首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
15株微藻对猪场养殖污水中氮磷的净化及其细胞营养分析   总被引:6,自引:1,他引:5  
在实验室条件下调查了15株淡水微藻在猪场养殖污水中的生长性能、细胞组成及各微藻对污水中氮磷的去除效果.结果表明:15株微藻均可有效降低猪场养殖污水中的氮磷含量,但不同藻株对污水中不同形态氮的去除效果差异明显.多棘栅藻(Scenedesmus spinosus)SHOUF7、多棘栅藻(S.spinosus)SHOU-F8和四尾栅藻(S.quadricanda)SHOU-F35去除总氮效果最佳.多棘栅藻SHOU-F7、多棘栅藻SHOU-F8和斜生栅藻(S.obliquus)SHOU-F21去除硝态氮效果最好,最大去除率可达到100%.椭圆小球藻(Chlorella ellipsoidea)SHOU-F3、单生卵囊藻(Oocystis solitaria)SHOU-F5和四球藻(Tetrachlorella alternans)SHOU-F24去除氨态氮效果最好,最大去除率为97.82%.各株微藻对污水中总磷的去除率均很高,可达91.00%以上.利用猪场养殖污水培养的各株微藻细胞蛋白含量及脂肪酸组成差异显著,蛋白含量最高的为椭圆小球藻(Ch.ellipsoidea)SHOU-F3(43.90%),含量最低的为多棘栅藻SHOU-F8(23.87%);16∶0和18∶3n3在各株微藻中含量均较丰富.多棘栅藻SHOU-F7、多棘栅藻SHOU-F8、淡水小球藻(Chlorella sp.)SHOU-F19和针形纤维藻(A.acicularis)SHOU-F120的脂肪酸甲酯的理论烷基值超过47.因此,多棘栅藻SHOU-F7、多棘栅藻SHOU-F8和四尾栅藻SHOU-F35是净化猪场养殖污水的优良藻株,其中,多棘栅藻SHOU-F8是猪场养殖污水净化耦合微藻生物柴油生产的合适藻株.  相似文献   

2.
基于城市污水资源化的微藻筛选与污水预处理   总被引:3,自引:2,他引:1  
利用城市污水培养微藻,可在实现污水无害化处理的同时,培养微藻回收生物质能源.污水为微藻的培养提供氮、磷等营养组分和所需水源.由于城市污水含有大量的微生物,成分复杂,且不同藻种对污水的适应性与耐受性不同,因此,需要筛选出适宜于城市污水培养和高效产脂的藻种,并研究城市污水预处理方式,以使预处理后的城市污水更适于微藻的生长与产脂.本文根据课题组前期获得的藻种在城市污水中的生长与产脂情况以及对污水的净化能力筛选出适宜于城市污水培养的藻种.其中斜生栅藻(Scenedesmus obliquus)原始株与蛋白核小球藻(Chlorella pyrenoidosa)离子诱变藻株生物质与油脂产量较高,经污水培养后油脂产量分别可达0.43 g·L~(-1)、0.33 g·L~(-1),且含有较多的C16~C18脂肪酸,适宜于生物柴油的制备,同时可使培养后污水中COD、NH_4~+-N、TN、TP的去除率分别达到86.4%、100%、94.3%、93.4%和81.8%、100%、94.9%、94.2%.对可规模化扩大的污水预处理方式进行研究,发现不同藻种所最适的污水预处理方式不同.对于耐污性能较强的斜生栅藻原始株,除去粗大悬浮物后的城市污水即可用于其培养.对于蛋白核小球藻诱变株,城市污水经沉淀、过滤联合预处理后适宜于其培养.  相似文献   

3.
微藻混合培养可以在高效去除水质污染物的同时,积累更多生物量及油脂,促进微藻生物质资源化利用。然而存在菌种间相互竞争导致处理效果不佳的问题,故找出微藻藻种间最佳协同组合至关重要。该文通过将一株可在黑臭水中快速生长的原壳藻Auxenochlorella protothecoides,分别与污水处理中常用的普通小球藻 Chlorella vulgaris、蛋白核小球藻 Chlorella pyrenoidosa 和斜生栅藻Scenedesmus bliquus进行不同比例混合培养,结果显示4种微藻1∶1∶1∶1混合培养为最佳组合。为进一步提升水中污染物去除效率,促进资源化利用水平,将经12C6+重离子辐照诱变后的4种藻株按相同比例混合培养进行性能强化,结果表明:相比初始藻株组合,12C6+重离子突变藻株组合 COD、NH4+-N 及 TP 最大去除率分别提高了 12.12%、11.01% 及 22.12%,其最大比生长速率和油脂增长率分别提高了63.03%和79...  相似文献   

