首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The aim of this study was to obtain information about the degradation of t-butyl methyl ether (MTBE; (CH(3))(3)C-O-CH(3)) in atmospheric water droplets (rain, clouds, fog). These water droplets contain hydrogen peroxide and iron ions, which are a source of the powerful oxidising radical OH degrees, particularly under solar irradiation (photo-Fenton reaction). MTBE was chosen for this work because of its current use as an oxygenated additive in gasoline.In this study we found that MTBE is not stable in the atmosphere. More than 15 intermediate products were identified, five of which were quantified (t-butyl formate (TBF), methyl acetate (MA), t-butyl alcohol (TBA), acetone (AC), formaldehyde). The evaluation of the disappearance kinetic of the main intermediate compounds shows the following activity pattern k((TBA))>k((MTBE))>k((TBF)),k>((AC)). Acetone was found to be about 15 times more stable than MTBE in atmospheric conditions. The degradation pathways are discussed on the basis of these identifications and on the degradation of the main intermediate products in similar conditions to MTBE.  相似文献   

2.
The effects of chloride, nitrate, perchlorate and sulfate ions on the rates of the decomposition of hydrogen peroxide and the oxidation of organic compounds by the Fenton's process have been investigated. Experiments were conducted in a batch reactor, in the dark at pH < or = 3.0 and at 25 degrees C. Data obtained from Fe(II)/H2O2 experiments with [Fe(II)]0/[H2O2]0 > or = 2 mol mol(-1), showed that the rates of reaction between Fe(II) and H2O2 followed the order SO4(2-) > ClO4(-) = NO3- = Cl-. For the Fe(III)/H2O2 process, identical rates were obtained in the presence of nitrate and perchlorate, whereas the presence of sulfate or chloride markedly decreased the rates of decomposition of H2O2 by Fe(III) and the rates of oxidation of atrazine ([atrazine]0 = 0.83 microM), 4-nitrophenol ([4-NP]0 = 1 mM) and acetic acid ([acetic acid]0 = 2 mM). These inhibitory effects have been attributed to a decrease of the rate of generation of hydroxyl radicals resulting from the formation of Fe(III) complexes and the formation of less reactive (SO4(*-)) or much less reactive (Cl2(*-)) inorganic radicals.  相似文献   

3.
Xu XR  Li HB  Gu JD 《Chemosphere》2006,63(2):254-260
Hexavalent chromium and methyl tert-butyl ether (MTBE) are two important environmental pollutants. Simultaneous decontamination of Cr(VI) and MTBE was studied by UV/TiO2 process. The influences of pH and the concentrations of pollutants on the kinetics of the photocatalytic reactions were evaluated. Dark adsorption tests showed that the acidic pH favored the adsorption of Cr(VI) while neutral pH favored the adsorption of MTBE. Under UV irradiation, Cr(VI) reduction was observed in Cr(VI)/TiO2 system, and MTBE oxidation was observed in MTBE/TiO2 system. The system containing Cr(VI) and MTBE by UV/TiO2 process demonstrated the synergistic effect between oxidation of MTBE and reduction of Cr(VI). The results demonstrated that two pollutants Cr(VI) and MTBE could be eliminated simultaneously by UV/TiO2 process. tert-Butyl formate, tert-butyl alcohol and acetone were identified as primary degradation products of MTBE by gas chromatography-mass spectrometry in the degradation of MTBE by UV/TiO2 process.  相似文献   

4.
The kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) in aqueous solutions at various pH, temperature, oxidant concentration and ionic strength levels was studied. The MTBE degradation was found to follow a pseudo-first-order decay model. The pseudo-first-order rate constants of MTBE degradation by persulfate (31.5 mM) at pH 7.0 and ionic strength 0.11 M are approximately 0.13 x 10(-4), 0.48 x 10(-4), 2.4 x 10(-4) and 5.8 x 10(-4) S(-1) at 20, 30, 40 and 50 degrees C, respectively. Under the above reaction conditions, the reaction has an activation energy of 24.5 +/- 1.6 kcal/ mol and is influenced by temperature, oxidant concentration, pH and ionic strength. Raising the reaction temperature and persulfate concentration may significantly accelerate the MTBE degradation. However, increasing both pH (over the range of 2.5-11) and ionic strength (over the range of 0.11-0.53 M) will decrease the reaction rate. Reaction intermediates including tert-butyl formate, tert-butyl alcohol, acetone and methyl acetate were observed. These intermediate compounds were also degraded by persulfate under the experimental conditions. Additionally, MTBE degradation by persulfate in a groundwater was much slower than in phosphate-buffer solutions, most likely due to the presence of bicarbonate ions (radical scavengers) in the groundwater.  相似文献   

