首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adaptation to climate change in Europe has only recently become a true policy concern with the management of extreme events one priority item. Irrespective of future climatic changes increasing the need for systematic evaluation and management of extremes, weather-related disasters already today pose substantial burdens for households, businesses and governments. Research in the ADAM project identified substantial direct risks in terms of potential crop and asset losses due to combined drought and heatwave, as well as flood hazards in Southern and Eastern Europe, respectively. This paper focuses on the indirect, medium to longer term economic risks triggered by the direct risks and mediated by policy responses. We present a selection of three economic impact and adaptation assessments and modelling studies undertaken on extreme event adaptation in Europe. Responding to a need for more economically based adaptation assessments, we address some relatively unresearched issues such as the understanding of past adaptation, the role of market response to impacts as well as government’s ability to plan for and share out extreme event risks. The first analysis undertakes an empirical exploration of observed impacts and adaptation in the agricultural sector in the UK comparing the impact of consecutive extreme events over time in order to determine whether adaptation has occurred in the past and whether this can be used to inform future estimates of adaptation rates. We find that farmers and the agricultural sector clearly have adapted to extreme events over time, but whether this rate can be maintained into the future is unclear, as some autonomous adaptation enacted seemed rather easy to be taken. Markets may mediate or amplify impacts and in the second analysis, we use an economic general equilibrium model to assess the economic effects of a reduction in agricultural production due to drought and heatwave risk in exposed regions in Spain. The analysis suggests that modelled losses to the local economy are more serious in a large-scale scenario when neighbouring provinces are also affected by drought and heatwave events. This is due to the supply-side induced price increase leading to some passing on of disaster costs to consumers. The simulation highlights the importance of paying particular attention to the spatial and distributional effects weather extremes and possibly changes therein induced by climate change may incur. Finally, we discuss how national governments may better plan their disaster liabilities resulting from a need to manage relief and reconstruction activities post event. We do so using a risk based economic planning model assessing the fiscal consequences associated with the coping with natural extremes. We identify large weather-related disaster contingent liabilities, particularly in the key flood hot spot countries Austria, Romania, and Hungary. Such substantial disaster liabilities (“hidden disaster deficits”) when interacting with weak fiscal conditions may lead to substantial additional stress on government budgets and reduced fiscal space for funding other relevant public investment projects. Overall, our paper suggests the importance of respecting the specific spatial and temporal characteristics of extreme event risk when generating information on adaptation decisions. As our adaptation decisions considered, such as using sovereign risk financing instruments are associated with a rather short time horizon, the analysis largely focuses on the management of today’s extreme events and does not discuss in detail projections of risks into a future with climate change. Such projections raise important issues of uncertainty, which in some instances may actually render future projections non-robust, a constraint to be kept in mind when addressing longer term decisions, which at the same time should account for both climate and also socioeconomic change.  相似文献   

2.
Climate change is expected to increase the frequency and intensity of natural disasters. Adaptation investments are required in order to limit the projected increase in natural disaster risks. Adaptation measures can reduce risk partially or completely eliminate risk. The literature on behavioural economics suggests that individuals rarely undertake measures that limit risk partially, while they may place a considerable value on measures that reduce risk to zero. This is studied for a case of adaptation to climate change and its effects on flood risk in the Netherlands. In particular, we examine whether households are willing to invest in elevating newly built structures when this is framed as eliminating flood risk. The results indicate that a majority of homeowners (52%) is willing to make a substantial investment of €10,000 to elevate a new house to a level that is safe to flooding. Differences between willingness to pay (WTP) for flood insurance and WTP for risk elimination through elevation indicate that individuals place a considerable value on the latter adaptation option. This study estimates that the “safety premium” which individuals place on risk elimination is approximately between €35 and €45 per month. The existence of a safety premium has important implications for the design of climate change adaptation policies. The decision to invest in elevating homes is significantly correlated with the expected negative effects of climate change, perceptions of flood risks, individual risk attitudes, and living close to a main river.  相似文献   