4.
近年来,随着现代工农业的迅速发展,污水排放量不断增加,造成了巨大的环境压力,并对人与其他生物的健康产生了威胁。微藻不仅能够去除污水中氮、磷等营养盐,对新兴有机污染物也同样具有良好的去除效果。该文从污水中分离得到小球藻,探求其在污水环境中去除吡虫啉(20 mg/L、60 mg/L)以及营养盐的效果。结果表明:(1)经过35 d培养,该体系对20 mg/L浓度处理组和60 mg/L浓度处理组中吡虫啉去除率分别达到56.89%和50.99%;(2)污水中总氮去除率约为65%,总磷去除率可达到90%;(3)丙二醛含量变化表明藻细胞很可能受到一定胁迫,但超氧化物歧化酶活性和类胡萝卜素含量变化表明藻细胞启动了保护机制。研究结果表明,分离的小球藻对污水中去除吡虫啉和营养盐的效果较好,且对吡虫啉具有良好抗性。  相似文献   

5.
在天然水体中筛选得到1株能高速异养生长的藻株WLZ-H.用扫描电镜对藻株进行细胞形态分析,并结合16S rDNA分子生物学鉴定,初步确定藻株WLZ-H属于小球藻属(Chlorella sorokiniana).对藻株WLZ-H 进行环境因子单因素试验,发现KNO3和葡萄糖浓度对藻株WLZ-H生长影响显著;过高的温度会降...  相似文献   

6.
再生水补充景观水体中藻类的生长比较   总被引:1,自引:0,他引:1  
以太原市污水净化二厂二级出水作为景观水体补水水源,比较了以再生水为培养基的小球藻、斜生栅藻、鱼腥藻和针杆藻的生长情况,利用Logistic对数形式模型拟合了藻类在纯培养和共培养条件下的生长曲线.结果表明,在纯培养和共培养条件下,4种藻类的生长情况均为小球藻>斜生栅藻>鱼腥藻>针杆藻.其中,针杆藻的竞争能力较差;鱼腥藻虽然有较强的增殖能力,但并不处于优势地位;斜生栅藻能与小球藻形成竞争,较适宜在该水质条件下生长;小球藻具有较强的竞争优势,为该水质条件下的优势藻种.以污水二厂二级出水为景观水体补水时,应重点防止绿藻尤其小球藻的过度生长.   相似文献   

7.
徐冬梅  柯薇  王彦华 《中国环境科学》2018,38(11):4348-4353
重金属及农药残留在水环境中被频繁检测出,其复合污染对环境生物的联合毒性有别于单因子的生物效应.以淡水绿藻为受试生物,比较分析了有机磷农药毒死蜱(Chlorpyrifos)和重金属铜的单一及复合暴露对蛋白核小球藻急性毒性、细胞通透性及抗氧化应激的影响.铜、毒死蜱72小时单一暴露对小球藻的EC50分别为0.68和12.71μmol/L,藻细胞叶绿素含量随污染物浓度的增大而降低,细胞通透性随污染物浓度的增大而增强,藻细胞活性氧和抗氧化酶被显著诱导.利用相加指数法(Additive Index,AI)确定铜、毒死蜱联合暴露对小球藻急性毒性的联合作用类型为拮抗作用,这与小球藻ROS产生量及抗氧化酶等指标的显著性水平分析结果一致.  相似文献   