5.
In this work, the electrochemical degradation of the dye azure B in aqueous solutions was studied by electrochemical advanced oxidation processes (EAOPs), electro-Fenton, and anodic oxidation processes, using Pt/carbon-felt and boron-doped diamond (BDD)/carbon-felt cells with H2O2 electrogeneration. The higher oxidation power of the electro-Fenton (EF) process using BDD anode was demonstrated. The oxidative degradation of azure B by the electrochemically generated hydroxyl radicals (?OH) follows a pseudo-first-order kinetics. The apparent rate constants of the oxidation of azure B by ?OH were measured according to pseudo-first-order kinetic model. The absolute rate constant of azure B hydroxylation reaction was determined by competition kinetics method and found to be 1.19?×?109 M?1 s?1. It was found that the electrochemical degradation of the dye leads to the formation of aromatic by-products which are then oxidized to aliphatic carboxylic acids before their almost mineralization to CO2 and inorganic ions (sulfate, nitrate, and ammonium). The evolution of the TOC removal and time course of short-chain carboxylic acids during treatment were also investigated.  相似文献   

6.
Studies on oxidation of tert-butyl ethers in the presence of chloride ions proved that acid medium favoured formation of chloro organic compounds. 1,2-Dichloro-2-methylpropane, 3-chloro-2-chloromethylpropene were identified among the reaction products. Presence of these compounds was identified both in the case when methyl-tert-butyl ether (MTBE) and ethyl-tert-butyl ether (ETBE) were subjected to reaction. Reaction products were analysed by gas chromatography method with application of -FID, -MS and -AED detectors. On the basis of experimental data, the path of tert-butyl ethers conversion to dichloro products was proposed. It was found that the identified chloro derivatives could be formed both by ionic and radical reactions. In order to confirm this thesis for the proposed scheme of reaction, the theoretical calculations of molecular simulation of the reaction paths were performed.  相似文献   

7.
Awad HS  Galwa NA 《Chemosphere》2005,61(9):1327-1335
Electrocatalytic degradation of Acid Blue and Basic Brown dyes from simulated wastewater on lead dioxide anode was investigated in different conductive electrolytes. It was shown that complete degradation of these dyes is dependent primarily on type and concentration of the conductive electrolyte. The highest electrocatalytic activity was achieved in the presence of NaCl (2g/l) and could be attributed to indirect oxidation of the investigated dyes by the electrogenerated hypochlorite ions formed from the chloride oxidation. In addition, contribution from direct oxidation could also be possible via reaction of these organic compounds with the electrogenerated hydroxyl radicals adsorbed on the lead dioxide surface. In the presence of NaOH, the electrocatalytic activity of the employed anode was not comparable to that in NaCl due primarily to the absence of chloride. This indicates that dyes degradation in NaOH occurs exclusively via direct electrochemical process. However, in H2SO4, the electrode performance was poor due partially to the absence of chloride from the conductive solution. The possibility of electrode poisoning as a result of growth of adherent film on the anode surface or production of stable intermediates not easily further oxidized by direct electrolysis in H2SO4 might also be accountable for the poor performance observed in this conductive electrolyte. Optimizing the conditions that ensure effective electrochemical degradation of Acid Blue and Basic Brown dyes on lead dioxide electrode necessitates the control of all the operating factors.  相似文献   

8.
Liao CH  Kang SF  Wu FA 《Chemosphere》2001,44(5):1193-1200
Simultaneous effect of inorganic anions, such as chloride and bicarbonate ions, on the scavenging of hydroxyl radicals (HO*) in the H2O2/UV process is the focus of this paper. The model compound of n-chlorobutane (BuCl) was used as the probe of HO*. By changing the pH conditions (2-9) and the concentrations of NaCl (0.25-2500 mM) and NaHCO3 (25 mM), the variation of HO* concentrations and the rate of H2O2 decomposition were compared. In general, the BuCl and H2O2 follow closely the first-order reaction within the first 10 and 40 min, respectively. In the presence of chloride alone at the pH range of 2-6, the HO* concentration in the reaction mixture increases with the increase of pH, and the HO* concentration at pH = 6 is 100 times of that at pH = 2. Including bicarbonate species in the solution, the peak HO* concentration was found at a certain pH, which shifts from 4, 5, to 5-7, as the molar ratios of chloride/bicarbonate species increase from 1 to 100. In addition, without bicarbonate species HO* concentration decreases significantly with increasing chloride concentration but remained rather unchanged beyond 1250 mM. In contrast, the HO* scavenging in the presence of bicarbonate species became relatively significant only when the chloride concentration reached beyond 250 mM. Throughout all experiments of different water quality conditions, the H2O2 decomposition rate remains rather unchanged.  相似文献   

