首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Forage-based livestock systems have been implicated as major contributors to deteriorating water quality, particularly for phosphorus (P) from commercial fertilizers and manures affecting surface and ground water quality. Little information exists regarding possible magnitudes of nutrient losses from pastures that are managed for both grazing and hay production and how these might impact adjacent bodies of water. We examined the changes that have occurred in soil fertility levels of rhizoma peanut (Arachis glabrata Benth.)-based beef cattle pastures (n = 4) in Florida from 1988 to 2002. These pastures were managed for grazing in spring followed by haying in late summer and were fertilized annually with P (39 kg P2O5 ha(-1)) and K (68 kg K2O ha(-1)). Additionally, we investigated trends in water quality parameters and trophic state index (TSI) of lakes (n = 3) associated with beef cattle operations from 1993 to 2002. Overall, there was no spatial or temporal buildup of soil P and other crop nutrients despite the annual application of fertilizers and daily in-field loading of animal waste. In fact, soil fertility levels showed a declining trend for crop nutrient levels, especially soil P (y = 146.57 - 8.14 x year; r2= 0.75), even though the fields had a history of P fertilization and the cattle were rotated into the legume fields. Our results indicate that when nutrients are not applied in excess, cow-calf systems are slight exporters of P, K, Ca, and Mg through removal of cut hay. Water quality in lakes associated with cattle production was "good" (30-46 TSI) based on the Florida Water Quality Standard. These findings indicate that properly managed livestock operations may not be major contributors to excess loads of nutrients (especially P) in surface water.  相似文献   

2.
ABSTRACT In many impoundment dynamic water quality models, the growth of two or more ecologic groups of phytoplankton may be simulated. These ecologic groups are differentiated by growth rates, temperature tolerances, settling rates, and the Michaelis-Menten half saturation constants for necessary nutrients. In this investigation, the effect of variations in the Michaelis-Menten half saturation constant for the limiting nutrient when two competing ecologic groups of algae are simulated is examined. In an idealized case, it is demonstrated that uncertainty in the half saturation constant for the limiting nutrient for one ecologic group of algae can significantly affect the simulation results and in some cases could lead to a poorly designed impoundment restoration program.  相似文献   

3.
Few studies have assessed the transport of dissolved nutrients at the field scale under natural rainfall conditions. Hysteresis between dissolved nutrients and discharge behavior can complicate such assessments and this effect has only been examined qualitatively. In this study, we investigated factors contributing to short-term variations of dissolved cation (Ca, Mg, Na, and K) and anion (soluble reactive phosphorus [SRP], NO3, and SO4) concentrations in runoff water and developed a quantitative method to study their hysteretic behavior. Within-storm variations of dissolved nutrient concentrations were determined in two agricultural fields during four natural rainfall events along with discharge, sediment, antecedent soil water conditions, and nutrient contents. For each event, nutrient loads were plotted against discharge during the rising and falling limb of the runoff hydrograph. The resulting hysteresis curves were characterized by an index H, which is the ratio between the integrated areas under the rising and falling curves of the hydrograph. Results showed that nutrient concentrations increased with time during each event. Counterclockwise (H < 1) hysteresis, occurring when the falling limb had larger loads, was found when soils were initially dry whereas clockwise hysteresis (H > 1) was associated with prior wet soil conditions. Two hypotheses are suggested to explain these variations. First, suspended sediments could have acted as a sink for dissolved nutrients and the sensitivity of nutrients to hydrological conditions was determined by their preferential sorption on these sediments. Second, movement of nutrients into runoff occurred more readily as soils became wetter during an event.  相似文献   