8.
不同pH下对硝基酚(p-NP)对小球藻和斜生栅藻的毒性   总被引:3,自引:1,他引:2  
为研究水体中典型有机污染物的环境基准,考虑环境因子对污染物生物效应的影响,选取生长速率(μ),无可观察效应浓度(NOEC),最低可观察效应浓度(LOEC)和半抑制浓度(EC50)为指标,研究了不同pH(7,8和9)对小球藻(Chlorella vulgaris)和斜生栅藻(Scenedesmus obliquus)的生长以及对对硝基酚(p-NP)毒性的影响. 结果表明:pH为7~9时,小球藻和斜生栅藻均可正常生长,但各自最适生长的pH不同,小球藻的最适生长pH为8,而斜生栅藻的最适生长pH为9. p-NP对小球藻和斜生栅藻的毒性均随pH的增大而降低,pH为9时毒性最小,但p-NP对斜生栅藻的毒性比对小球藻的大,即斜生栅藻对p-NP要比小球藻更敏感. 因此,在研究p-NP的水生态基准时,应该考虑pH的影响.   相似文献   

9.
菌藻共生体系可利用菌藻间的关系实现污染物的高效去除,在污水处理领域具有广阔的应用前景。文章从菌藻关系、微藻选择和菌藻共生系统的发展三方面分析了该技术的研究进展,重点阐释了菌藻关系中信号分子对菌藻系统的影响。群体感应会促进共生菌在微藻表面形成生物膜,加快藻际微环境的形成,促进污染物的去除。化感作用可抑制杂菌和杂藻的过度生长,维持菌藻系统的稳定运行。此外,该文对不同类型的微藻对污染物去除效果作了进一步分析,污水处理中常用的小球藻和衣藻对氮磷污染物去除效率较高,栅藻常被用作水质评价的指示生物。菌藻共生系统形式多样,其中细菌-微藻共生系统和多菌-多藻共生系统应用广,对污染物的去除效果好,而真菌-微藻共生系统多用于污水的深度处理。最后,文章对菌藻共生体系的发展进行前景展望,以期为菌藻共生体系在污水处理领域的工程化应用提供参考。  相似文献   

10.
藻菌固定化去除污水中氮磷营养物质的初步研究   总被引:19,自引:0,他引:19  
用褐藻酸钙分别固定小球藻、细菌以及菌藻可用于人工污水的处理。实验结果表明,固定化菌藻对氮磷的去除效果优于固定化细菌和固定化藻类;在污水中添加葡萄糖的条件下,菌藻固定化胶球在44h时对NH+4-N和PO43--P分别达到100%和89.8%的去除率。并且还发现,在氮磷比为5∶1的条件下,菌藻固定化胶球对氮和磷的去除效果最好。  相似文献   

11.
淡水藻类对辛基酚的吸附行为研究   总被引:2,自引:0,他引:2  
彭章娥  杨海真  汪蓓蓓  邓南圣 《环境科学》2009,30(12):3652-3657
选取辛基酚(4-OP)作为目标物,研究了水中2种常见淡水藻(小球藻和鱼腥藻)对辛基酚的吸附.结果表明,2种藻对辛基酚的吸附量都很大,且吸附迅速.小球藻在混合后的5 min内即吸附了4-OP初始浓度(2 mg/L)的20%,鱼腥藻在混合后的5 min内即吸附了4-OP初始浓度(2 mg/L)的46%.吸附在1 h即达到平衡.模型拟合结果表明,辛基酚在藻表面的吸附符合Langmuir吸附等温式.水溶液pH值的变化对吸附的影响很大,降低pH值有利于2种藻对辛基酚的吸附,pH值对小球藻吸附辛基酚的影响比对鱼腥藻大.用荧光光谱法研究了藻与辛基酚的相互作用,结果表明,藻的加入可使辛基酚荧光强度降低,随着藻浓度的升高,藻/辛基酚体系荧光强度不变,荧光光谱向红端移动,根据此结果推测藻/有机污染物体系能更好地利用太阳光中的近紫外光线,从而促进有机污染物光降解.  相似文献   

12.
基于沼液的培养基及产油小球藻藻种选育   总被引:2,自引:2,他引:0  
将产油小球藻培养与沼液污水处理结合,为小球藻生长提供营养和水源,同时实现了沼液污水的无害化处理.本研究利用4种产油小球藻,在沼液污水与绿藻培养基体积比为1∶9、1∶3、1∶1、3∶1形成的培养基中培养,以产油率为指标,选育出获得最高产油率时的沼液污水-绿藻培养基配比和小球藻藻种.结果表明,产油率最高的培养基体积比为1∶3,小球藻藻种为BJ05,该工况下产油率达到9.20 mg·(L·d)-1,高于纯绿藻培养基中的8.66 mg·(L·d)-1.在1/4污水比例培养基基础上,考查添加绿藻培养基中不同营养组分对BJ05产油率的影响,结果发现,在同时不添加碳酸钠和柠檬酸的情况下,BJ05的产油率为9.36 mg·(L·d)-1,COD、TN(总氮)、TP(总磷)、NH+4-N去除率分别达到59%、75%、61%、100%.而其他营养成分缺失则显著降低了BJ05的生物量,进而降低了产油率,所以进一步优化培养基为绿藻培养基中不添加碳酸钠和柠檬酸的体积比为1∶3的沼液污水-绿藻培养基.  相似文献   

