首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of vegetation on the fate of pentachlorophenol (PCP) in soil using a novel high-flow sealed test system. Pentachlorophenol has been widely used as a wood preservative, and this highly toxic biocide contaminates soil and ground water at many sites. Although plants are known to accelerate the rates of degradation of certain soil contaminants, this approach has not been thoroughly investigated for PCP. The fate of [14C]PCP, added to soil at a concentration of 100 mg/kg, was compared in three unplanted and three planted systems. The plant used was Hycrest, a perennial, drought-tolerant cultivar of crested wheatgrass [Agropyron desertorum (Fischer ex Link) Schultes]. The flow-through test system allowed us to maintain a budget for 14C-label as well as monitor mineralization (breakdown to 14CO2) and volatilization of the test compound in a 155-d trial. In the unplanted systems, an average of 88% of the total radiolabel remained in the soil and leachate and only 6% was mineralized. In the planted system, 33% of the radiolabel remained in the soil plus leachate, 22% was mineralized, and 36% was associated with plant tissue (21% with the root fraction and 15% with shoots). Mineralization rates were 23.1 mg PCP mineralized kg-1 soil in 20 wk in the planted system, and for the unplanted system 6.6 mg PCP kg-1 soil for the same time period. Similar amounts of volatile organic material were generated in the two systems (1.5%). Results indicated that establishing crested wheatgrass on PCP-contaminated surface soils may accelerate the removal of the contaminant.  相似文献   

2.
Phytoremediation is an emerging technology for the detoxification and remediation of organic pollutants such as pentachlorophenol (PCP). To investigate the dissipation behavior of PCP in the aerobic-anaerobic interfaces established by the rhizosphere of rice ( L.) root, a glasshouse experiment was conducted using a specially designed rhizobox. The possible biogeochemical mechanisms were also studied through illustration of the dynamic behavior of important electron acceptors and donors that are potentially involved in the reductive dechlorination and aerobic catabolism processes of PCP. The soil was spiked with 20 ± 0.25 and 45 ± 0.25 mg of PCP kg soil. Soil in the rhizobox was divided into five different compartments at various distances from the root surface. Maximum dissipation of PCP in planted soil was observed at 3-mm distance from the root zone as well as rapid changes in concentrations of sulfate, chloride, nitrate, and ammonium at the same distance from the root. In contrast, in the unplanted soil, no difference was observed in the PCP concentration with increasing distance. After 45 d, a significantly higher concentration of PCP was degraded in planted soil compared with unplanted soil. In the unplanted microcosms, about 45% of the initial PCP was lost at both low and high added rates, respectively. This was, proportionately, a significantly smaller percentage compared with the planted rhizosphere (an average of 66 and 64.5%, respectively). Moreover, the correlations of PCP dissipation with SO, NO, and Fe were significantly negative, while the correlations of PCP dissipation with NH, Fe, and Cl were significantly positive. This suggested the oxidization of soil constituents can inhibit aerobic catabolism of PCP by consuming O, and the reduction of soil constituents can inhibit anaerobic reductive dechlorination of PCP. Therefore, the significance of the rhizosphere in phytoremediation of chlorinated compounds such as PCP differs significantly between wetland and rainfed systems.  相似文献   

3.
This study was conducted to improve the pentachlorophenol (PCP) bioremediation ability of white-rot fungi in highly contaminated field soils by manipulating bioaugmentation variables. These were the dry weight percentage of fungal inoculum addition (31-175 g kg(-1)), PCP concentration (100-2137 mg kg(-1) PCP), fungal inoculum formulation, and time (1-7 wk). Five fungal isolates were used: the New Zealand isolates Trametes versicolor (L.: Fr.) HR131 and Trametes sp. HR577; the North American isolates Phanerochaete chrysosporium Burds. (two isolates) and Phanerochaete sordida (Karst.) Erikss. & Ryv. Pentachlorophenol removal, manganese peroxidase, and laccase activity, and the formation of chloroanisoles in the contaminated field soils were measured. The majority of PCP removed by the Trametes isolates was in the first week after bioaugmentation. The maximum PCP removal by the fungi varied from 50 to 65% from a 1065 mg kg(-1) PCP contaminated field soil. Pentachlorophenol was preferentially converted to pentachloroanisole (PCA) by the Phanerochaete isolates (>60%), while 2 to 9% of the PCP removed by two Trametes isolates was converted to PCA. A pH increase was measured following bioaugmentation that was dependent on PCP concentration, fungal inoculum addition, and formulation. This, together with rapid initial PCP removal, possibly changed the bioavailability of the remaining PCP to the fungi and significantly decreased the sequestering of PCP in the contaminated field soils. The research supports the conclusion that New Zealand Trametes spp. can rapidly remove PCP in contaminated field soils. Bioavailability and extractability of PCP in the contaminated field soil may significantly increase after bioaugmentation.  相似文献   

