首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
肖羽堂  吕晓龙 《生态环境》2006,15(2):212-215
为去除微污染原水中的NO2--N和提高水厂的饮水安全性,采用弹性填料微孔曝气富氧生物硝化法处理某微污染水源原水,探讨了原水不同水质及天然水体温度下富氧生物硝化工艺的除NO2--N效果,研究了水温与富氧生物硝化工艺NO2--N去除效果的相关性。结果表明,当富氧生物硝化工艺正常稳定运行HRT为1.2h,气水比为1∶1,pH6.5~7.4,DO为8~10mg·L–1,原水水温26~30℃、NO2--N0.05~0.4mg·L–1、NH4 -N0.4~1.8mg·L–1和CODMn7.01~9.61mg·L–1时,富氧生物硝化工艺NO2--N的去除率为77%~100%;原水水温20~22℃、NO2--N0.09~0.5mg·L–1、NH4 -N0.7~2.5mg·L–1和CODMn5.84~9.11mg·L–1时,去除率为44%~63%;原水水温10~12℃、NO2--N0.04~0.8mg·L–1、NH4 -N0.9~4.5mg·L–1·和CODMn6.53~9.27mg·L–1时,去除率为25%~40%。原水水温与富氧生物硝化工艺NO2--N去除率呈现明显的线性相关性,相关方程为:y=3.3628x-9.528,相关系数为0.8744。  相似文献   

2.
COD对颗粒污泥厌氧氨氧化反应性能的影响   总被引:8,自引:1,他引:8  
研究了COD对颗粒污泥厌氧氨氧化反应的影响,并对颗粒污泥的厌氧氨氧化脱氮性能进行了分析.厌氧颗粒污泥取自实验室长期运行的EGSB生物脱氮反应器,实验用水为人工配水,以葡萄糖为有机碳源;主要考察了COD对NH4 -N、NO2--N、NO3--N和TN去除的影响.结果表明:当进水不含COD时,反应器对NH4 -N、NO2--N和NO3--N和TN的去除率分别为12.5%、29.1%、16.1%和16.3%;当COD浓度分别为200mg/L、350mg/L和550mg/L时,反应器对NH4 -N的去除率分别为14.2%、14.2%和23.7%,对NO2--N的去除率均接近100%,对NO3--N的去除率分别为94.5%、86.6%和84.2%,对TN的去除率分别为50.7%、46.9%和50.4%,COD去除率分别为85%、66%和60%.分析发现,在反应初期,氨氮的去除主要通过厌氧氨氧化过程实现,随着反应的进行,反硝化菌活性逐渐提高,传统的反硝化过程占优势.同时还观察到,在反应初期COD对氨氮去除的抑制作用非常明显.图2参21  相似文献   

3.
以模拟生活污水为研究对象,控制SBR反应器内pH值在7.5~8.5的条件下,实现了短程硝化生物脱氮工艺,NO2--N/NOx--N的比率始终维持在90%以上,同时发现pH值和DO浓度变化特征曲线在短程硝化过程中具有良好的重现性。另外,保持DO浓度在0.5~1.0mg/L,硝化时间为5.5h,可较好的维持短程硝化生物脱氮过程,且经过1个月的运行硝化类型没有发生改变,亚硝酸盐积累率仍保持在90%以上。在此基础上,研究了系统对COD和NH4+-N浓度的抗冲击负荷能力。结果表明,该系统具有较强的抗冲击能力。  相似文献   

