首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The dissipation of (O-methyl-14C) monocrotophos and U-ring labelled 14C-carbaryl was monitored for over two years in absence and presence of other insecticides using in situ soil columns. The dissipation of 14C-monocrotophos from soil treated with methomyl and carbaryl showed a faster rate of downward movement than in a control column tagged with the labelled insecticide alone. The same trend was observed in experiments with 14C-carbaryl that dissipated more readily in soil treated with non-labelled monocrotophos and methomyl. In the presence of other insecticides the percentage of bound residues was generally lower than in control experiments. The bound residues at the top of the column are released at a low rate under conditions prevailing in the field. The overall time required for dissipation of 50% of monocrotophos and carbaryl (t50) as estimated from control experiment was approximately 20 and 24 weeks, respectively. The data indicate that repeated applications of pesticides might enhance the release of 14C-bound residues.  相似文献   

2.
Menon P  Gopal M 《Chemosphere》2003,53(8):1023-1031
The dissipation of 14C carbaryl in undisturbed soil cores, and of quinalphos (25EC and 20AF) after seed and soil treatments, was investigated under field use conditions, in a semi-arid groundnut field. Residues were analyzed by TLC and HPLC and additionally by LSC for 14C carbaryl. The harvested seed kernels were also tested for the presence of insecticide residues. The movement of carbaryl was limited to 15 cm depth in the loamy sand of Jaipur and was detected till 120 days (DT50 of 14.93 days) after application. Bound residues and 1-naphthol had a DT50 of 11.45 and 13.68 days, respectively. Irrespective of the three types of soil samples investigated, the principal metabolite formed on seed and soil treatments with quinalphos, was 2-hydroxyquinoxaline. With seed treatment, a thiol metabolite of quinalphos was also detected. Higher yields of groundnut were realized with quinalphos treatments in comparison to those from control. Post-harvest, no pesticide residues were found in seeds.  相似文献   

3.
Dissipation and leaching behavior of 14C-monocrotophos was studied for 365 days under field conditions using PVC cylinders. The first set (24 cylinders) was spiked with 1.0 microCi 14C-labeled monocrotophos along with 1.06 mg unlabeled monocrotophos to give a concentration of 2 mg kg -1 in the soil up to 15 cm depth. The second set (24 cylinders) received 14C-labeled monocrotophos along with other non-labeled insecticides viz., dimethoate @ 300 g a.i ha-1, deltamethrin @ 12.5 g a.i ha-1, endosulfan @ 750 g a.i ha-1, cypermethrin @ 60 g a.i ha-1, and triazophos @ 600 g a.i ha-1 at an interval of 15 days each as recommended for the cotton crop. 14C-monocrotophos dissipated faster, up to 45% in first 90 days in columns treated with only monocrotophos compared to 25% in columns that received monocrotophos along with other insecticides. However, both the columns showed similar residues 180 days onward. After 180 days of treatment, 46% radiolabeled residues were observed, which reduced up to 39.6% after 365 days. Leaching of 14C-monocrotophos to 15-30 cm soil layer was observed in both the experimental setups. In the 15-30 cm soil layer of both soil columns, up to 0.19 mg 14C-monocrotophos kg-1d. wt. soil was detected after 270 days.  相似文献   

4.

Dissipation and leaching behavior of 14C-monocrotophos was studied for 365 days under field conditions using PVC cylinders. The first set (24 cylinders) was spiked with 1.0 μCi 14C-labeled monocrotophos along with 1.06 mg unlabeled monocrotophos to give a concentration of 2 mg kg ?1 in the soil up to 15 cm depth. The second set (24 cylinders) received 14C-labeled monocrotophos along with other non-labeled insecticides viz., dimethoate @ 300 g a.i ha?1, deltamethrin @ 12.5 g a.i ha?1, endosulfan @ 750 g a.i ha?1, cypermethrin @ 60 g a.i ha?1, and triazophos @ 600 g a.i ha?1 at an interval of 15 days each as recommended for the cotton crop. 14C-monocrotophos dissipated faster, up to 45% in first 90 days in columns treated with only monocrotophos compared to 25% in columns that received monocrotophos along with other insecticides. However, both the columns showed similar residues 180 days onward. After 180 days of treatment, 46% radiolabeled residues were observed, which reduced up to 39.6% after 365 days. Leaching of 14C-monocrotophos to 15–30 cm soil layer was observed in both the experimental setups. In the 15–30 cm soil layer of both soil columns, up to 0.19 mg 14C-monocrotophos kg?1d. wt. soil was detected after 270 days.  相似文献   