4.
Contamination of soil by hazardous substances poses a significant threat to human, environmental, and ecological health. Cleanup of the contaminants using destructive, invasive technologies has proven to be expensive and more importantly, often damaging to the natural resource properties of the soil, sediment, or aquifer. Phytoremediation is defined as the cleanup of contaminated sites using plants. There has been evidence of enhanced polycyclic aromatic hydrocarbons (PAHs) degradation in rhizosphere soils for a limited number of plants. However, research focusing on the degradation of PAHs in the rhizosphere of trees is lacking. The objective of this study was to assess the potential use of trees to enhance degradation of PAHs located in manufactured gas plant-impacted soils. In greenhouse studies with intact soil cores, acenaphthene, anthracene, fluoranthene, naphthalene, and phenanthrene decreased significantly (p < 0.05) in green ash (Fraxinus pennsylvanica Marshall) and hybrid poplar (Populus deltoides x P. nigra DN 34) phytoremediation treatments when compared to the unplanted soil control. Increases in PAH microbial degraders in rhizosphere soil were observed when compared to unvegetated soil controls. In addition, the rate of degradation or biotransformation of PAHs was greatest for soils with black willow (Salix nigra Marshall), followed by poplar, ash, and the unvegetated controls. These results support the hypothesis that a variety of plants can enhance the degradation of target PAHs in soil.  相似文献   

5.
Infection by ectomycorrhizal (ECM) fungi may benefit hybrid poplar growing in contaminated soils by providing greater access to water and nutrients and possibly protecting the trees from direct contact with toxic contaminants. The objective of this research was to determine the effect of colonization of the ECM fungus Pisolithus tinctorius (Pers.) Coker & Couch on hybrid poplar fine root production, biomass and N and P uptake when grown in diesel-contaminated soil (5000 mg diesel fuel kg soil(-1)). Commercially available Mycogrow Tree Tabs were the source of inoculum. A minirhizotron camera was used to provide the data necessary for estimating fine root production. Colonization of hybrid poplar roots (P. deltoides x [P. laurifolia x P. nigra] cv. Walker) by P. tinctorius increased total fine root production in diesel-contaminated soil to 56.58 g m(-2) compared to 22.59 g m(-2) in the uncolonized, diesel-contaminated treatment. Hybrid poplar leaf N and P concentrations were significantly greater in the diesel-contaminated/ECM-colonized treatment compared to the diesel-contaminated/uncolonized treatment after 12 wk, while significantly less diesel fuel was recovered from the soil of the uncolonized treatment compared to the colonized treatment. Both planted treatments removed more contaminants from the soil than an unplanted control. Significantly greater concentrations of total petroleum hydrocarbons (TPH) were found sequestered in hybrid poplar root/fungal-sheath complexes from the colonized treatment compared to the roots of the uncolonized treatment. The results of this study indicate that over a 12-wk growth period, ECM colonization of hybrid poplar in diesel-contaminated soils increased fine root production and whole-plant biomass, but inhibited removal of TPH from the soil.  相似文献   