13.
以普通小球藻FACHB-25为研究对象,利用常压室温等离子体在不同功率条件下对其诱变处理,在功率100W、120W条件下筛选出3株优势藻株,依次编号为S100-7、S120-4、S120-9.其中S120-9藻株培养末期生物量增加明显且多糖产量是原始藻株产量的1.34倍,达到237.98mg/L;S120-4碳水化合物含量占比为37.55%,较原始藻株提高了43.48%.对比了各藻株在光合性能、细胞组分以及细胞形态等方面差异.通过同步糖化发酵(SSF),碳水化合物含量最高的S120-4藻株乙醇产量达到1.58g/10g藻,但其生物量积累受到限制.考虑生物量积累情况,推算出S120-9藻株单位体积藻液乙醇产量最高达到0.1033g/L.  相似文献   

14.
微藻培养耦合污水处理是一项极具潜力的绿色生物技术,具有污染物减排和资源化的双重效应.为明确不同微藻固定化后对NH4+-N去除的差异及优势,以斜生栅藻和普通小球藻为研究对象,以自由生长为对照,通过5 d的批次培养试验对比分析了2种固定化微藻不同营养模式下对NH4+-N污水的适应性及其生长特性.结果表明:①对比自由生长,固定化生长可有效提升斜生栅藻在自养和异养模式下的NH4+-N去除能力,2种模式下最大去除率分别为98%和53%,而在混养模式下,最大去除率则从100%降至86%.②固定化生长对普通小球藻NH4+-N去除率的提升较弱,仅在自养模式下发挥正效应,最大去除率可升至37%,在混养模式下,其自由生长优势强于固定化生长,当C/N为10时,NH4+-N第4天即可完全去除.③固定化生长并未改变混养模式下2种微藻生长对ρ(CODCr)的依赖性,而该效应在异养模式下并不明显.④除自养模式外,固定化生长均略低于自由生长,并且普通小球藻的生长速率也显著高于斜生栅藻.研究显示,斜生栅藻单个细胞对NH4+-N的去除能力优于普通小球藻单个细胞,斜生栅藻污水培养的适应性更强,并且固定化自养模式最佳,而普通小球藻固定化优势微弱.   相似文献   

15.
采用实验生态学的方法,研究了中肋骨条藻、赤潮异弯藻和小球藻的叶绿素a含量、光合速率、光合固碳速率和碳酸酐酶活性对CO2加富的响应变化。结果表明:3种海洋微藻的叶绿素a含量对CO2加富处理都没有作出明显的响应变化(P0.05)。相反,3种海洋微藻的光合速率、光合固碳速率和碳酸酐酶活性对CO2加富都作出了明显的响应变化,与对照组相比显著提高(P0.05)。说明CO2加富处理刺激了3种海洋微藻的碳酸酐酶活性,从而提高了它们的光合速率和光合固碳速率。3种海洋微藻相比,赤潮异弯藻的响应最明显,其次是中肋骨条藻,小球藻的响应相对最不明显。  相似文献   