5.
A hazelnut ocak (shrub growing form) in the field in Black Sea region of Turkey was treated with commercial carbaryl insecticide spiked with 14C-carbaryl. Three months later, the harvested hazelnuts were separated into husk, shell, and kernel components, then homogenized and analyzed. The total and unextractable (bound) 14C-residues were determined by combustion and the extractable 14C-residues were obtained by extracting the samples with methanol. Concentrated extracts were first analyzed by thin layer chromatography (TLC). The extracts were also subjected to a series of liquid-liquid extraction procedures for clean-up and the final extracts were analyzed by high performance liquid chromatography (HPLC). Crude hazelnut oil was also extracted with hexane and analyzed for total 14C-residue. A total of 1.3% of applied radioactivity was recovered from the total nut harvested, with 0.04%, 0.06%, and 1.2% present in shell, kernel, and husk, respectively. The results show that the inedible husk and shell contained 95.7% 14C, whereas the edible kernel contained 4.3% of the total 14C recovered. The terminal 14C-residue in hazelnut kernel and oil did not contain carbaryl and/or its metabolite naphthol.  相似文献   

6.
An Indian sandy loam soil was initially treated with 1 kg a.i. ha(-1) of either [(14)C]-p,p'-DDT or [(14)C]-gamma-HCH during winter. DDT concentration after 30 days declined to 75.3%, which included 2.1% soil-bound residues. After 150 days, DDT levels further decreased to 42.4% with a concomitant increase in bound residues amounting to 5.9%. Identical treatment with HCH caused the residue levels to be reduced to 67.4 and 23.6%, after 30 and 150 days, respectively. During this period, the soil-bound residues of HCH increased from 5.2 to 12.8%. Repeat application to pre-treated soils in summer and subsequent field exposure for 30 days reduced the concentration of DDT to 52.1% and that of HCH to 42.4% of the total concentration following the second treatment. In parallel control experiments, which received only a single treatment, DDT levels declined to 61.3%, while HCH slumped to 45.3%, indicating a slower dissipation rate than in the corresponding repeated treatments. In repeat experiments, the soil-bound residues of DDT and HCH showed only a 1.07 to 1.08-fold increase in 30 days, as compared to three to ten-times increase in the control experiments. The results amply demonstrate that pre-treatment of tropical soils with DDT or HCH enhances their rate of dissipation and significantly reduce the formation of their soil-bound residues.  相似文献   

7.
Abstract

The metabolism of 14C‐carbaryl and 14C‐1‐naphthol in moist and flooded soils was studied in a continuous flow‐through system over a period of 28 days permitting 14C‐mass balance. The percent distribution of radiocarbon in organic volatiles, carbon dioxide, extractable and non‐extractable (bound) fractions of soils were determined. Organic volatiles could not be detected in both carbaryl and 1‐naphthol treated soils. More of 14CO2 (25.6%) was evolved from moist than flooded soil (15.1%) treated with carbaryl. However, the mineralization of 14C‐1‐naphthol was negligible. The extractable radiocarbon was more in flooded soil (28.9%) than moist soil (5.5%) from carbaryl treatment. Less than one percent was present as parent compound, whereas carbaryl was mainly metabolized to 5‐hydroxy carbaryl in moist soil and to 4‐ and 5‐hydroxy carbaryl in flooded soil. The extractable radiocarbon amounted to 18.2 and 24.3% in moist and flooded soils respectively and the parent compound was less than one percent with 1‐naphthol treatment. Most of the radiocarbon was found as soil bound residues; the formation being more with 1‐naphthol than carbaryl. Humin fraction of the soil organic matter contributed most to soil bound residues of both carbaryl and 1‐naphthol.  相似文献   

8.
Abstract

14C‐carbaryl and 14C‐1‐naphthol form soil bound residues which get partially released when barley was grown. 14C‐residues could be detected in both shoot and root in the case of carbaryl treatment while only roots showed 14C‐residues in the case of 1‐naphthol. Flooding enhanced release of the bound residues while soil amendment did not. There was greater mineralization of bound residues of carbaryl than that of 1‐naphthol. Rice straw amendment enhanced mineralization.  相似文献   