3.
Flood disasters have had a devastating effect worldwide over the past century, both in terms of human suffering and material losses. The study of these events and development of more effective adaptation and mitigation policies has become a priority, both in Europe and other parts of the globe. This paper detects and presents the spatial distribution of river flood risks in Europe. The methodology we developed involves an assessment of three key risk components: exposure, vulnerability and hazard. A topography-based flood hazard map of Europe, identifying low-lying areas adjacent to rivers, is presented and used to identify risk, together with land-use data and damage-stage relationship for different land uses. The study covers river flood risk for the entire European continent. This methodology can be used to determine the level of future risk, using the estimations on Hazard, Exposure and Vulnerability from specific climate and economic development models. Annual average flood damage is estimated for European regions, in absolute monetary terms and in % of regional Gross Domestic Product (GDP). The results highlight regions where the threat to the economy from river flood hazard is of major concern.  相似文献   

4.
Worldwide, an increase in flood damage is observed. Governments are looking for effective ways to protect lives, buildings, and infrastructure. At the same time, a large investment gap seems to exist—a big difference between what should necessarily be done to curb the increase in damage and what is actually being done. Decision-makers involved in climate adaptation are facing fundamental (so-called deep) uncertainties. In the course of time, the scientific community has developed a wide range of different approaches for dealing with these uncertainties. One of these approaches, adaptation pathways, is gaining traction as a way of framing and informing climate adaptation. But research shows that “very little work has been done to evaluate the current use of adaptation pathways and its utility to practitioners and decision makers” (Lin et al. 2017, p. 387). With this paper, the authors, as action researchers and practitioners involved in two of the world’s largest real-life applications of this approach in flood risk management, aim to contribute to filling in that gap. Analysis of the experience in the United Kingdom and the Netherlands in long-term planning in flood risk management shows that the adaptation pathways approach is effective in keeping decision processes going forward, to the final approval of a long-term plan, and helps increase awareness about uncertainties. It contributes to political support for keeping long-term options open and motivates decision-makers to modify their plans to better accommodate future conditions. When it comes to implementing the plans, there are still some major challenges, yet to be addressed, amongst others: the timely detection of tipping points in situations with large natural variability, the inclusion of measures that prepare for a switch to transformational strategies, and the retention of commitment of regional and local authorities, non government organizations, and the private sector, to climate adaptation as national policies move from blueprint planning to adaptive plans. In delivering this feedback, the authors hope to motivate the scientific community to take on these challenges.  相似文献   

5.
Industrial activities are linked through international supply chains, and the impacts that one country experiences can easily influence other countries. Climate change has made it essential for countries to review their supply chains and to prioritize introducing concrete adaptation actions. Therefore, this study aims to demonstrate a method of screening imported products that are highly vulnerable to the impacts of climate change by assessing all imported products in a consistent manner throughout the global supply chain to support a country’s adaptation strategy planning. The study focuses on the potential impacts on land use and human health of climate change effects such as floods and heat waves. Japan was selected for a detailed analysis of its imports. A life-cycle assessment technique was applied to evaluate imported products through their supply chains. In Japan’s case, land use results show that agricultural products imported from the United States of America (US) are highly vulnerable to climate change impacts. In relation to imported meat products, feed production processes are most vulnerable. The human health results show in addition to agricultural imports, electronics and textile imports are also vulnerable. The study recommends that the relevant stakeholders impacted by these products scrutinize their supply chains. Especially, Japan is recommended to collaborate with the US, China, and Southeast Asian countries for increasing resilience to climate change. The results include uncertainties due to limitations of data availability and methodology; however, this method is also applicable to assessing the global trade activities of any country and to supporting global adaptation strategies.  相似文献   