4.
A better understanding of the controls on algae and dissolved O2 in agricultural streams of Illinois is needed to aid in development of nutrient standards. We investigated the relationships between dissolved nutrients, algal abundance, and dissolved O2 in five streams in east-central Illinois from March through November 2004. The streams drained watersheds from 25 to 777 km2 that were dominated by row crop agriculture. Three sites had open canopies and two were bordered by a narrow forest of deciduous trees. Algal abundance was measured as chlorophyll-a (chl-a) concentration in the water column (sestonic) and on the streambed (periphytic). Mean NO3-N concentrations ranged from 5.5 to 8.8 mg N L(-1) and did not relate to algal abundance. Sestonic chl-a values ranged from nearly zero to >15 mg m(-3) with no differences between open and shaded streams and only a weak correlation with dissolved reactive P (mean concentrations were 44-479 microg L(-1)). The results suggest that sestonic chl-a is a poor criterion for assessing nutrient-related problems in these streams. Greatest periphytic chl-a occurred during low flow from August through October, but periphyton occurred consistently in only two of the five streams. The abundance of filamentous algae explained 64% of the variation in diel O2 saturation, but was not correlated with nutrients. Currently it appears that hydrology and light, rather than nutrients, control algal abundance in these streams, and in the agricultural landscape of east-central Illinois, it may not be possible to reduce nutrient concentrations sufficiently to limit filamentous algal blooms.  相似文献   

5.
ABSTRACT: A loading function methodology is presented for predicting runoff, sediment, and nutrient losses from complex watersheds. Separate models are defined for cropland, forest, urban and barnyard sources, and procedures for estimating baseflow nutrients are provided. The loading functions are designed for use as a preliminary screening tool to isolate the major contributors in a watershed. Input data sources are readily available and the functions do not require costly calibrations. Data requirements include watershed land use and soil information, daily precipitation and temperature records and rainfall erosivities. Comparison of predicted and measured water, sediment, and nutrient runoff fluxes for the West Branch Deleware River in New York, indicated that runoff was underpredicted by about 14 percent while dissolved nutrients were within 30 percent of observed values. Sediment and solid-phase nutrients were overpredicted by about 50 percent. An annual nutrient budget for the West Branch Delaware River showed that cornland was the major source of sediment, solid phase nutrients, and total phosphorus. Waste water treatment plants and ground water discharge contributed the most dissolved phosphorus and dissolved nitrogen, respectively.  相似文献   

6.
Nitrogen and phosphorus criteria were developed for 233 km of the Yellowstone River, one of the first cases where a mechanistic model has been used to derive large river numeric nutrient criteria. A water quality model and a companion model which simulates lateral algal biomass across transects were used to simulate effects of increasing nutrients on five variables (dissolved oxygen, total organic carbon, total dissolved gas, pH, and benthic algal biomass in depths ≤1 m). Incremental increases in nutrients were evaluated relative to their impact on predefined thresholds for each variable; the first variable to exceed a threshold set the nutrient criteria. Simulations were made at a low flow, the 14Q5 (lowest average 14 consecutive day flow, July‐September, recurring one in five years), which was derived using benthic algae growth curves and EPA guidance on excursion frequency. An extant climate dataset with an annual recurrence was used, and tributary water quality and flows were coincident with the river's 10 lowest flow years. The river had different sensitivities to nutrients longitudinally, pH being the most sensitive variable in the upstream reach and algal biomass in the lower. Model‐based criteria for the Yellowstone River are as follows: between the Bighorn and Powder river confluences, 55 μg TP/l and 655 μg TN/l; from the Powder River confluence to Montana state line, 95 μg TP/l and 815 μg TN/l. Pros and cons of using steady‐state models to derive river nutrient criteria are discussed.  相似文献   

7.
Abstract: Nutrient dose‐response bioassays were conducted using water from three sites along the North Bosque River. These bioassays provided support data for refinement of the Soil and Water Assessment Tool (SWAT) model used in the development of two phosphorus TMDLs for the North Bosque River. Test organisms were native phytoplanktonic algae and stock cultured Pseudokirchneriella subcapitata (Korshikov) Hindak. Growth was measured daily by in vivo fluorescence. Algal growth parameters for maximum growth (μmax) and half‐saturation constants for nitrogen (KN) or phosphorus (KP) were determined by fitting maximum growth rates associated with each dose level to a Monod growth rate function. Growth parameters of native algae were compared between locations and to growth parameters of P. subcapitata and literature values. No significant differences in half‐saturation constants were indicated within nutrient treatment for site or algal type. Geometric mean KN was 32 μg/l and for KP 7 μg/l. A significant difference was detected in maximum growth rates between algae types but not between sites or nutrient treatments. Mean μmax was 1.5/day for native algae and 1.2/day for stock algae. These results indicate that watershed‐specific maximum growth rates may need to be considered when modeling algal growth dynamics with regard to nutrients.  相似文献   