9.
Insecticide residues in cotton crop soil   总被引:2,自引:0,他引:2  
Dimethoate, monocrotophos, triazophos, deltamethrin, cypermethrin and endosulfan were applied to a cotton crop soil located at Nurpur village, Punjab, India. The insecticides were applied sequentially at recommended dosages in cotton fields by foliar application in 1995, 1996 and 1998. Soil samples were collected from the cotton crop farms and extracted with acetone. The extracted material was analysed by a gas liquid chromatograph (GLC) equipped with an 63Ni electron-capture detector (ECD-63Ni). Recovery data was obtained by fortifying soil with insecticide. The average recoveries from the fortified soil samples were 76-92% for organophosphorous compounds and 90-98% for synthetic pyrethroids and organochlorines. The results showed that the insecticide residues under study were present in the range of 1.16 to 41.97 ng g(-1) d.wt.soil. The pattern of dissipation of the insecticides used was similar for the duration of the crop. Half lives of the insecticides ranged from 7 to 22 days. Except endosulfan none of the other insecticides used were leached below 15 cm. Endosulfan was found to be rapidly degraded in the soil and formed a sulfate metabolite. Persistence and dissipation pattern in soils with history of exposure to the insecticide compared to non-history soils were similar.  相似文献   

10.
Carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranol-N-methylcarbamate) and carbaryl (1-naphthyl-N-methylcarbamate) are insecticides widely used in tea plantations. The objective of the present study was to evaluate the dissipation of carbofuran and carbaryl during the growth periods of Oolong tea, processing and roasting. Analysis of the residual insecticides was carried out using high-pressure liquid chromatography with a post-column fluorescence detector. Results showed that in the tea field carbofuran dissipated faster then carbaryl. Manufacturing processes of Oolong tea further reduced the carbofuran and carbaryl contents. The persistence of carbofuran and carbaryl was decreased with increasing roasting temperature. From the results, we conclude that the presence of carbofuran and carbaryl in tea can be reduced by proper field management, manufacturing and roasting processes.  相似文献   

11.
Carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranol-N-methylcarbamate) and carbaryl (1-naphthyl-N-methylcarbamate) are insecticides widely used in tea plantations. The objective of the present study was to evaluate the dissipation of carbofuran and carbaryl during the growth periods of Oolong tea, processing and roasting. Analysis of the residual insecticides was carried out using high-pressure liquid chromatography with a post-column fluorescence detector. Results showed that in the tea field carbofuran dissipated faster then carbaryl. Manufacturing processes of Oolong tea further reduced the carbofuran and carbaryl contents. The persistence of carbofuran and carbaryl was decreased with increasing roasting temperature. From the results, we conclude that the presence of carbofuran and carbaryl in tea can be reduced by proper field management, manufacturing and roasting processes.  相似文献   

12.
The fate of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils may be affected by several environmental factors including the presence of co-contaminants. This study was conducted in order to assess the effect of metals on (i) the adsorption of 14C-phenanthrene in soils and (ii) its extractability and ability to form non-extractable residues. The first objective was accomplished using batch adsorption experiments with an uncontaminated agricultural soil spiked with the metals Cd, Cu, Pb, and Zn. Adsorption of phenanthrene was significantly higher after the addition of the metals (Kf = 21.48 vs. 8.55) and the desorption less readily reversible when compared to the unspiked soil. The extractability of phenanthrene was assessed with incubation (4 months, laboratory conditions) and microlysimeter experiments (6 months, natural climatic conditions) on three soils spiked with metals. All the soils were labelled with 14C-phenanthrene. The amount of extractable phenanthrene residues was significantly higher when the metals had been added to the soils. Nevertheless, the quantity of non-extractable residues was non-significantly different between the spiked and unspiked soils. The mechanism leading to increased adsorption and extractability of phenanthrene in the presence of metals is still unknown. In perspective, it would be interesting to assess the bioavailability of PAHs in the presence of metals in further experiments.  相似文献   

13.
This paper reports the bioefficacy of selected insecticides against thrips and their pre-harvest intervals (PHI) in onion pertaining to their recommended application rates and maximum residue limits. Profenophos, methomyl and imidacloprid showed comparatively higher bioefficacy against thrips. GC-MS and LC-MS/MS-based residue analysis methods in onion bulbs and composite matrix of bulbs+leaves were thoroughly validated. The residue data for bulb+leaves was assessed with reference to the EU-MRLs applicable for spring onion. Dimethoate was the most stable chemical with PHI of 52.5 days, followed by monocrotophos (24 days) and carbofuran (20.5 days). The PHIs of profenophos, chlorpyrifos, methomyl and cypermethrin were similar and within the range of 10-13 days. Imidacloprid and λ-cyhalothrin had similar PHI of 4.5 days. Spinosad was the fastest-degrading chemical with PHI of 2 days. The combined bioefficacy and residue dynamics information will support label-claim of these insecticides for the management of thrips in onion, help in scheduling their applications in pest management program as per relative PHIs and minimize the residue accumulations at harvest. The dietary exposure was less than the maximum permissible intake for most of the insecticides on all sampling days except for dimethoate and monocrotophos.  相似文献   