6.
Lumber used to construct raised garden beds is often treated with chromated copper arsenate (CCA). This project aimed to determine (i) how far As, Cu, and Cr had diffused away from CCA-treated wood surfaces in raised garden beds under realistic conditions, (ii) the uptake of these elements by crops, and (iii) the effect of CCA solution on soil bacteria. This study showed that As, Cu, and Cr diffuse into soil from CCA-treated wood used to construct raised garden beds. To determine crop uptake of these elements, contaminated soil 0 to 2 cm from the treated wood was obtained from two different beds (40-50 mg kg(-1) As); control soil was collected 1.5 m away from the treated wood (<3-10 mg kg(-1) As). Four replicates of carrot (Daucus carota var. sativus Hoffm. cv. Thumbelina), spinach (Spinacia oleracea L. cv. Indian Summer), bush bean (Phaseolus vulgaris L. cv. Provider), and buckwheat (Fagopyrum esculentum Moench cv. Common) were grown in pots containing these soils in a greenhouse. After harvest, plant materials were dried, ground, digested, and analyzed for As by inductively coupled plasma-hydride generation (ICP-HG). Concentrations of As in all crops grown in contaminated soils were higher than those from control soils. The levels of As in the crops remained well below the recommended limit for As set by the United States Public Health Service (2.6 mg kg(-1) fresh wt.). To determine if bacteria in soils 0 to 2 cm from the treated wood had higher resistance to Type C chromated copper arsenate (CCA-C) solution than those from reference soils, dilution plates were set up using quarter-strength tryptic soy agar (TSA) media and 0 to 22.94 g L(-1) (0-1.25% v/v) CCA-C working solution. The microorganisms from soils adjacent to treated wood had greater growth on the CCA-amended media than those from reference soils outside the bed.  相似文献   

7.
This study was conducted to improve the ability of indigenous New Zealand white-rot fungi to remove pentachlorophenol (PCP) from contaminated field soil. The effects of different bioaugmentation conditions on PCP removal and extracellular enzyme expression were measured in the laboratory. The conditions were fungal growth substrate and co-substrate composition, culture age, and Tween 80 addition to the contaminated soil. The fungi used were Trametes versicolor isolate HR131 and Trametes sp. isolate HR577. Maximum PCP removal was 70% after 7 wk from a 1043 mg kg(-1) PCP-contaminated soil inoculated with an 11-d-old fungal culture of T. versicolor isolate HR131. There was minimal production of undesirable pentachloroanisole by the fungi. Tween 80 addition had no affect on PCP removal. Poplar sawdust was more suitable as a fungal growth substrate and a co-substrate amendment for PCP removal and extracellular enzyme expression than the locally available pine and fir sawdust. Pentachlorophenol removal was not necessarily correlated with extracellular enzyme expression. The research results demonstrate that PCP biodegradation was affected by inoculum culture age, by the presence of a co-substrate amendment, and by growth substrate composition after white-rot fungal bioaugmentation into PCP-contaminated field soils.  相似文献   

8.
Trace element mobility in soils depends on contaminant concentration, chemical speciation, water movement, and soil matrix properties such as mineralogy, pH, and redox potential. Our objective was to characterize trace element dissolution in response to acidification of soil samples from two abandoned incinerators in the North Carolina Coastal Plain. Trace element concentrations in 11 soil samples from both sites ranged from 2 to 46 mg Cu kg(-1), 3 to 105 mg Pb kg(-1), 1 to 102 mg Zn kg(-1), 3 to 11 mg Cr kg(-1), < 0.1 to 10 mg As kg(-1), and < 0.01 to 0.9 mg Cd kg(-1). Acidified CaCl2 solutions were passed through soil columns to bring the effluent solution to approximately pH 4 during a 280-h flow period. Maximum concentrations of dissolved Cu, Pb, and Zn at the lowest pH of an experiment (pH 3.8-4.1) were 0.32 mg Cu L(-1), 0.11 mg Pb L(-1), and 1.3 mg Zn L(-1) for samples from the site with well-drained soils, and 0.25 mg Cu L(-1), 1.2 mg Pb L(-1), and 1.4 mg Zn L(-1) for samples from the site with more poorly drained soils. Dissolved Cu concentration at pH 4 increased linearly with increasing soil Cu concentration, but no such relationship was found for Zn. Dissolved concentrations of other trace elements were below our analytical detection limits. Synchrotron X-ray absorption near edge structure (XANES) spectroscopy showed that Cr and As were in their less mobile Cr(III) and As(V) oxidation states. XANES analysis of Cu and Zn on selected samples indicated an association of Cu(II) with soil organic matter and Zn(II) with Al- and Fe-oxides or franklinite.  相似文献   