4.
潮汐流人工湿地(Tidal flow constructed wetland,TF-CW)是一种新型人工湿地生态系统,并且在氮去除方面受到了广泛的关注。通过对比4种不同进水方式TF-CW对NH4+-N和NO3--N两种氮形态的处理效果,并分析基质硝化反硝化强度与去除效果之间的相关性以及不同处理深度基质的硝化反硝化强度。结果显示:4种进水方式的湿地模拟装置对NH4+-N的平均去除率差异性显著且与硝化强度差异性一致,闲置时间/反应时间为2∶1(D)的进水方式下基质的平均硝化强度最大,为(1.68±0.29)mg·kg-1·h-1,4种模拟装置的基质平均反硝化强度差异性也显著(P=1.202×10-5),连续流进水方式反硝化强度最大,为(2.99±1.58)mg·kg-1·h-1;TF-CW基质硝化强度与NH4+-N的去除率有明显的正相关性(r2=0.849 7,P=4.285×10-14),反硝化强度与NO3--N的出水浓度呈明显负相关关系(r2=0.844 8,P=6.939×10-14);装置上部0~30 cm的处理阶段硝化强度最大,随深度增加变化逐渐减小,反硝化强度在中部的30~60 cm阶段较高。本研究为TF-CW设计改善其运行效果奠定了理论基础,在进行人工湿地设计时需综合考虑NH4+-N和NO3--N的整体去除效果,将潮汐流人工湿地与连续流人工湿地进行组合并合理配置,对污染物的去除更加全面有效。  相似文献   

5.
针对NH3-N浓度为1mg.l-1的饮用原水,分别以硅锰砂石和聚胺脂海绵作为硝化生物膜载体,考察了自制固定床生物膜反应器的脱氨效果.30d的连续运行结果表明,砂石载体系统达到95%—100%的NH3-N去除率,出水NH3-N浓度接近0,出水NO2--N浓度在0—0.02mg.l-1之间;而海绵载体系统虽然挂膜快,但运行阶段NH3-N去除率仅为10%—35%,出水NH3-N不能达标,且具有生物可降解性,反硝化过程优先导致NO2--N的积累.进一步考察了硅锰砂石生物膜系统稳定运行的最优参数,得出试验条件下,水力停留时间为6min,气水比为1:1,反冲洗周期为6d.硅锰砂石因其良好的孔隙率、粒径分布和密度等物理特性,以及化学稳定性和生物安全性,是含低浓度NH3-N原水生物膜净化的良好载体选择.  相似文献   

6.
水库贫营养异养硝化-好氧反硝化菌Sxf14的脱氮特性   总被引:1,自引:0,他引:1  
为利用生物强化法降低微污染源水中的氮素,从水库沉积物中筛选到一株好氧反硝化细菌Sx f14.通过扫描电镜和16S r RNA序列分析,鉴定其为不动杆菌属(Acinetobacter sp.),命名为Acinetobacter sp.Sxf14.同时,对该菌株脱氮特性进行研究,并将其接种到C/N(总有机碳与总氮的比值)为1.2的微污染水库源水中,以探究其对实际源水总氮的去除效果.结果显示:Sxf14能以硝酸盐和亚硝酸盐为唯一氮源进行好氧反硝化.反应48 h后,NO3--N和NO2--N的去除率分别达74.84(±0.86)%和40.52(±1.49)%,TN去除率最高达到65.07(±1.56)%和41.33(±0.98)%;在以NH4Cl为氮源的异养硝化系统内,该菌在48 h内使NH4+-N浓度由3.73(±0.08)mg/L降到1.28(±0.20)mg/L,氨氮去除率达到65.63(±1.39)%.72 h内,微污染水库源水的TN浓度由2.46(±0.02)mg/L降到1.68(±0.01)mg/L,去除率达到31.7(±0.14)%.因此,菌株Acinetobacter sp.Sxf14具有反硝化能力,能承受较低的碳氮比,降低微污染源水中的氮素,本研究可为微污染水体的菌剂修复技术提供科学依据.  相似文献   