6.
This two-part paper considers the complementarity between adaptation and mitigation in managing the risks associated with the enhanced greenhouse effect. Part one reviews the application of risk management methods to climate change assessments. Formal investigations of the enhanced greenhouse effect have produced three generations of risk assessment. The first led to the United Nations Intergovernmental Panel on Climate Change (IPCC), First Assessment Report and subsequent drafting of the United Nations Framework Convention on Climate Change. The second investigated the impacts of unmitigated climate change in the Second and Third IPCC Assessment Reports. The third generation, currently underway, is investigating how risk management options can be prioritised and implemented. Mitigation and adaptation have two main areas of complementarity. Firstly, they each manage different components of future climate-related risk. Mitigation reduces the number and magnitude of potential climate hazards, reducing the most severe changes first. Adaptation increases the ability to cope with climate hazards by reducing system sensitivity or by reducing the consequent level of harm. Secondly, they manage risks at different extremes of the potential range of future climate change. Adaptation works best with changes of lesser magnitude at the lower end of the potential range. Where there is sufficient adaptive capacity, adaptation improves the ability of a system to cope with increasingly larger changes over time. By moving from uncontrolled emissions towards stabilisation of greenhouse gases in the atmosphere, mitigation limits the upper part of the range. Different activities have various blends of adaptive and mitigative capacity. In some cases, high sensitivity and low adaptive capacity may lead to large residual climate risks; in other cases, a large adaptive capacity may mean that residual risks are small or non-existent. Mitigative and adaptive capacity do not share the same scale: adaptive capacity is expressed locally, whereas mitigative capacity is different for each activity and location but needs to be aggregated at the global scale to properly assess its potential benefits in reducing climate hazards. This can be seen as a demand for mitigation, which can be exercised at the local scale through exercising mitigative capacity. Part two of the paper deals with the situation where regional bodies aim to maximise the benefits of managing climate risks by integrating adaptation and mitigation measures at their various scales of operation. In north central Victoria, Australia, adaptation and mitigation are being jointly managed by a greenhouse consortium and a catchment management authority. Several related studies investigating large-scale revegetation are used to show how climate change impacts and sequestration measures affect soil, salt and carbon fluxes in the landscape. These studies show that trade-offs between these interactions will have to be carefully managed to maximise their relative benefits. The paper concludes that when managing climate change risks, there are many instances where adaptation and mitigation can be integrated at the operational level. However, significant gaps between our understanding of the benefits of adaptation and mitigation between local and global scales remain. Some of these may be addressed by matching demands for mitigation (for activities and locations where adaptive capacity will be exceeded) with the ability to supply that demand through localised mitigative capacity by means of globally integrated mechanisms.  相似文献   

7.
土地利用/覆盖变化与气候变化定量关系研究进展   总被引:6,自引:1,他引:5  
当前,以全球变暖为主要特征的气候变化对人类社会的可持续发展构成了严重威胁,如何有效适应气候变化成为人类面临的共同挑战。研究表明,全球变暖的主要驱动力是人类活动造成的温室气体排放和土地利用方式改变。过去,科学界致力于削减全球温室气体排放,而土地利用与气候变化的关系,以及如何适应气候变化,没有引起足够重视。论文重点阐述土地利用/覆盖变化对区域气候的生物地球物理影响机制,总结土地利用/覆盖与气候变化定量关系的研究进展,得出现阶段研究存在四点不足:①缺乏景观格局与气候过程关系的认识;②较少考虑人类活动对下垫面的影响;③区域气候模式存在局限;④适应气候变化的研究不足。针对上述问题,论文指出基于可持续性的土地系统设计是适应气候变化的有效途径,也是未来气候变化领域的研究重点。  相似文献   