9.
Phytoremediation offers an ecologically and economically attractive remediation technique for soils contaminated with polycyclic aromatic hydrocarbons (PAHs). In addition to the choice of plant species, agronomic practices may affect the efficiency of PAH phytoremediation. Inorganic nutrient amendments may stimulate plant and microbial growth, and clipping aboveground biomass might stimulate root turnover, which has been associated with increases in soil microbial populations. To assess the influence of fertilization and clipping on PAH dissipation in a nutrient-poor, aged PAH-contaminated soil, a 14-mo phytoremediation study was conducted using perennial ryegrass (Lolium perenne) as a model species. Six soil treatments were performed in replicate: unplanted; unplanted and fertilized; planted; planted and fertilized; planted and clipped; and planted, clipped, and fertilized. Plant growth, soil PAH concentrations, and the concentrations of total and PAH-degrading microorganisms were measured after 7 and 14 mo. Overall, planting (with nearly 80% reduction in total PAHs) and planting + clipping (76% reduction in total PAHs) were the most effective treatments for increased PAH dissipation after 14 mo. Fertilization greatly stimulated plant and total microbial growth, but negatively affected PAH dissipation (29% reduction in total PAHs). Furthermore, unplanted and fertilized soils revealed a similar negative impact (25% reduction) on PAH dissipation after 14 mo. Clipping did not directly affect PAH dissipation, but when combined with fertilization (61% reduction in total PAHs), appeared to mitigate the negative impact of fertilization on PAH dissipation. Therefore, fertilization and clipping may be included in phytoremediation design strategies, as their combined effect stimulates plant growth while not affecting PAH dissipation.  相似文献   

10.
Permeable grass-covered surfaces can reduce the quantity of storm water runoff and filter out potentially harmful chemicals. The objective of this study was to develop permeable structural soils that sustained healthy turf growth and filtered heavy metals from contaminated pavement runoff. The basic soil medium was a 50:50 mixture (v/v) of expanded shale (ExSh) and quartz sand (QS). The ExSh component consisted of (i) large-diameter particles (3-6 mm), (ii) small-diameter particles (1-3 mm), or (iii) a 50:50 mixture (v/v) of the two. The basic blends were mixed with 0, 10, and 20% sphagnum peat moss (v/v) and 0, 10, and 20% natural zeolites (v/v) and placed in 15-cm-diameter pots in a greenhouse. Bermudagrass plugs were planted in each pot. The addition of sphagnum peat moss to the basic ExSh/QS blend increased bermudagrass growth and improved plant response to added fertilizer. Zeolites had no significant effect on plant growth in the absence of sphagnum peat moss. Growing mediums that contained 10 to 20% sphagnum peat moss and 10 to 20% zeolites consistently produced more bermudagrass biomass than the unamended ExSh/QS mixture. Changing the ratio of small- to large-diameter ExSh in the basic medium did not affect bermudagrass yield. Very low amounts of Cd, Cu, Pb, and Zn were recovered in leachate after the addition of 10 mg metal per pot, suggesting that most heavy metals (>99%) were retained in the growing mediums. Zeolites reduced the amount of Cd and Pb in leachate water, but not Cu or Zn.  相似文献   

11.
Nine New Zealand native white-rot fungi were studied for their ability to grow and survive on different substrates formulated from bark, wheat straw, sawdust, apple pomace and maize products in order to identify their pentachlorophenol (PCP) biodegradation potential and to select a fungal carrier for bioaugmentation of polluted soils. Isolates were also evaluated to mineralize (14)C-PCP in liquid culture and in soil. The American fungus Phanerochaete chrysosporium outgrew the native fungi on the substrates tested, but the high colonisation did not result in superior PCP dechlorination as measured by chloride release. Whilst Trametes versicolor inocula produced on wheat straw and SCS (sawdust-corn meal-starch-mix) gave the highest chloride release, colonization of these two substrates as measured by biological potential was lower compared to the pomace and pomace-sawdust-mix. Neither lignin peroxidase nor manganese peroxidase production were measured for New Zealand white-rot fungi during the experiments. Laccase was the only enzyme detected. In liquid culture, the mineralisation rate was higher for T. versicolor isolates compared to P. chyrysoporium. Very little to no pentachloroanisole (PCA) was captured in the volatile fraction of T. versicolor isolates, whereas 75% of the volatile fraction of P. chrysosporium consisted of PCA. The soil microcosms studies, using contaminated soil from a timber treatment site, clearly showed that the New Zealand T. versicolor isolates mineralized PCP. Degradation of PCP in non-sterile soil was higher in the presence of white-rot fungi than in soil without white-rot fungus. This demonstrates that viable white-rot fungus is necessary for significant PCP degradation and that T. versicolor isolates showed PCP remediation potential. Wheat straw and SCS could be suitable carriers for New Zealand native T. versicolor isolates for bioremediation of PCP polluted soil sites.  相似文献   