9.
The fate of fuel oxygenates such as methyl tert-butyl ether (MTBE) in the subsurface is governed by their degradability under various redox conditions. The key intermediate in degradation of MTBE and ethyl tert-butyl ether (ETBE) is tert-butyl alcohol (TBA) which was often found as accumulating intermediate or dead-end product in lab studies using microcosms or isolated cell suspensions. This review discusses in detail the thermodynamics of the degradation processes utilizing various terminal electron acceptors, and the aerobic degradation pathways of MTBE and TBA. It summarizes the present knowledge on MTBE and TBA degradation gained from either microcosm or pure culture studies and emphasizes the potential of compound-specific isotope analysis (CSIA) for identification and quantification of degradation processes of slowly biodegradable pollutants such as MTBE and TBA. Microcosm studies demonstrated that MTBE and TBA may be biodegradable under oxic and nearly all anoxic conditions, although results of various studies are often contradictory, which suggests that site-specific conditions are important parameters. So far, TBA degradation has not been shown under methanogenic conditions and it is currently widely accepted that TBA is a recalcitrant dead-end product of MTBE under these conditions. Reliable in situ degradation rates for MTBE and TBA under various geochemical conditions are not yet available. Furthermore, degradation pathways under anoxic conditions have not yet been elucidated. All pure cultures capable of MTBE or TBA degradation isolated so far use oxygen as terminal electron acceptor. In general, compared with hydrocarbons present in gasoline, fuel oxygenates biodegrade much slower, if at all. The presence of MTBE and related compounds in groundwater therefore frequently limits the use of in situ biodegradation as remediation option at gasoline-contaminated sites. Though degradation of MTBE and TBA in field studies has been reported under oxic conditions, there is hardly any evidence of substantial degradation in the absence of oxygen. The increasing availability of field data from CSIA will foster our understanding and may even allow the quantification of degradation of these recalcitrant compounds. Such information will help to elucidate the crucial factors of site-specific biogeochemical conditions that govern the capability of intrinsic oxygenate degradation.  相似文献   

10.
Biotic and abiotic transformations of methyl tertiary butyl ether (MTBE)   总被引:1,自引:0,他引:1  
Background Methyl tertiary butyl ether (MTBE) is a fuel additive which is used all over the world. In recent years it has often been found in groundwater, mainly in the USA, but also in Europe. Although MTBE seems to be a minor toxic, it affects the taste and odour of water at concentrations of < 30 μg/L. Although MTBE is often a recalcitrant compound, it is known that many ethers can be degraded by abiotic means. The aim of this study was to examine biotic and abiotic transformations of MTBE with respect to the particular conditions of a contaminated site (former refinery) in Leuna, Germany. Methods Groundwater samples from wells of a contaminated site were used for aerobic and anaerobic degradation experiments. The abiotic degradation experiment (hydrolysis) was conducted employing an ion-exchange resin and MTBE solutions in distilled water. MTBE, tertiary butyl formate (TBF) and tertiary butyl alcohol (TBA) were measured by a gas chromatograph with flame ionisation detector (FID). Aldehydes and organic acids were respectively analysed by a gas chromatograph with electron capture detector (ECD) and high-performance ion chromatography (HPIC). Results and Discussion Under aerobic conditions, MTBE was degraded in laboratory experiments. Only 4 of a total of 30 anaerobic experiments exhibited degradation, and the process was very slow. In no cases were metabolites detected, but a few degradation products (TBF, TBA and formic acid) were found on the site, possibly due to the lower temperatures in groundwater. The abiotic degradation of MTBE with an ion-exchange resin as a catalyst at pH 3.5 was much faster than hydrolysis in diluted hydrochloric acid (pH 1.0). Conclusion Although the aerobic degradation of MTBE in the environment seems to be possible, the specific conditions responsible are widely unknown. Successful aerobic degradation only seems to take place if there is a lack of other utilisable compounds. However, MTBE is often accompanied by other fuel compounds on contaminated sites and anaerobic conditions prevail. MTBE is often recalcitrant under anaerobic conditions, at least in the presence of other carbon sources. The abiotic hydrolysis of MTBE seems to be of secondary importance (on site), but it might be possible to enhance it with catalysts. Recommendation and Outlook MTBE only seems to be recalcitrant under particular conditions. In some cases, the degradation of MTBE on contaminated sites could be supported by oxygen. Enhanced hydrolysis could also be an alternative. - * The basis of this peer-reviewed paper is a presentation at the 9th FECS Conference on 'Chemistry and Environment', 29 August to 1 September 2004, Bordeaux, France.  相似文献   