14.
This paper reports the bioefficacy of selected insecticides against thrips and their pre-harvest intervals (PHI) in onion pertaining to their recommended application rates and maximum residue limits. Profenophos, methomyl and imidacloprid showed comparatively higher bioefficacy against thrips. GC-MS and LC-MS/MS-based residue analysis methods in onion bulbs and composite matrix of bulbs+leaves were thoroughly validated. The residue data for bulb+leaves was assessed with reference to the EU-MRLs applicable for spring onion. Dimethoate was the most stable chemical with PHI of 52.5 days, followed by monocrotophos (24 days) and carbofuran (20.5 days). The PHIs of profenophos, chlorpyrifos, methomyl and cypermethrin were similar and within the range of 10–13 days. Imidacloprid and λ-cyhalothrin had similar PHI of 4.5 days. Spinosad was the fastest-degrading chemical with PHI of 2 days. The combined bioefficacy and residue dynamics information will support label-claim of these insecticides for the management of thrips in onion, help in scheduling their applications in pest management program as per relative PHIs and minimize the residue accumulations at harvest. The dietary exposure was less than the maximum permissible intake for most of the insecticides on all sampling days except for dimethoate and monocrotophos.  相似文献   

15.
Fate of 14C-bisphenol A in soils   总被引:8,自引:0,他引:8  
Fent G  Hein WJ  Moendel MJ  Kubiak R 《Chemosphere》2003,51(8):735-746
Bisphenol A (BPA; 2,2-(4,4(')-dihydroxydiphenyl)propane) is predominantly used as an intermediate in the production of polycarbonate plastics and epoxy resins. Traces of BPA released into the environment can reach the soil via application of sewage sludge from wastewater treatment systems that receive wastewaters containing BPA, or from leachate from uncontrolled landfills. The biodegradability of BPA has been previously investigated in several studies designed to simulate surface waters and biological wastewater treatment systems. However, there is little information available about the fate of BPA in soil. Therefore, laboratory soil degradation and batch adsorption studies were conducted with 14C-BPA and four soils according to international guidelines. The soils represented a broad range of physico-chemical properties. An important result of the degradation study was that, independent of the soil type, 14C-BPA was rapidly dissipated and not detectable in soil extracts following 3 days of incubation. Based on this result, a dissipation half-life of less than 3 days was estimated. The major route of dissipation of 14C-BPA in soil was the formation of bound residues that could not be recovered by exhaustive Soxhlet extraction. 14C-BPA was also shown to be transiently converted to up to five metabolites, but within 3 days, neither 14C-BPA nor 14C-metabolites were detectable in the soils. After 120 days incubation, significant amounts (up to 20% of the radioactivity applied) of the parent compound were recovered as 14CO(2). Soil adsorption experiments indicated that the distribution coefficients (K(oc)) were between 636 and 931, classifying BPA as having low mobility for all tested soils. From the results of this study, it was concluded that if BPA reaches the soil compartment, it is not expected to be stable, mobile, or bioavailable.  相似文献   

16.
The behaviour of diazinon in the soil determines the likelihood of further pollution incidents, particularly leaching to water. The most significant processes in the control of the fate of diazinon in the soil are microbial degradation and the formation of bound residues. Soils from four sites in the UK were amended with diazinon and its 14C labelled analogue and incubated for 100 days. After 0, 10, 21, 50 and 100 days, the formation of bound residues was assessed by solvent extraction, and the microbial degradation of diazinon by mineralisation assay. In microbially active soils, diazinon is degraded rapidly, reducing the risk of future pollution incidents. However, where there was limited mineralisation there was also significantly lower formation of bound residues, which may lead to water pollution via leaching. The formation of bound residues was dependent on extraction type. Acetonitrile extraction identified bound residues in all soils, with the bound residue fraction increasing with increasing incubation time.  相似文献   

17.
A high-temperature distillation technique was developed for determining and chemically identifying the bound (nonextractable) residues of 14C-prometryn in an organic soil and plants. A considerable portion of the bound 14C residues in the incubated organic soil was identified as prometryn. These residues were absorbed by plants grown in the soil. Hono-and di-N-dealkylated metabolites of prometryn were present in the plant bound 14C residues and a major portion of bound residues as associated with lignin. Soil-bound 14C residues were also released from soil by microbes. The bound 14C residues in soil were associated with humin, humic acid, and fulvic acid fractions. Thermoanalytical methods were used to obtained information on the nature and location of 14C bound residues in soil and humic materials.  相似文献   