12.
To thoroughly investigate the metal contamination around chromated copper arsenate (CCA)/polyethylene glycol (PEG)-treated utility poles, a total of 189 soil samples obtained from different depths and distances near six treated poles in the Montreal area (Canada) were analyzed for Cu, Cr, and As content. Various soil physicochemical properties were also determined. Ground water samples collected below the poles were analyzed for metals and bioassays with Daphnia magna were conducted. Generally, sandy soils had lower contaminant levels than clayey and organic soils. Copper concentrations in soil were highest followed by As and Cr. The highest Cu (1460 +/- 677 mg kg(-1)), As (410 +/- 150 mg kg(-1)), and Cr (287 +/- 32 mg kg(-1)) concentrations were found at the ground line and immediately adjacent to the pole. Contaminant levels then decreased with distance, approaching background levels within 0.1 m from the pole for Cr and 0.5 m for Cu and As. Chromium and Cu levels generally approached background levels at a depth of 0.5 m. Average As content near the pole on all study sites was three to eight times higher than Quebec's Level C criterion (50 mg kg(-1)), although it dropped to 31 mg kg(-1) at 0.1 m. Results also showed that As persisted up to 1 m in soil depth (17-54 mg kg(-1)). Copper and Cr concentrations in ground water samples were always <1.000 mg L(-1) and <0.05 mg L(-1), respectively and Cr(VI) was <0.02 mg L(-1). One sample contained an As concentration >0.025 mg L(-1) but bioassays showed that, overall, ground water had a low ecotoxic potential.  相似文献   

13.
Willow (Salix spp.) stands are often proposed as vegetation covers for the restoration and stabilization of contaminated and derelict land. Planting willows on dredged sediment disposal sites for biomass production can be an alternative to traditional capping techniques. However, with the introduction of willow stands on dredged sediment disposal sites, the possibility of increased contaminant availability in the root zone must be acknowledged as it can increase the risk of leaching. Two trials investigated the availability of Cd, Zn, Cu, and Pb in the root zones of willows grown on contaminated sediment. To assess the effects of willow root growth on metal extractability and mobility, bulk and rhizosphere sediment samples were extracted with deionized water, ammonium acetate at pH 7, and ammonium acetate-EDTA at pH 4.65. A rhizobox experiment was used to investigate the short-term effect of willow roots on metal availability in oxic and anoxic sediment. Longer-term effects were assessed in a field trial. The rhizobox trial showed that Cd, Zn, and Cu extractability in the rhizosphere increased while the opposite was observed for Pb. This was attributed to the increased willow-induced oxidation rate in the root zone as a result of aeration and evapotranspiration, which masked the direct chemical and biological influences of the willow roots. The field trial showed that Cu and Pb, but not Cd, were more available in the root zone after water and ammonium acetate (pH 7) extraction compared with the bulk sediment. Sediment in the root zone was better structured and aggregated and thus more permeable for downward water flows, causing leaching of a fraction of the metals and significantly lower total contents of Cd, Cu, and Pb. These findings indicate that a vegetation cover strategy to stabilize sediments can increase metal availability in the root zone and that potential metal losses to the environment should be considered.  相似文献   

14.
Biosolids produced by sewage treatment facilities can exceed guideline thresholds for contaminant elements. Phytoextraction is one technique with the potential to reduce these elements allowing reuse of the biosolids as a soil amendment. In this field trial, cuttings of seven species/cultivars of Salix(willows) were planted directly into soil and into biosolids to identify their suitability for decontaminating biosolids. Trees were irrigated and harvested each year for three consecutive years. Harvested biomass was weighed and analyzed for the contaminant elements: As, Cd, Cu, Cr, Hg, Pb, Ni, and Zn. All Salix cultivars, except S. chilensis, growing in soils produced 10 to 20 t ha(-1) of biomass, whereas most Salix cultivars growing in biosolids produced significantly less biomass (<6 t ha(-1)). Salix matsudana (30 t ha(-1)) and S. × reichardtii A. Kerner (18 t ha(-1)) had similar aboveground biomass production in both soil and biosolids. These were also the most successful cultivars in extracting metals from biosolids, driven by superior biomass increases and not high tissue concentrations. The willows were effectual in extracting the most soluble/exchangeable metals (Cd, 0.18; Ni, 0.40; and Zn, 11.66 kg ha(-1)), whereas Cr and Cu were extracted to a lesser degree (0.02 and 0.11 kg ha(-1)). Low bioavailable elements, As, Hg, and Pb, were not detectable in any of the aboveground biomass of the willows.  相似文献   