11.
Xu XR  Zhao ZY  Li XY  Gu JD 《Chemosphere》2004,55(1):73-79
Degradation of methyl tert-butyl ether (MTBE) in aqueous solution by Fenton's reagent (Fe2+ and H2O2) was investigated. Effects of reaction conditions on the oxidation efficiency of MTBE by Fenton's reagent were examined in batch experiments. Under optimum conditions, 15 mM H2O2, 2 mM Fe2+, pH 2.8 and room temperature, the initial 1 mM MTBE solution was reduced by 99% within 120 min. Results showed that MTBE was decomposed in a two-stage reaction. MTBE was first decomposed swiftly based on a Fe2+/H2O2 reaction and then decomposed somewhat less rapidly based on a Fe3+/H2O2 reaction. The detection of Fe2+ also supported the theory of the two-stage reaction for the oxidation of MTBE by Fenton's reagent. The dissolved oxygen in the solution decreased rapidly in the first stage reaction, but it showed a slow increase in the second stage with a zero-order kinetics. A reaction mechanism involving two different pathways for the decomposition of MTBE by Fenton's reagent was also proposed. Chemicals including tert-butyl formate, tert-butyl alcohol, methyl acetate and acetone were identified to be the primary intermediates and by-products of the degradation processes.  相似文献   

12.
Wu TN 《Chemosphere》2007,69(2):271-278
This study utilized the electrocatalytic characteristics of nickel electrode to perform degradation of methyl tert-butyl ether (MTBE) in aqueous solution. Lab experiments were conducted in a spiltless bath type cell equipped with a nickel electrode as working electrode, a platinum wire as counter electrode, and an Ag/AgCl electrode as reference electrode. Effects of controlled potential, supporting electrolyte, and solution pH on the efficiency of MTBE removal were examined under the control of the constant-potential conditions. Experiment results showed that the optimum electrolytic condition was operated at 0.35 V in a 1M KOH electrolyte solution, and the initial 20 mgl(-1) MTBE was reduced by 73% within 180 min under the optimum control. As using 1M Na2SO4 and 1M KCl as electrolyte, the efficiency of MTBE removal dropped to 60% and 50% under the similar controls. Comparing with various pH controls, the strong basic condition is favorable for electrocatalytic oxidation of MTBE in the Ni-electrolytic system. The efficiency of MTBE removal showed a rising trend with increasing initial pH of the solution. The formation of a redox NiOOH/Ni(OH)2 layer on the anode surface, which was observed on the SEM image, can explain that nickel plays a mediator role on improving electrocatalytic oxidation of MTBE at 0.35 V in a strong basic condition. The by-products of MTBE degradation were identified as acetone and CO(2) by GC/MS, and the distributions of carbon atoms in acetone, CO2, and MTBE were found 22%, 51%, and 27% through the optimum control of electrochemical oxidation.  相似文献   

13.
The effect of relative humidity (RH) on aerosol formation by the semi-volatile oxidation products of the α-pinene/O3 system has been comprehensively studied. Experiments were performed in the presence of ammonium sulfate (aqueous, dry), ammonium bisulfate seed (aqueous, dry), and aqueous calcium chloride seed aerosols to ascertain their effect on the partitioning of the oxidation products. The yield of organic aerosol varies little with RH, and is not affected by the presence of dry inorganic salt aerosols. Aqueous salt aerosols reduce the yield of organic aerosol compared to that under seed-free or dry seed conditions. The degree of reduction is electrolyte dependent, with aqueous ammonium sulfate leading to the largest reduction and aqueous calcium chloride the smallest. Hygroscopic growth of the organic aerosol from <2% to 85% RH was also monitored, and could be satisfactorily represented as the sum of the individual contributions of the organic and inorganic fractions. The implications of the growth factor measurements for concentration/activity relationships of the condensed phase organic material (assuming a liquid solution) was explored. The formation of the organic aerosol was investigated using a simple two component model, and also one including the 12 product compounds identified in a previous study. The experimental results for <2% and 50% RH (without salt seed aerosols) could be satisfactorily predicted. However, the aqueous salt seed aerosols are predicted to increase the overall yield due to the dissolution of the organic compounds into the water associated with the seed aerosol—the opposite effect to that observed. The implications of two distinct phases existing the aerosol phase were investigated.  相似文献   