8.
Despite international focus on how to facilitate adaptation to droughts in a changing climate, a good deal of adaptation will be enacted at the local level. Focusing on the Yuanyang Terrace of SW China (a very famous agricultural heritage site), this study illustrates that land use change, dynamic adaptation and Public-Private Partnership (PPP) are the main measures to reduce the drought disaster risk and have the important role in adapting to droughts based on methodology of the land use survey, household questionnaire, local government and companies’ interview. And a new conceptual model of adaptation from the insight of Disaster Risk Reduction (DRR) was proposed in spatial, temporal and social dimensions. It is a good practice to adapt to disaster risk and agricultural heritage conservation by tourism development. Adaptive risk management is more important in adapting to disaster risk in order to maintain heritages conservation and local livelihood improvement.  相似文献   

9.
As the world’s largest industry, the insurance sector is both an aggregator of the impacts of climate change and a market actor able to play a material role in decreasing the vulnerability of human and natural systems. This article reviews the implications of climate change for insurers and provides specific examples of insurance-relevant synergisms between adaptation and mitigation in the buildings and energy sectors, agriculture, forestry, and land use. Although insurance is far from a “silver bullet” in addressing climate change, it offers significant capacity and ability to understand, manage, and spread risks associated with weather-related events, more so today in industrialized countries but increasingly so in developing countries and economies in transition. Certain measures that integrate climate change mitigation and adaptation also bolster insurers’ solvency and profitability, thereby increasing their appeal. Promising strategies involve innovative products and systems for delivering insurance and the use of new technologies and practices that both reduce vulnerability to disaster-related losses and support sustainable development. However, climate change promises to erode the insurability of many risks, and insurance responses can be more reactive than proactive, resulting in compromised insurance affordability and/or availability. Public–private partnerships involving insurers and entities such as the international relief community offer considerable potential, but have not been adequately explored.
Evan MillsEmail: URL: http://insurance.lbl.gov
  相似文献   

10.
Affected by human activities, land use and land cover has changed in Daqinghe watershed, China, which resulted in varied runoff. In many hydrological stations, there was a decreasing trend of flood volume and flood peak, but no trend of rainfall depth. In order to quantify the effect of land use change on flood peak and volume, we selected 5 sub-watersheds in Daqinghe watershed, and made a multi-linear regression analysis incorporating the main information in the selected sub-watersheds. The dependent variables are changes in flood volume and flood peak, and the independent variables are the control factors including changes in rainfall depth, intensity, land use area, watershed area, and so on. The rainfall and flood data series are from 1956 to 2005. We divided the data into 2 groups according to flood size―greater than and less than 10 year return period. At last, 4 regression equations were obtained. Based on the multi-linear regression equations and land use data of 1970, 1980, 1995 and 2000, the quantified effects of land use change on flood peak and volume were obtained. Compared with 2000 land use condition, flood volume and peak varied larger in 1970 and 1995 land use conditions, but slightly in 1980 land use condition. Take Zijingguan as an example, flood volume greater than 10 year return period increased 4.08 mm in 1970 land use and decreased 4.90 mm in 1995 land use, but just increased 0.12 mm in 1980 land use. Among all the selected sub-watersheds, land use change had a significant effect on both flood volume and peak in Zijingguan and Zhangfang sub-watersheds. And Manshuihe showed a large variation in 1970 land use condition, other sub-watersheds exhibit a moderate variation due to land use change.  相似文献   

11.
权瑞松 《自然资源学报》2018,33(9):1552-1562
论文基于2000、2003和2006年土地利用数据,借助Terrset CA-Markov模型模拟预测2030年上海市土地利用结构,采用SCS模型探究土地利用结构变化的水文效应。结果显示:1)Terrset CA-Markov模型的模拟精度为0.85,可用于模拟2030年上海土地利用格局。2)预测结果表明,2000—2030年间,工商业用地、居住用地与道路广场组成的城市不透水地面比重由2000年的26.54%激增至2030年的59.19%。3)上海不同区域的平均径流深度整体呈增加趋势,但也存在一定的时空差异性,而这种时空差异是由上海城市化过程中的土地利用转化造成的;2000—2030年间,上海中心城区不透水地面比重较高且变化较小,而郊区不透水地面面积大幅提升,导致郊区地表径流深度增幅大于中心城区。研究结果可为完善城市风险管理与城市规划提供参考。  相似文献   