15.
Field studies were conducted on black willow (Salix nigra) cuttings planted for riparian zone restoration along Harland Creek, Twentymile Creek, and Little Topashaw Creek in Mississippi, USA. Planted cuttings were 2.5 to 3 m long and had base diameters of 2.5 to 7.5 cm. Streams were unstable, deeply incised sand bed channels with eroding banks 1 to 6 m high. Soil texture, redox potential (Eh), depth to water table, and willow survival were monitored for two to three years after planting. While many factors influence willow cuttings at restoration sites, soil texture and moisture are key to plant success. In these studies, plant survival and growth were best for cuttings planted in soils with less than 40 percent silt‐clay content and a water table 0.5 m to 1.0 m below the soil surface during the growing season. These conditions produced soil Eh greater than approximately 200 mV and were most often observed 1 to 2 m higher than the bank toe. These findings suggest criteria useful for preplanting site evaluations. Additional evidence suggests that preplanting soaking enhances performance of black willow cuttings. Additional factors (channel erosion, herbivory by beaver, and competition from exotics) may control performance over periods longer than two to three years.  相似文献   

16.
Transgenic Indian mustard [Brassica juncea (L.) Czern.] plants overproducing the enzymes gamma-glutamylcysteine synthetase (ECS) or glutathione synthetase (GS) were shown previously to have increased levels of the metal-binding thiol peptides phytochelatins and glutathione, and enhanced Cd tolerance and accumulation. Furthermore, transgenic Indian mustard plants overexpressing adenosine triphosphate sulfurylase (APS) were shown to have higher levels of glutathione and total thiols. These results were obtained with a solution culture. To better examine the phytoremediation potential of these transgenics, a greenhouse experiment was performed in which the transgenics were grown on metal-contaminated soil collected from a USEPA Superfund site near Leadville, Colorado. A grass mixture used for revegetation of the site was included for comparison. The ECS and GS transgenics accumulated significantly (P < 0.05) more metal in their shoot than wild-type (WT) Indian mustard, while the APS plants did not. Of the six metals tested, the ECS and GS transgenics accumulated 1.5-fold more Cd, and 1.5- to 2-fold more Zn, compared with wild-type Indian mustard. Furthermore, the ECS transgenics accumulated 2.4- to 3-fold more Cr, Cu, and Pb, relative to WT. The grass mixture accumulated significantly less metal than Indian mustard: approximately 2-fold less Cd, Cu, Mn, and Zn, and 5.7-fold less Pb than WT Indian mustard. All transgenics removed significantly more metal from the soil compared with WT Indian mustard or an unplanted control. While WT did not remove more metal than the unplanted control for any of the metals tested, all three types of transgenics significantly reduced the soil metal concentration, and removed between 6% (Zn) and 25% (Cd) of the soil metal. This study is the first to demonstrate enhanced phytoextraction potential of transgenic plants using polluted environmental soil. The results confirm the importance of metal-binding peptides for plant metal accumulation and show that results from hydroponic systems have value as an indicator for phytoremediation potential.  相似文献   

17.
为探讨蓖麻(Ricinus communist L.)对锰矿区土壤生态修复及能源化利用潜力,将不同品种蓖麻湘蓖1号和淄蓖7号播种在锰尾矿库土壤上,进入生殖生长阶段时采收全株,测定栽植土壤及植株根、茎、叶中5种重金属元素含量。结果显示:土壤中Mn平均含量最高达7884.96 mg&#183;kg-1,超过国家规定的土壤环境质量域级标准6.5倍;湘蓖1号不同器官的Mn浓度从高至低为根&gt;叶&gt;茎,淄蓖7号不同器官Mn含量叶&gt;茎&gt;根,其叶中Mn平均浓度最高为765.43 mg&#183;kg-1,较湘蓖1号叶中的平均含量高出79.53%, Pb、Cu、Cr含量及叶/根比值均大于湘蓖1号;植株体内重金属含量与土壤中重金属浓度的相关分析表明,重金属的积累量和转移量,受到土壤中几种重金属元素的共同影响。结果说明:2个品种的蓖麻均可以作为锰矿区能源化修复利用,对重金属的吸收和转运在品种间存在差异,淄蓖7号地上部分对重金属的迁移能力强于湘蓖1号。  相似文献   