7.
以Ti/Co-Fe-Cu为阴极,Ti/IrO2-RuO2为阳极组成无隔膜电解体系,对非贵金属催化电解无害化去除NO3--N的反应机制进行了实验研究和理论分析.结果表明,NO3--N阴极催化还原过程中,反应物、产物需要通过对流、扩散作用,克服电场力,迁移至目标位置;在非贵金属的催化作用下,NO3--N受还原剂攻击,逐步还原为NH4+-N;还原中间产物NO-N和NH-N直接生成N2-N的过程受抑制,产物NH4+-N难以被再度直接氧化.添加Cl-作为支持电解质,实验电解体系发生阳极析氯、Cl2水解、NH4+-N氯氧化等过程,可将NH4+-N氧化为N2-N,且出水中NO3--N、NO2--N、氯胺类浓度很低.NO3--N无害化去除的反应机制是NO3--N在催化作用下,经传质、吸脱附、电子交换过程,还原为NH4+-N,NH4+-N经由Cl-→Cl2→HOCl→Cl-电解氯氧化循环,最终生成N2-N.  相似文献   

8.
浅水体浮萍污水净化系统的除氮途径   总被引:20,自引:0,他引:20  
以稀释的猪场厌氧污水为供试水样,少根紫萍为供试生物材料,对夏、冬2季浅水体浮萍污水净化系统TN、NH4 -N和NOx--N(NO2--N与NO3--N之和)的去除途径进行了试验研究。结果表明,在夏季气温条件下,TN通过气态氨挥发、浮萍系统吸收/吸附NH4 -N和NOx--N得以去除,3途径去除的N分别占TN去除量的30.5%、15.9%和53.6%;NH4 -N通过气态氨挥发、浮萍系统吸收/吸附和硝化反应得以去除,3途径去除的N分别占NH4 -N总去除量的33.1%、17.3%和49.6%;NOx--N则完全通过浮萍系统吸收/吸附得以去除。在冬季气温条件下,TN通过气态氨挥发和浮萍系统吸收/吸附NH4 -N得以去除,2途径去除的N分别占TN去除量的31.7%和68.3%;NH4 -N通过气态氨挥发、浮萍系统吸收/吸附和硝化反应得以去除,3途径去除的N分别占NH4 -N总去除量的28.9%、69.5%和1.6%;而水体中的NOx--N含量始终保持稳定。  相似文献   

9.
孙英杰  吴昊  王亚楠 《生态环境》2011,20(2):384-388
结合N2O的产生机理,分析温度、含水率、NO2--N和底物质量浓度、pH和碱度、O2以及基质等因素对N2O释放的影响,试图探讨不同因素对N2O释放的影响规律,以期对生化过程中N2O的控制提供理论和技术支持。N2O的释放是温度、含水率、C/N、O2浓度、反应底物质量浓度、基质以及传输过程交互作用的结果。含水率、C/N、基质及温度等可通过不同途径影响溶解氧的质量浓度而影响N2O释放量;pH、NO2--N、NH3-N及温度等通过影响硝化、反硝化细菌的活性或对各阶段酶的抑制作用而影响N2O释放;土壤利用类型、植被种类、污水脱氮过程各参数等,会间接影响硝化和反硝化过程从而影响N2O的释放。  相似文献   

10.
为寻找适用于堆肥的嗜热异养氨氧化细菌,采用稀释涂布平板法和格里斯试剂显色法筛选嗜热异养氨氧化细菌,利用含NH4+培养基研究其最佳生长温度、pH条件以及其氨氧化特点和NO2-、NO3-的生成速率,并通过16S rDNA测序及Blast比对确定其种属.结果显示,从大理洱源热泉中分离了两株嗜热异养氨氧化细菌菌株NC8和NJ26;这两株菌的最适生长温度为55℃,最适生长pH为8.0;在最适生长条件下,NC8和NJ26菌株对NH4+的最大单位体积减少率分别为1 033.3mg/L和1 183.67 mg/L;对NO2-和NO3-最大单位体积产生率分别为23.79 mg/L、272.30 mg/L和33.81 mg/L、366.70 mg/L;种属鉴定表明,NC8和NJ26分别为Bacillus属的不同种.本研究表明,NC8和NJ26为异养型氨氧化细菌,能将NH4+氧化成NO2-和NO3-,以NO3-为主要积累产物,因此有望应用于堆肥过程中以减少氨气排放,同时提高堆肥中氮素的含量.  相似文献   