14.
Glucose oxidase is a well-known enzyme that catalyzes the oxidation of β-d-glucose to produce gluconic acid and hydrogen peroxide. Fenton reaction is a powerful oxidation technology used for the oxidation of groundwater pollutants. For the application of Fenton reaction in groundwater remediation, successful operation of Fenton reaction near neutral pH, and on-site generation of both H2O2 and chelate will be beneficial. The focus of this experimental study was to couple the glucose oxidation reaction with chelate-based Fenton reaction. The idea was to use the hydrogen peroxide and chelate gluconic acid generated during glucose oxidation for the dechlorination of 2,4,6-trichlorophenol (TCP) by Fenton reaction. The oxidation of glucose was achieved using the enzyme in free and immobilized forms. The rate of production of hydrogen peroxide was determined for each system, and was used to estimate the time required for complete consumption of glucose during the process, thus avoiding any traces of glucose in the Fenton reaction. In the case of free enzyme reaction, separation of the enzyme was achieved using an ultrafiltration membrane before initiating the Fenton reaction. The oxidation of TCP by Fenton reaction was performed at varying ratios of gluconic acid/Fe, and its effect on the decomposition of TCP and H2O2 was studied. TCP degradation was studied both in terms of parent compound degradation and free chloride generation.  相似文献   

15.
With the aim to evaluate the effect of temperature, 4-chloro-3-methyl phenol (CMP) degradation by Fenton's reagent was investigated at 25 and 70 degrees C under the following initial conditions: [CMP]0 = 10 mM, [Fe2+]0 = 0.5 mM; ([H2O2]0/[CMP]0) = 80, pH0 = 3. The results indicated that CMP degradation was strongly influenced by temperature. In fact, the maximum TOC removal, achieved after ca. 24h, was by far greater at 70 degrees C (85%) than at 25 degrees C (36%). The same happened for organic chlorine (TOX) conversion into inorganic chloride, i.e. 100%, after 3 h at 70 degrees C, and 87%, after 27 h at 25 degrees C. As the recorded trends of CMP removal and chloride formation were basically the same, hydroxy substitution (ipso-substitution) was hypothesised as one likely mechanism of CMP degradation. The higher level of mineralization recorded at 70 degrees C was ascribed to: (i) a greater *OH concentration; (ii) a consequently greater extent of CMP oxidation to organic acids; (iii) a higher decarboxylation rate of such acids. An interesting consequence of such extended organic acids decarboxylation was a pH increase up to 8 that, in turn, caused, in the treated mixture, the decomposition of excess H2O2 as well as the precipitation of iron ions. These two latter outcomes are technologically important considering that usually, before discharging Fenton treated wastewater, specific polishing steps are required just to remove iron ions, decompose excess hydrogen peroxide and neutralise the pH.  相似文献   

16.
Methyl tert-butyl ether (MTBE) is one of the main additives in gasoline. Its degradation is known to be difficult in natural environments. In this study, significant MTBE degradation is demonstrated at a contaminated site in Leuna (eastern Germany). Since the extent of the plume appeared to be constant over the last 5 years, an extended study was performed to elucidate the degradation processes. Special attention was paid to the production, accumulation and degradation of metabolites and by-products. Groundwater samples from 105 monitoring wells were used to measure 20 different substances. During the degradation process, several intermediates such as tert-butyl alcohol (TBA), tert-butyl formate, formate and lactate were produced. However, the potentially carcinogenic by-product methacrylate was not detected in several hundred samples. At the Leuna site, MTBE degradation occurred under microaerobic conditions. In contrast to hydrocarbons and BTEX, there was no evidence for anaerobic MTBE degradation. Among the degradation products, TBA was found to be a useful intermediate to identify MTBE degradation, at least under microaerobic conditions. TBA accumulation was strongly correlated to MTBE degradation according to the kinetic properties of both degradation processes. Since maximum degradation rates (v(max)) and k(m) values were higher for MTBE (v(max)=2.3 mg/l/d and k(m)=3.2 mg/l) than for TBA (v(max)=1.35 mg/l/d and k(m)=0.05 mg/l), TBA significantly accumulated as an intermediate by-product. The field results were supported by bench scale model aquifer experiments.  相似文献   