12.
Globally, more people and assets are concentrated on the limited coastal plains where they are exposed to frequent disasters, such as typhoons, rainstorms and floods that often result in tremendous casualties and economic losses. Based on the causal analysis of the historical typhoon cases in the Guangdong Province of China, this study indicates that structural measures alone are not sufficient to resist and offset the impacts caused by typhoon disasters. Additionally, structural measures are unsustainable due to their high investment and low security. Adaptive governance, which uses non-structural measures and resilience building, is a feasible and cost-effective strategy for responding to the cascading effects of typhoon disasters. Multi-stakeholder participation and vertical–horizontal coordination are essential for providing adaptive governance to typhoon disasters. A risk-sharing model was put forward by bringing together the government, insurance companies and victims. Furthermore, a favorable atmosphere for public participation in disaster risk reduction can be fostered and should be a long-term adaptation strategy. The views and frameworks of adaptive governance provide policy makers with insights on coastal disaster risk management within the broader context of climate change.  相似文献   

13.
Climate change, land degradation and drought affect millions of people living in drylands worldwide. With its food security depending almost entirely on irrigated agriculture, Central Asia is one of the arid regions highly vulnerable to water scarcity. Previous research of land and water use in the region has focused on improving water-use efficiency, soil management and identifying technical, institutional and agricultural innovations. However, vulnerability to climate change has rarely been considered, in spite of the imminent risks due to a higher-than-average warming perspective and the predicted melting of glaciers, which will greatly affect the availability of irrigation water. Using the Khorezm region in the irrigated lowlands of northwest Uzbekistan as an example, we identify the local patterns of vulnerability to climate variability and extremes. We look at on-going environmental degradation, water-use inefficiency, and barriers to climate change adaptation and mitigation, and based on an extensive review of research evidence from the region, we present concrete examples of initiatives for building resilience and improving climate risk management. These include improving water use efficiency and changing the cropping patterns that have a high potential to decrease the exposure and sensitivity of rural communities to climate risks. In addition, changes in land use such as the afforestation of degraded croplands, and introducing resource-smart cultivation practices such as conservation agriculture, may strengthen the capacity of farmers and institutions to respond to climate challenges. As these can be out-scaled to similar environments, i.e. the irrigated cotton and wheat growing lowland regions in Central Asia and the Caucasus, these findings may be relevant for regions beyond the immediate geographic area from which it draws its examples.  相似文献   

14.
Urban flooding is often used as an illustration of the potentially adverse effects of greenhouse-induced climate change on extreme events. There is however, a paucity of studies that convert climate scenarios into changes in flood damage. This account summarises the use of modelling techniques, for three flood prone urban catchments in south eastern Australia, to assess changes to urban flood losses for the 'most wet' and 'most dry' scenarios for the year 2070. The most wet scenario indicates that annual average flood damage could increase within the range of 2.5 to 10 times, under the most dry scenario flood regimes would be similar to those experienced at present. The socio-economic scenarios based on the changes to flood losses are used to consider policy responses. It is unlikely that many local government authorities will respond because of lack of interest and because of major changes to the climate scenarios proposed over the last decade. Any response is likely to be incremental and accord with the 'no regrets' and the precautionary principle'.  相似文献   