16.
细菌对城市污水中小球藻生长和油脂积累的影响   总被引:1,自引:0,他引:1  
涂仁杰  金文标  韩松芳  陈洪一 《环境科学》2017,38(10):4279-4285
利用城市污水培养微藻,可在实现污水无害化处理的同时,培养微藻回收生物质能源.污水为微藻的培养提供氮、磷等营养组分和所需水源,同时污水中的细菌可分解污水中的有机物产生CO_2,为微藻提供生长所需碳源.菌藻混合培养既可以收获藻类,又可以净化污水,由于城市污水含有大量的原生菌类,且微藻与细菌之间存在着互生、拮抗等复杂的相互关系,因此,需要筛选出既能够适应于城市污水又能促进微藻生长和油脂积累的优势菌种.本文从不同来源的13种细菌中筛选出2种能够显著促进蛋白核小球藻(Chlorella pyrenoidosa)生长和油脂积累细菌,并分析了微藻培养结束后城市污水的菌群结构.结果表明:污水中光合细菌初始吸光度D600为0.01,W4菌初始吸光度D_(600)为0.02时,对小球藻的干重和油脂产量促进作用最显著,油脂产量分别可达0.114 g·L~(-1)、0.113 g·L~(-1),油脂产量比空白对照组分别提高了22.58%、21.50%.通过对生成的脂肪酸甲酯进行气相色谱分析,结果显示光合细菌和W4菌的添加并未改变小球藻脂肪酸成分,但提升了单不饱和脂肪酸的含量,有利于提升所得生物柴油的品位.培养结束后污水的菌群结构分析显示投加细菌会降低污水中菌群的丰富度和多样性,初步判断是投加的菌在藻液中能够成为优势菌群,且实验组中丛毛单胞菌属(Comamonas)和假单胞菌属(Pseudomonas)的丰度大于对照组.  相似文献   

17.
李鑫  胡洪营  余骏一  赵文玉 《环境科学》2016,37(5):1858-1863
随着核工业的发展,含铀放射性废水的产生量越来越大,必须进行妥善处理与处置.微藻吸附技术是近年来放射性废水处理领域的研究热点,而获得吸附铀的优势藻种则是该技术得以研究和应用的基础.从工程应用的角度出发确定了筛选原则,并针对11株备选藻种进行了优势藻种筛选工作.栅藻LX1对铀的吸附容量最大,为40.7 mg·g~(-1);在m BG11培养基(模拟城镇污水处理厂污染物排放一级A标准的氮磷浓度限值)中的生物质产量较高,为0.32 g·L~(-1);生长进入稳定期后的沉降性能较好,沉降率为45.3%.综上,在本研究范围内,栅藻LX1为放射性废水处理中吸附铀的优势藻种.  相似文献   

18.
Hg2+对固定化小球藻污水净化及生理特征的影响   总被引:23,自引:0,他引:23  
利用褐藻酸钙凝胶包埋固定普通小球藻,对人工配制的含汞污水进行静态净化实验,研究了不同浓度Hg^2+对固定化小球藻净化污水中氨氮,正磷酸盐的效率及其4个生理指标(叶绿素α,光合强度,生长和过氧化物酶)的影响,并与悬浮藻对照比较。结果表明,由于小球藻的固定化增加了对Hg^2+毒性的抗性,0.2×10^-6浓度的Hg^2+对其净化效率无多大影响,而悬浮藻的净化明显下降。随着Hg^2+浓度的增加,固定藻的  相似文献   

19.
固定化小球藻净化污水的初步研究   总被引:31,自引:0,他引:31       下载免费PDF全文
采用褐藻酸钙凝胶包埋固定普通小球藻,对人工配制的污水进行静态模拟净化实验,研究了普通小球藻在固定和悬浮状态下,对污水中氨氮、正磷酸盐及重金属汞的净化效率。结果表明,固定化小球藻的净化效率比悬浮态要高得多,固定化小球藻对汞毒性的抗性亦较悬浮态强,在对悬浮藻有致死作用的汞浓度条件下仍具较高净化效率,同时分析了不同浓度的汞对其净化效率的影响。   相似文献   

20.
分别在20和50μmol·m-2·s-1光照强度下,研究了两种除草剂阿特拉津和百草枯对3株蓝藻:铜绿微囊藻Microcystis aeruginosa PCC7806、M.aeruginosa XW01、集胞藻Synechocystis PCC6803和两株绿藻:蛋白核小球藻Chlorella pyrenoidosa、四尾柵藻Scenedesmus quadricauda的毒害效应.通过测定藻的生长,计算出了半效抑制浓度EC50值,结果表明:高光强下两种除草剂对5株藻的96 h-EC50值均明显低于低光强下的值,显示高光强有促进两种除草剂对藻类毒害的效应.高光强可促使阿特拉津显著提高藻细胞的丙二醛(MDA)含量,提示高光强促进阿特拉津产生更多的自由基破坏细胞膜脂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号