17.
In this study, advanced oxidation process utilizing Fenton's reaction was investigated for the decolorization and degradation of two commercial dyes viz., Red M5B, Blue MR and H-acid, a dye intermediate used in chemical industries for the synthesis of direct, reactive and azo dyes. Effect of Fe2 +, H2O2, pH, and contact time on the degradation of the dyes was studied. Maximum color and COD removal was obtained for Red MSB, H-acid and Blue MR at 10-25 mg/l of Fe2+ dose and 400-500 mg/l of H2O2 dose at pH 3.0. The initial oxidation reaction was found to fit into first order rate kinetics and the rate of oxidation of H-acid was higher than the other dyes. Release of chloride and sulfate from the Fenton's treated Red M5B dye and sulfate from H-acid and Blue MR indicates that the dye degradation proceeds through cleavage of the substituent group.  相似文献   

18.
Boron-doped diamond (BDD) and Ti/Pt/PbO2 anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid. The presence of carbonate in solution enhances the nitrogen removal, whereas it hinders the oxidation of the organic compounds. When organic nitrogen is present, it is converted to NH4 +, which in turn is oxidized to nitrate and to volatile nitrogen compounds. Hydroxyl radicals are more prone to oxidize the organic nitrogen than the ammonium nitrogen. The presence of chloride enhances the organic matter and nitrogen removal rates, BDD being the anode material that yields the highest removals.  相似文献   

19.
The anodic oxidation of tetracycline was performed in an up-flow reactor, operating in batch mode with recirculation, using as anode a boron-doped diamond electrode. The influence on the degradation rate of solution initial pH (2 to 12), applied current intensity (25 to 300 A m?2) and type of electrolyte (sodium sulphate or sodium chloride) were investigated. For the assays run at equal current density, with sodium sulphate as electrolyte, the solution’s initial pH of 2 presented the highest absorbance and chemical oxygen demand removals. Regarding the influence of current density, for equal charge passed, the organic load removal rate decreased with the increase in applied current. When sodium sulphate was used as an electrolyte, high-performance liquid chromatography (HPLC) results have shown an almost complete removal of tetracycline after a 2-h assay. HPLC results have also shown the presence of oxamic acid as one of the intermediates of tetracycline anodic oxidation. The complete removal of tetracycline was much faster in the presence of chloride ions that promoted the complete degradation of this antibiotic in 30 min. However, in the presence of chloride ions, the tetracycline mineralization is slower, as observed by the lower organic carbon removal rate when compared to that of the tetracycline degradation in the presence of sulphate.  相似文献   

20.
The objective of this work was to evaluate the efficiency of a solar TiO2-assisted photocatalytic process on amoxicillin (AMX) degradation, an antibiotic widely used in human and veterinary medicine. Firstly, solar photolysis of AMX was compared with solar photocatalysis in a compound parabolic collectors pilot scale photoreactor to assess the amount of accumulated UV energy in the system (Q UV) necessary to remove 20 mg L?1 AMX from aqueous solution and mineralize the intermediary by-products. Another experiment was also carried out to accurately follow the antibacterial activity against Escherichia coli DSM 1103 and Staphylococcus aureus DSM 1104 and mineralization of AMX by tracing the contents of dissolved organic carbon (DOC), low molecular weight carboxylate anions, and inorganic anions. Finally, the influence of individual inorganic ions on AMX photocatalytic degradation efficiency and the involvement of some reactive oxygen species were also assessed. Photolysis was shown to be completely ineffective, while only 3.1 kJUV?L?1 was sufficient to fully degrade 20 mg L?1 AMX and remove 61 % of initial DOC content in the presence of the photocatalyst and sunlight. In the experiment with an initial AMX concentration of 40 mg L?1, antibacterial activity of the solution was considerably reduced after elimination of AMX to levels below the respective detection limit. After 11.7 kJUV?L?1, DOC decreased by 71 %; 30 % of the AMX nitrogen was converted into ammonium and all sulfur compounds were converted into sulfate. A large percentage of the remaining DOC was in the form of low molecular weight carboxylic acids. Presence of phosphate ions promoted the removal of AMX from solution, while no sizeable effects on the kinetics were found for other inorganic ions. Although the AMX degradation was mainly attributed to hydroxyl radicals, singlet oxygen also plays an important role in AMX self-photosensitization under UV/visible solar light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号