程源中石油炼制、有机化工、医药制造是重点行业,溶剂使用源中机械装备制造、电子设备制造是重点行业. 南京、苏州、无锡、常州、南通5个苏南城市VOCs排放量明显高于苏北和苏中地区,占全省总排放量的60.0%,苏州、南京、无锡排放量居前3位. 各城市化石燃料燃烧源和移动源排放所占比例均超过10.0%,其他重点行业差异显著,其中南京市为石油炼制、有机化工,苏州市为有机化工、机械涂装,无锡市为有机化工、电子设备制造.   相似文献   

18.
秦皇岛市工业行业挥发性有机物排放特征   总被引:6,自引:3,他引:3  
虎啸宇  刘航  王乃玉  王灿  揣莹 《环境科学》2018,39(2):543-550
根据2016年收集的秦皇岛全市609家工业企业的产品产量、原料使用量、挥发性有机物(VOCs)排放浓度、排放流量、排放方式等活动水平数据,采用直接测量法和排放因子法建立秦皇岛市工业源VOCs排放清单,结果表明,秦皇岛市全年的工业源VOCs排放总量为8 420.07 t,其中,经济技术开发区为秦皇岛市VOCs排放的主要区域,VOCs排放量为4 120.51 t,占总排放量的48.9%;石油加工、炼焦和核燃料加工业,化学原料和化学制品制造业是秦皇岛重点VOCs排放的主要行业,分别占总排放量的30.35%和14.42%;从VOCs种类分析,不同行业中苯类,脂类与烷烃,酮类相对较多,其他几种成分均含量较少;溶剂使用是VOCs排放环节中的主要环节,排放贡献率达到37%;在调研609家企业中共有109家企业有VOCs控制设施,其中吸附法占比最大,占69%.  相似文献   

19.
苏州市人为源挥发性有机物排放清单及特征   总被引:2,自引:0,他引:2  
华倩雯  冯菁  杨珏  武剑  张园 《环境科学学报》2019,39(8):2690-2698
掌握挥发性有机物(VOCs)排放清单是研究区域大气复合污染和控制策略的基础.本文通过结合国内外学者的源清单研究成果对苏州市人为源VOCs进行系统分类,并根据苏州市相关统计数据和实地调研结果,采用排放因子法建立了苏州市2016年人为源VOCs排放理论值清单.结果表明,2016年苏州市人为源VOCs排放总量约为2.75×10~5 t,其中,生物质燃烧源、化石燃料燃烧源、工业过程源、溶剂使用源、移动源、储存源和生活源分别占排放总量的3.9%、4.3%、22.8%、36.7%、24.0%、6.3%和2.0%.纺织印染、电子设备制造、机械设备制造、橡胶塑料制品生产、基础化学原料制造及建筑装饰、轻型客车制造是苏州市人为源VOCs排放的重点行业(产业),排放量均超过1×10~(4 )t.苏州市各县级市及市辖区中,市辖6区及张家港市的总排放量较高,约占总排放量的60%,张家港市和昆山市的平均排放强度较高,均超过了40 t·km~(-2).  相似文献   

20.
为研究西安市人为源VOCs(挥发性有机物)对OFP(O3生成潜势)和SOAFP(二次有机气溶胶生成潜势)的影响,基于西安市环境统计数据和相关统计资料,结合排放因子法和已有的源成分谱,建立西安市人为源VOCs排放清单,并利用最大增量反应活性(MIR)和气溶胶生成系数(FAC)估算各类人为源排放VOCs对O3和SOA(二次有机气溶胶)的生成贡献.结果表明:①2016年西安市人为源VOCs排放总量为119.187×103 t,其中,溶剂使用源、移动源和工艺过程源是主要的排放源,排放量分别为50.676×103、29.414×103、24.430×103 t. ②2016年西安市各区县VOCs排放总量较大的依次为长安区、雁塔区、未央区和碑林区,排放量分别为15.28×103、12.34×103、11.81×103和10.14×103 t,莲湖区、新城区和灞桥区VOCs排放量大于5×103 t,而阎良区排放量最小. ③2016年西安市总OFP为222.087×103 t,间/对-二甲苯、甲苯、邻-二甲苯等对总OFP的贡献率为72.40%;溶剂使用源对总OFP的贡献率最大,其次是生物质燃烧源,并且生物质燃烧源单位质量VOCs的OFP最强. ④2016年西安市总SOAFP为318.347 t,间/对-二甲苯、甲苯、邻-二甲苯、乙苯等对总SOAFP的贡献率为88.65%;溶剂使用源对总SOAFP的贡献率最大,其次是生物质燃烧源,而且溶剂使用源单位质量VOCs的SOAFP强于其他排放源.研究显示,与其他地区VOCs单位面积排放清单相比,西安市VOCs单位面积排放强度处于中等水平.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号