15.
By 2050, 75 % of the world’s population will live in cities and the occurrence of heat wave events might have doubled. Mapping the climate and land use change impact for urban heat events should set the agenda for adaptation planning at the local scale. Literature on urban heat mapping does not reveal a clear indicator to visualise the urban heat impacts that includes consequences of land use and climate changes for planning purposes. This paper introduces a stepwise approach to develop a single complex indicator to map the urban heat impact for local climate adaptation planning processes. Information on climatic drivers and land use characteristics are combined and projected for future land use and climate change impacts. Next, several visualisation techniques are developed to investigate which techniques are most effective to visualise complex information with multiple variables in one visualisation. A usability test is performed to investigate how indicator and map meet the information and communication needs of policy makers. Our findings reveal that it is important to add information on future impacts to set the agenda for adaptation planning at the local scale. Applying cartographic techniques in a map series presentation has proven to be effective to map complex information in a single image and fulfil most of the identified information needs. Based on our finding, we introduce the information enrichment chain as a promising approach to support local adaptation planning.  相似文献   

16.
Despite considerable uncertainties regarding the exact contribution of anthropogenic climate change to disaster risk, rising losses from extreme events have highlighted the need to comprehensively address climate-related risk. This requires linking climate adaptation to disaster risk management (DRM), leading to what has been broadly referred to as climate risk management (CRM). While this concept has received attention in debate, important gaps remain in terms of operationalizing it with applicable methods and tools for specific risks and decision-contexts. By developing and applying a methodological approach to CRM in the decision context of sovereign risk (flooding) in Austria we test the usefulness of CRM, and based on these insights, inform applications in other decision contexts. Our methodological approach builds on multiple lines of evidence and methods. These comprise of a broad stakeholder engagement process, empirical analysis of public budgets, and risk-focused economic modelling. We find that a CRM framework is able to inform instrumental as well as reflexive and participatory debate in practice. Due to the complex interaction of social–ecological systems with climate risks, and taking into account the likelihood of future contingent climate-related fiscal liabilities increasing substantially as a result of socioeconomic developments and climate change, we identify the need for advanced learning processes and iterative updates of CRM management plans. We suggest that strategies comprising a portfolio of policy measures to reduce and manage climate-related risks are particularly effective if they tailor individual instruments to the specific requirements of different risk layers.  相似文献   

17.
Climate change requires reconsideration of flood risk management strategies. Cost-benefit analysis (CBA), an economic decision-support tool, has been widely applied to assess these strategies. This paper aims to describe and discuss probabilistic extensions of CBA to identify welfare-maximising flood risk management strategies under climate change. First, uncertainty about the changes in return periods of hydro-meteorological extremes is introduced by probability-weighted climate scenarios. Second, the analysis is extended by learning about climate change impacts. Learning occurs upon the probabilistic arrival of information. We distinguish between learning from scientific progress, from statistical evidence and from flood disasters. These probabilistic extensions can be used to analyse and compare the economic efficiency and flexibility of flood risk management strategies under climate change. We offer a critical discussion of the scope of such extensions and options for increasing flexibility. We find that uncertainty reduction from scientific progress may reduce initial investments, while other types of learning may increase initial investments. This requires analysing effects of different types of learning. We also find that probabilistic information about climate change impacts and learning is imprecise. We conclude that risk-based CBA with learning improves the flexibility of flood risk management strategies under climate change. However, CBA provides subjective estimates of expected outcomes and reflects different decision-maker preferences than those captured in robustness analyses. We therefore advocate robustness analysis in addition to, or combined with, cost-benefit analysis to support local investment decisions on flood risk reduction and global strategies on allocation of adaptation funds for flood risk management.  相似文献   

18.
Coastal regions worldwide are during the process of rapid urban expansion. However, expanded urban settlements in land-sea interfaces have been faced with unprecedented threats from climate change related hazards. Adaptation to coastal hazards has received increasing attention from city managers and planners. Adaptation and land management practices are largely informed by remote sensing and land change modeling. This paper establishes a framework that integrates land change analysis, coastal flooding, and sea level rise adaptation. Multilayer perceptron neural network, similarity learning, and binary logistic regression were applied to analyze spatiotemporal changes of residential, commercial, and other built-up areas in Bay County, Florida, USA. The prediction maps of 2030 were produced by three models under four policy scenarios that included the population relocation strategy. Validation results reveal that three models return overall acceptable accuracies but generate distinct landscape patterns. Predictions indicate that planned retreat of residents can greatly reduce urban vulnerability to sea level rise induced flooding. While managed realignment of the coast brings large benefits, the paper recommends different mixes of adaptation strategies for different parts of the globe, and advocates the application of reflective land use planning to foster a more disaster resilient coastal community.  相似文献   