18.
The dissipation of chlorpyrifos (20 EC) at environment-friendly doses in the sandy loam and loamy sand soils of two semi-arid fields and the presence of pesticide residues in the harvested groundnut seeds, were monitored. The movement of chlorpyrifos through soil and its binding in the loamy sand soil was studied using 14C chlorpyrifos. Chlorpyrifos was moderately stable in both loamy sand and sandy loam soils, with half-life of 12.3 and 16.4 days, respectively. With 20 EC treatments the dissipation was slower for standing crop than seed treatment, indicative of the high degradation rates in the bioactive rhizosphere. In soil, 3,5,6-trichloro-2-pyridinol (TCP) was the principal breakdown product. Presence of 3,5,6-trichloro-2-methoxypyridine (TMP), the secondary metabolite, detected in the rhizospheric samples during this study, has not been reported earlier in field soils. The rapid dissipation of the insecticide from the soil post-application might have resulted from low sorption due to the alkalinity of the soil and its low organic matter content, fast topsoil dissipation possibly by volatilization and photochemical degradation, aided by the low water solubility, limited vertical mobility due to confinement of residues to the upper 15 cm soil layers and microbial mineralization and nucleophilic hydrolysis. Contrary to the reports of relatively greater mobility of its metabolites in temperate soils, TMP and TCP remained confined to the top 15 cm soil. The formation of bound residues (half-life 13.4 days) in the loamy sand soil was little and not "irreversible." A decline in bound residues could be correlated to decreasing TCP concentration. Higher pod yields were obtained from pesticide treated soils in comparison to controls. Post-harvest no pesticide residues were detected in the soils and groundnut seeds.  相似文献   

19.
Effects of sub-lethal doses of carbaryl (1-Naphthyl-methylcarbamate), chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridinyl-phosphorothioate) and endosulfan (6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin-3-oxide), respectively a carbamate, an organophosphate and an organochlorine insecticide on growth, reproduction and respiration of the tropical earthworm, Perionyx excavatus (Perrier) were investigated under laboratory conditions. The results showed significant reduction in biomass, production and hatching of cocoon and production of juveniles of the worms exposed to 0.75 to 3.03 mg/kg soil of carbaryl, 0.91 to 3.65 mg/kg soil of chlorpyrifos and 3.75 to 15.0 μg/kg soil of endosulfan corresponding to 12.5 to 50 % of LC(50) value of the respective insecticide for P. excavatus. Endosulfan was found most dangerous among the three insecticides followed by carbaryl and chlorpyrifos. There was no hatching of the worms at endosulfan treatment 5.0 μg/kg soil (25 % LC(50)) or above while the highest dose of carbaryl and chlorpyrifos (50 % of LC(50)) rendered respectively 87.13 and 24.84 % reductions in hatching as compared to control. Chlorpyrifos produced no change in respiration of the worms except at the highest dose, while the worms showed an increase in evolution of CO(2) at all doses of carbaryl and endosulfan. Based on the recommended agricultural dose of each insecticide, it was concluded that application of endosulfan and carbaryl was potentially dangerous to earthworms.  相似文献   

20.
Abstract

The degradation of [phenyl‐U‐14C]methabenzthiazuron (MBT) and formation of bound residues in the surface soil of an orthic luvisol were studied under constant climatic conditions (20°C, 40 % of maximum water holding capacity). In two treatments (with and without preincubation in the soil) maize straw was amended at a rate of 1.5 g/100 g dry soil in addition to the application of MBT. The mineralization of uniformly labeled maize straw was studied simultaneously. In additional flasks, MBT was incubated at 0, 10 and 30°C with and without addition of maize straw.

The turnover of the amended maize straw led to an enhanced dissipation of MBT which was mainly due to the formation of bound residues. This corresponded to a higher microbial activity in the soil after straw amendment and the intensive mineralization of the radiolabeled maize straw. About 2–3 % of the applied radioactivity from the radiolabeled maize straw was measured in the soil microbial biomass 10 and 40 days after application whereas 14C from MBT was only incorporated into soil microbial biomass in the treatments with straw amendment.

Within the bound residue fractions relatively more radioactivity was measured in fulvic and humic acids after straw amendment. Increasing temperatures promoted the dissipation of MBT and the formation of bound residues in both treatments, but without amendment of maize straw these effects were far less pronounced. The laboratory scale degradation experiment led to similar results as were found in a corresponding lysimeter study. Differences that were observed could be explained by different temperature regimes of the experiments and time of aging in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号