8.
ABSTRACT: Some physical and chemical characteristics of Lake Perris, a new southern California reservoir, were investigated with regard to their influence on phytoplankton biomass and community structure. The concentration of three major nutrients – nitrogen, phosphorus, and iron – was approximately equivalent to the demand ratio of fresh water plants. Large increases in iron and phosphorus concentrations in late summer due to releases from sediments, however, tended to shift the balance toward a nitrogen-limited situation. Nitrogen limitation favored nitrogen-fixing blue-green algae, and after a decline of competing algae during the summer, the blue-green population bloomed in September. Series of measurements taken over one-day periods during summer stratification showed that some iron, phosphorus, and manganese from the hypolimnion could move upward, corresponding to diel shifts in the thermocline depth. Vertical transport of nutrients could thus occur long before complete lake mixing and could support summer/fall algal blooms.  相似文献   

9.
ABSTRACT: Tidally influenced reaches of several coastal rivers in eastern North Carolina are suffering from very serious water quality problems — massive surface blooms of noxious blue-green algae, major fish kills from anoxic water, epidemics of red sore disease among fish, fresh water intrusion into estuarine waters, and declining commercial and sports fisheries. An intensive investigation of point source and nonpoint source inputs of nutrients was conducted in one of the eutrophic rivers, the Chowan River. Nonpoint source loading dominated the estimated annual flu of nutrients from the river basin. Automated water quality samplers were utilized to record nutrient levels in stormflow and baseflow from several small agricultural watershed in the basin. Levels of nitrate nitrogen and total phosphorus were from five to 40 times greater in these agricultural watersheds than levels in mostly forested watersheds. Existing water quality data in these eutrophic river basins implicate agricultural activities – particularly animal operations and cropland in watersheds with extensive drainage improvements – as the major contributing factor to the water quality problems.  相似文献   

10.
Nitrogen (N) and phosphorus (P) are significant pollutants that can stimulate nuisance blooms of algae. Water quality models (e.g., Water Quality Simulation Program, CE‐QUAL‐R1, CE‐QUAL‐ICM, QUAL2k) are valuable and widely used management tools for algal accrual due to excess nutrients in the presence of other limiting factors. These models utilize the Monod and Droop equations to associate algal growth rate with dissolved nutrient concentration and intracellular nutrient content. Having accurate parameter values is essential to model performance; however, published values for model parameterization are limited, particularly for benthic (periphyton) algae. We conducted a 10‐day mesocosm experiment and measured diatom‐dominated periphyton biomass accrual through time as chlorophyll a (chl a) and ash‐free dry mass (AFDM) in response to additions of N (range 5–11,995 µg nitrate as nitrogen [NO3‐N]/L) and P (range 0.89–59.51 µg soluble reactive phosphorus/L). Resulting half‐saturation coefficients and growth rates are similar to other published values, but minimum nutrient quotas are higher than those previously reported. Saturation concentration for N ranged from 150 to 2,450 µg NO3‐N/L based on chl a and from 8.5 to 60 µg NO3‐N/L when based on AFDM. Similarly, the saturation concentration for P ranged from 12 to 29 µg‐P/L based on chl a, and from 2.5 to 6.1 µg‐P/L based on AFDM. These saturation concentrations provide an upper limit for streams where diatom growth can be expected to respond to nutrient levels and a benchmark for reducing nutrient concentrations to a point where benthic algal growth will be limited.  相似文献   