11.
大气CO2浓度增高对农田土壤硝化活性的影响   总被引:6,自引:0,他引:6  
利用中国唯一的FACE(Free-Air Carbon dioxide Enrichment,开放式空气CO2浓度增高)平台,研究大气CO2浓度增高对农田土壤硝化活性的影响.位于无锡的中国稻麦轮作农田生态系统FACE试验平台于2001年6月开始运行,设有FACE与Ambient(普通空气对照)2个处理,FACE区CO2浓度比Ambient区高200 μmol·mol-1,每个处理含低氮与常氮2个氮肥水平.在轮作水稻和小麦各3季之后,发现大气CO2浓度增高下,常氮水平上土壤的NO3--N质量分数降低,NH4+-N质量分数增高;而低氮水平上土壤的NO3--N质量分数增高,NH4+-N质量分数没有显著差异.然后分别在土壤样品中加入NH4+-N,好气培养42 d后通过测定土壤中的NO3--N、NO2--N总质量分数来研究土壤的硝化活性.结果显示,不管在CO2浓度增高下还是对照条件下,增加氮肥施用量均增强了土壤的硝化活性;且与对照相比,大气CO2浓度增高在常氮水平上降低了土壤的硝化活性,在低氮水平上却增强了土壤的硝化活性,说明大气CO2浓度增高对农田土壤硝化活性的影响与N肥供应水平有关.  相似文献   

12.
双氰胺在四川3种主要土壤上的硝化抑制作用   总被引:1,自引:0,他引:1  
采用室内培养试验方法,在不同浓度双氰胺(DCD)处理条件下,对四川3种主要土壤(紫色土、黄壤、灰潮土)的N2O释放量,NH4+-N及NO3--N含量动态变化进行了研究.结果表明,DCD对3种土壤N2O释放及土壤NO3--N含量有明显抑制作用,随DCD浓度增加,其抑制效果越显著.DCD同时能推迟NO3--N含量达到高峰,使土壤NH4+-N含量在较长时间保持相对较高水平,提高氮肥利用率,减少氮素流失.DCD在3种土壤上硝化抑制效果存在差异,表现为紫色土>灰潮土>黄壤.同时提出DCD在3种土壤上的适宜添加量,紫色土上为普通碳铵施入量的0.5%,黄壤和灰潮土上为0.3%.  相似文献   

13.
水溶性有机质对土壤硝化作用过程的影响   总被引:3,自引:0,他引:3  
以江苏省宿迁市潮土为供试土壤,设置DOC220、DOC440和DOC880 3个添加水溶性有机质(DOM)处理,分别含有机碳(DOC)220、440和880 mg.L-1。试验结果表明,DOM对硝化过程有一定的抑制作用,在培养第16天时,未添加DOM的对照中NH4 -N几乎100%已经转化为NO3--N,而添加DOM的3个处理硝化率分别比对照降低7.83%、13.60%和19.12%;与对照相比,添加DOM的处理中NH4 -N含量降低缓慢,但培养过程中亚硝酸盐的积累显著增加,对照在第12天时NO2--N达到最大积累量67.83 mg.L-1,而DOC220、DOC440和DOC880处理土壤中NO2--N积累量分别在第12、14和16天达到最大值,与对照相比积累量分别增加21.17%、33.91%和59.90%。此外,DOM的添加也降低了NO3--N的生成速率,到第16天时,对照已经达到最大积累量143.61 mg.L-1NO3--N,但此时DOC220、DOC440和DOC880处理中NO3--N含量比对照分别低41.97、78.09和91.30 mg.L-1。为排除因添加DOM带来外源氮所引起的影响,同时进行了相同初始氮量下添加DOM与单施(NH4)2SO4对硝化作用影响的比较试验,结果同样表现出亚硝酸盐积累量的增加和NO3--N生成速率的降低,表明DOM中所含的有机碳及小分子化合物影响了硝化作用。高有机质环境下存在潜在的亚硝酸盐积累风险,对土壤和水体生态系统健康可能有一定影响。  相似文献   