18.
环境中五氯酚监测研究进展   总被引:4,自引:0,他引:4  
冯亚平 《四川环境》1992,11(1):23-26
本文概述了五氯酚(PCP)的环境污染、人群暴露水平及目前有关监测方法研究进展。环境污染主要来源于本品的生产及工农业中的应用。在我国主要广泛用于杀灭血吸虫的中间宿主——钉螺。人体通过污染的空气、水体及食品可摄入PCP造成生物蓄积,危害健康。监测方法有化学法、紫外分光光度法、色谱法、极谱法、电化学检测法等,其中,色谱法简单、灵敏,易于普及使用。  相似文献   

19.
There are numerous Cr(III)-contaminated sites on Department of Defense (DoD) and Department of Energy (DOE) lands that are awaiting possible clean up and closure. Ingestion of contaminated soil by children is the risk driver that generally motivates the likelihood of site remediation. The purpose of this study was to develop a simple statistical model based on common soil properties to estimate the hioaccessibility of Cr(III)-contaminated soil upon ingestion. Thirty-five uncontaminated soils from seven major soil orders, whose properties were similar to numerous U.S. DoD contaminated sites, were treated with Cr(III) and aged. Statistical analysis revealed that Cr(III) sorption (e.g., adsorption and surface precipitation) by the soils was strongly correlated with the clay content, total inorganic C, pH, and the cation exchange capacity of the soils. Soils with higher quantities of clay, inorganic C (i.e., carbonates), higher pH, and higher cation exchange capacity generally sequestered more Cr(III). The amount of Cr(III) bioaccessible from the treated soils was determined with a physiologically based extraction test (PBET) that was designed to simulate the digestive process of the stomach. The bioaccessibility of Cr(III) varied widely as a function of soil type with most soils limiting bioaccessibility to <45 and <30% after I and 100 d soil-Cr aging, respectively. Statistical analysis showed the bioaccessibility of Cr(III) on soil was again related to the clay and total inorganic carbon (TIC) content of the soil. Bioaccessibility decreased as the soil TIC content increased and as the clay content decreased. The model yielded an equation based on common soil properties that could be used to predict the Cr(III) bioaccessibility in soils with a reasonable level of confidence.  相似文献   

20.
Chromium has become an important soil contaminant at many sites, and facilitating in situ reduction of toxic Cr(VI) to nontoxic Cr(III) is becoming an attractive remediation strategy. Acceleration of Cr(VI) reduction in soils by addition of organic carbon was tested in columns pretreated with solutions containing 1000 and 10 000 mg L(-1) Cr(VI) to evaluate potential in situ remediation of highly contaminated soils. Solutions containing 0,800, or 4000 mg L(-1) organic carbon in the form of tryptic soy broth or lactate were diffused into the Cr(VI)-contaminated soils. Changes in Cr oxidation state were monitored through periodic micro-XANES analyses of soil columns. Effective first-order reduction rate constants ranged from 1.4 x 10(-8) to 1.5 x 10(-7) s(-1), with higher values obtained for lower levels of initial Cr(VI) and higher levels of organic carbon. Comparisons with sterile soils showed that microbially dependent processes were largely responsible for Cr(VI) reduction, except in the soils initially exposed to 10 000 mg L(-1) Cr(VI) solutions that receive little (800 mg L(-1)) or no organic carbon. However, the microbial populations (< or = 2.1 x 10(5) g(-1)) in the viable soils are probably too low for direct enzymatic Cr(VI) reduction to be important. Thus, synergistic effects sustained in whole soil systems may have accounted for most of the observed reduction. These results show that acceleration of in situ Cr(VI) reduction with addition of organic carbon is possible in even heavily contaminated soils and suggest that microbially dependent reduction pathways can be dominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号