11.
There is a proactive interest in recovering water, nutrients and energy from waste streams with the increase in municipal wastewater volumes and innovations in resource recovery. Based on the synthesis of wastewater data, this study provides insights into the global and regional “potential” of wastewater as water, nutrient and energy sources while acknowledging the limitations of current resource recovery opportunities and promoting efforts to fast-track high-efficiency returns. The study estimates suggest that, currently, 380 billion m3 (m3 = 1,000 L) of wastewater are produced annually across the world which is a volume five-fold the volume of water passing through Niagara Falls annually. Wastewater production globally is expected to increase by 24% by 2030 and 51% by 2050 over the current level. Among major nutrients, 16.6 Tg (Tg = million metric ton) of nitrogen are embedded in wastewater produced worldwide annually; phosphorus stands at 3.0 Tg and potassium at 6.3 Tg. The full nutrient recovery from wastewater would offset 13.4% of the global demand for these nutrients in agriculture. Beyond nutrient recovery and economic gains, there are critical environmental benefits, such as minimizing eutrophication. At the energy front, the energy embedded in wastewater would be enough to provide electricity to 158 million households. These estimates and projections are based on the maximum theoretical amounts of water, nutrients and energy that exist in the reported municipal wastewater produced worldwide annually. Supporting resource recovery from wastewater will need a step-wise approach to address a range of constraints to deliver a high rate of return in direct support of Sustainable Development Goals (SDG) 6, 7 and 12, but also other Goals, including adaptation to climate change and efforts in advancing “net-zero” energy processes towards a green economy.  相似文献   

12.
ABSTRACT: Lake Okeechobee, the third largest lake in the United States, is a shallow, mixing basin with annual total phosphorus concentrations ranging from 50–100 μg P/L. Data, mainly from unpublished agency reports, are analyzed to determine if nutrients limit phytoplankton, to describe spatial and temporal variability in trophic state parameters, and to evaluate conclusions obtained from empirical trophic state models. Algal bioassay experiments that have been used to assess nutrient limitation have produced equivocal results. However, seasonal minima in orthophosphorus and inorganic nitrogen indicate that both nutrients may be limiting seasonally. Strong, but reverse north-south gradients and large seasonal changes in phosphorus and nitrogen concentrations, show that empirical models based on annual phosphorus loadings or concentrations are not adequate to predict chlorophyll concentrations or other trophic state variables. Spatially-segmented, multi-class phytoplankton-nutrient models of seasonal phytoplankton responses that are coupled with hydrodynamic models may provide predictability in assessing effects of changing nutrient loads on phytoplankton composition and standing crop. Successful modeling efforts of responses to nutrients also must deal with resuspended and benthic algae, periphyton, and emergent and submergent aquatic plants that must play important trophic roles in some of the lake basin.  相似文献   

13.
ABSTRACT: Water quality data collected between 1978 and 1981 in a highly lake in Northern Venezuela, Lake Valencia, were analyzed to detect spatial and temporal trends. Based on the results of the analyses, an appropriate nutrient-algae dynamics model was formulated. Because many parameters, such as the algae concentration were constant over time, and the model is time dependent, the model had to be calibrated with the use of a large and structured trial-and-error calibration process. Through the calibration process, the most sensitive parameters of the model were identified, and are in order of importance: the chlorophyll-to-nitrogen ratio for algae, the algae settling velocity, the phosphorus release rate from the sediments, the chlorophyll-to-phosphorus ratio for algae, and the exchange coefficient in the upper layer of the lake. Model simulations showed that a reduction in the nitrogen load to the lake as well as a reduction in the phosphorus load will decrease the algae population. These model simulations had a high degree of uncertainty associated with them, making additional sampling directed towards the measurement of the sensitive parameters desirable.  相似文献   

14.
Threshold concentrations for biological impairment by nutrients are difficult to quantify in lotic systems, yet States and Tribes in the United States are charged with developing water quality criteria to protect these ecosystems from excessive enrichment. The analysis described in this article explores the use of the ecosystem model AQUATOX to investigate impairment thresholds keyed to biological indexes that can be simulated. The indexes selected for this exercise include percentage cyanobacterial biomass of sestonic algae, and benthic chlorophyll a. The calibrated model was used to analyze responses of these indexes to concurrent reductions in phosphorus, nitrogen, and suspended sediment in an enriched upper Midwestern river. Results suggest that the indexes would respond strongly to changes in phosphorus and suspended sediment, and less strongly to changes in nitrogen concentration. Using simulated concurrent reductions in all three water quality constituents, a total phosphorus concentration of 0.1 mg/l was identified as a threshold concentration, and therefore a hypothetical water quality criterion, for prevention of both excessive periphyton growth and sestonic cyanobacterial blooms. This kind of analysis is suggested as a way to evaluate multiple contrasting impacts of hypothetical nutrient and sediment reductions and to define nutrient criteria or target concentrations that balance multiple management objectives concurrently. Any opinions, findings, conclusions, or recommendations expressed in this article are those of the authors alone, and do not necessarily reflect the views of the U.S. Environmental Protection Agency or of the U.S. Government.  相似文献   