19.
Agriculture consumes more than two-thirds of global fresh water out of which 90 % is used by developing countries. Freshwater consumption worldwide is expected to rise another 25 %by 2030 due to increase in population from 6.6 billion currently to about 8 billion by 2030 and over 9 billion by 2050. Worldwide climate change and variability are affecting water resources and agricultural production and in India Ganga Plain region is one of them. Hydroclimatic changes are very prominent in all the regions of Ganga Plain. Climate change and variability impacts are further drying the semi-arid areas and may cause serious problem of water and food scarcity for about 250 million people of the area. About 80 million ha out of total 141 million ha net cultivated area of India is rainfed, which contributes approximately 44 % of total food production has been severely affected by climate change. Further changing climatic conditions are causing prominent hydrological variations like change in drainage density, river morphology (tectonic control) & geometry, water quality and precipitation. Majority of the river channels seen today in the Ganga Plain has migrated from their historic positions. Large scale changes in land use and land cover pattern, cropping pattern, drainage pattern and over exploitation of water resources are modifying the hydrological cycle in Ganga basin. The frequency of floods and drought and its intensity has increased manifold. Ganga Plain rivers has changed their course with time and the regional hydrological conditions shows full control over the rates and processes by which environments geomorphically evolve. Approximately 47 % of total irrigated area of the country is located in Ganga Plain, which is severely affected by changing climatic conditions. In long run climate change will affect the quantity and quality of the crops and the crop yield is going to be down. This will increase the already high food inflation in the country. The warmer atmospheric temperatures and drought conditions will increase soil salinization, desertification and drying-up of aquifer, while flooding conditions will escalate soil erosion, soil degradation and sedimentation. The aim of this study is to understand the impact of different hydrological changes due to climatic conditions and come up with easily and economically feasible solutions effective in addressing the problem of water and food scarcity in future.  相似文献   

20.
Climate change is expected to adversely affect agricultural production in Africa. Because agricultural production remains the main source of income for most rural communities in the region, adaptation of the agricultural sector is imperative to protect the livelihoods of the poor and to ensure food security. A better understanding of farmers’ perceptions of climate change, ongoing adaptation measures, and the decision-making process is important to inform policies aimed at promoting successful adaptation strategies for the agricultural sector. Using data from a survey of 1800 farm households in South Africa and Ethiopia, this study presents the adaptation strategies used by farmers in both countries and analyzes the factors influencing the decision to adapt. We find that the most common adaptation strategies include: use of different crops or crop varieties, planting trees, soil conservation, changing planting dates, and irrigation. However, despite having perceived changes in temperature and rainfall, a large percentage of farmers did not make any adjustments to their farming practices. The main barriers to adaptation cited by farmers were lack of access to credit in South Africa and lack of access to land, information, and credit in Ethiopia. A probit model is used to examine the factors influencing farmers’ decision to adapt to perceived climate changes. Factors influencing farmers’ decision to adapt include wealth, and access to extension, credit, and climate information in Ethiopia; and wealth, government farm support, and access to fertile land and credit in South Africa. Using a pooled dataset, an analysis of the factors affecting the decision to adapt to perceived climate change across both countries reveals that farmers were more likely to adapt if they had access to extension, credit, and land. Food aid, extension services, and information on climate change were found to facilitate adaptation among the poorest farmers. We conclude that policy-makers must create an enabling environment to support adaptation by increasing access to information, credit and markets, and make a particular effort to reach small-scale subsistence farmers, with limited resources to confront climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号