15.
As a part of the USEPA's concentrated animal feeding operation (CAFO) final rule, all CAFOs are required to develop and implement a nutrient management plan (NMP). The USEPA's emphasis on better management of nutrients appropriately targets a critical environmental issue associated with animal production. The concentration of animals in livestock feeding operations, often separate from feed grain production, requires importing of substantial quantities of feed nutrients. Due to the inefficiencies of nutrient utilization in livestock production, quantities of nitrogen (N) and phosphorus (P) in manure greater than can be utilized in local crop production often result. With the focus of the USEPA's NMP rules on internal farm manure management planning, nutrient concentrations resulting from animal concentration may not be adequately addressed by compliance with the USEPA rules alone. A review of two mandatory and two voluntary nutrient management strategies is made by comparing whole-farm nutrient balance for a case-study beef cattle feedlot. The results suggest that voluntary BMPs, such as modification to animal feeding program and exporting of manure, can have greater environmental benefits (30-60% reduction in P accumulation for case-study farm) than mandatory NMPs and buffers (5-7% reduction in P accumulation for case-study farm) for a typical beef cattle feedlot. Whole-farm nutrient balance procedures can also be valuable for reviewing the nutrient performance of livestock systems.  相似文献   

16.
Pyrolysis of crop biomass generates a by-product, biochar, which can be recycled to sustain nutrient and organic C concentrations in biomass production fields. We evaluated effects of biochar rate and application method on soil properties, nutrient balance, biomass production, and water quality. Three replications of eight sorghum [ (L.) Moench] treatments were installed in box lysimeters under greenhouse conditions. Treatments comprised increasing rates (0, 1.5, and 3.0 Mg ha) of topdressed or incorporated biochar supplemented with N fertilizer or N, P, and K fertilizer. Simulated rain was applied at 21 and 34 d after planting, and mass runoff loss of N, P, and K was measured. A mass balance of total N, P, and K was performed after 45 d. Returning 3.0 Mg ha of biochar did not affect sorghum biomass, soil total, or Mehlich-3-extractable nutrients compared to control soil. Yet, biochar contributed to increased concentration of dissolved reactive phosphorus (DRP) and mass loss of total phosphorus (TP) in simulated runoff, especially if topdressed. It was estimated that up to 20% of TP in topdressed biochar was lost in surface runoff after two rain events. Poor recovery of nutrients during pyrolysis and excessive runoff loss of nutrients for topdressed biochar, especially K, resulted in negative nutrient balances. Efforts to conserve nutrients during pyrolysis and incorporation of biochar at rates derived from annual biomass yields will be necessary for biochar use in sustainable energy crop production.  相似文献   

17.
ABSTRACT: Confined production of poultry results in significant volumes of waste material which are typically disposed of by land application. Concerns over the potential environmental impacts of poultry waste disposal have resulted in ongoing efforts to develop management practices which maintain high quality of water downstream of disposal areas. The timing of application to minimize waste constituent losses is a management practice with the potential to ensure high quality of streams, rivers, and lakes downstream of receiving areas. This paper describes the development and application of a method to identify which time of year is best, from the standpoint of surface water quality, for land application of poultry waste. The procedure consists of using a mathematical simulation model to estimate average nitrogen and phosphorus losses resulting from different application timings, and then identifying the timings which minimize losses of these nutrients. The procedure was applied to three locations in Arkansas, and three different criteria for optimality of application timing were investigated. One criterion was oriented strictly to water quality, one was oriented only to crop production, and the last was a combination. The criteria resulted in different windows of time being identified as optimal. Optimal windows also varied with location of the receiving area. The results indicate that it is possible to land-apply poultry waste at times which both minimize nutrient losses and maximize crop yield.  相似文献   

18.
The effects of pollutants on primary producers ramify through ecosystems because primary producers provide food and structure for higher trophic levels and they mediate the biogeochemical cycling of nutrients and contaminants. Periphyton (attached algae) were studied as part of a long-term biological monitoring program designed to guide remediation efforts by the Department of Energy’s Y-12 National Security Complex on East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee. High concentrations of nutrients entering EFPC were responsible for elevated periphyton production and placed the stream in a state of eutrophy. High rates of primary production at upstream locations in EFPC were associated with alterations in both invertebrate and fish communities. Grazers represented >50% of the biomass of invertebrates and fish near the Y-12 Complex but <10% at downstream and reference sites. An index of epilithic periphyton production accounted for 95% of the site-to-site variation in biomass of grazing fish. Analyses of heavy metals in EFPC periphyton showed that concentrations of zinc, cadmium, copper and nickel in periphyton decreased exponentially with distance downstream from Y-12. Zinc uptake by periphyton was estimated to reduce the concentration of this metal in stream water ~60% over a 5-km reach of EFPC. Management options for mitigating eutrophy in EFPC include additional reductions in nutrient inputs and/or allowing streamside trees to grow and shade the stream. However, reducing periphyton growth may lead to greater downstream transport of contaminants while simultaneously causing higher concentrations of mercury and PCBs in fish at upstream sites.  相似文献   

19.
Managing manure in reduced tillage and forage systems presents challenges, as incorporation by tillage is not compatible. Surface-applied manure that is not quickly incorporated into soil provides inefficient delivery of manure nutrients to crops due to environmental losses through ammonia (NH3) volatilization and nutrient losses in runoff, and serves as a major source of nuisance odors. An array of technologies now exist to facilitate the incorporation of liquid manures into soil with restricted or minor soil disturbance, some of which are new: shallow disk injection; chisel injection; aeration infiltration; pressure injection. Surface banding of manure inforages decreases NH3 emissions relative to surface broadcasting, as the canopy can decrease wind speed over the manure, but greater reductions can be achieved with manure injection. Soilaeration is intended to hasten manure infiltration, but its benefits are not consistent and may be related to factors such as soildrainage characteristics. Work remains to be done on refining its method of use and timing relative to manure application, which may improve its effectiveness. Placing manure under the soil surface efficiency by injection offers much promise to improve N use efficiency through less NH3 volatilization, reduced odors and decreased nutrient losses in runoff, relative to surface application. We identified significant gaps in our knowledge as manyof these technologies are relatively new, and this should help target future research efforts including environmental, agronomic, and economic assessments.  相似文献   

20.
Cropping is one of the many industries contributing to the excessive loading of nitrogen (N) and phosphorus (P) to rivers and lakes in Australia. Nitrogen and P exports from cropping systems have not been systematically investigated to the same extent as those from other agricultural sectors, such as dairy pastures. Therefore, this review relies heavily on information derived from agronomy and other fundamental studies on soil-nutrient interactions to determine the potential for nutrient export from high rainfall zone (HRZ) cropping. There is a great deal of variation in environmental and management strategies across cropping in the HRZ, which suggests that nutrient exports could occur under a range of scenarios. The potential for exports is therefore discussed within a conceptual framework of nutrient sources, mechanisms for mobilization, and transport pathways in HRZ cropping. Transport refers to nutrient movement by flowing water after it has been mobilized, and export refers to the transfer of nutrients from one landscape compartment (e.g., a soil) to another (e.g., a stream or lake). The transport of nutrients from HRZ cropping can occur through surface and/or subsurface pathways depending on factors such as landform and infiltration and nutrient sorption characteristics of the soil profile. Surface pathways are likely to be more significant for phosphorus. For N, subsurface movement is likely to be as significant as surface movement because nitrates are generally not bound by most soils. Information about mechanisms of nutrient mobilization is essential for developing management strategies to control nutrient exports from HRZ cropping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号