14.
针对传统污水处理工艺中存在的工艺复杂、脱氮效率低等问题,从江苏无锡市桃花山垃圾渗滤液生化反应池活性污泥中富集、分离及筛选出一株异养硝化菌BT1.通过16S rRNA序列分析,对分离菌株进行鉴定,同时对其异养硝化特性、氨氧化功能基因及氨氧化性能影响因素进行研究.结果显示:分离到的异养硝化菌为农杆菌属Agrobacterium sp..该菌经过32 h培养后,NH_4~+-N去除率为99.77%;TN去除率为96.99%.其中,59.62%TN转换为胞内氮,37.37%TN转化为气态氮;检测不到NO_3~--N和NO_2~--N的积累.结合氨单加氧酶基因(amo A)的PCR成功扩增,进一步证明了BT1菌株具有氨氧化能力.单因子试验结果显示,在温度为30℃、C/N为10-15、pH为7.0-9.0、转速为120-160 r/min的条件下,菌株均能去除98.51%以上NH_4~+-N,体现出良好的氨氧化性能.BT1菌株能够适应较宽的氨氮负荷,在高氨氮浓度(500和1 000 mg/L)下生长良好且NH_4~+-N去除率均超过64.69%.本研究表明BT1菌株具有高效的异养硝化性能及优异的氨氮耐受性,具有进一步处理高浓度氨氮废水的应用前景.(图9参39)  相似文献   

15.
滇池是中国富营养化状态最为严重的湖泊,而入湖河流氮磷元素的输入是其主要原因。河流水质的低C/N特征是限制氮素去除的关键因素,采用固相反硝化技术能够为反硝化过程提供持续的碳源,因而能够强化受污染河流的脱氮效果。以滇池的重点控制入湖河流-新运粮河为研究对象,设计了微曝气生物滤池(Biological aerating filter,BAF)-固相碳源反硝化(Solid-phase denitrification,SPD)组合工艺,在河道旁路展开示范工程研究。组合工艺设计规模为800 m3·d-1,BAF(气水比为3∶1~5∶1)和SPD生物滤池的最大表面水力负荷分别为4.2和1.4 m3·m-2·h-1,其中SPD生物滤池采用新型固相碳源共混可生物降解聚合物与惰性载体共混作为生物膜载体。工艺研究结果表明,在BAF气水比为3∶1~5∶1、HRT为0.5~1 h和SPD滤池HRT为0.5~1 h的运行工况下,BAF对NH4+-N的平均硝化率达到了91.27%,SPD滤池的平均反硝化率93.60%,工艺出水NH4+-N、NO3--N和NO2--N平均浓度分别为0.68、0.70和0.02 mg·L-1。示范工程对各项污染物的去除效果良好,对TN、TP和CODCr的去除率分别达到84.93%、50.15%和31.39%;工艺出水TN、TP和CODCr平均浓度分别为1.75、0.20和22.96 mg·L-1,主要水质指标均达到了地表水V类水质标准。采用新型固相碳源填充的反硝化生物滤池强化了工艺针对低C/N水质特征污染水体的脱氮效果,组合工艺对滇池氮素输入控制具有重要的意义。  相似文献   

16.
常温SBR厌氧-好氧反应器的短程硝化   总被引:2,自引:0,他引:2  
短程硝化-反硝化是污水节能脱氮新技术之一,其关键在于实现短程硝化,而水温是控制短程硝化的主要因素。在生活污水氨氮浓度小于100mg/L的水质条件下,采用SBR厌氧-好氧反应器进行了常温短程硝化试验研究。研究结果表明,水温14.5℃~16.5℃的条件下,在好氧段可以实现短程硝化,亚硝化率达到了94.9%。亚硝化的程度还与曝气时间的长短有关,曝气时间短时,可以将氨氧化控制在亚硝化阶段,积累大量的亚硝酸盐,但是氨转化率比较低;曝气时间延长,氨氮去除率增加,同时部分亚硝酸氮会被进一步氧化成硝酸氮。该研究结果打破了只有在中高温条件下才能实现短程硝化的普遍看法,从而为在常温下实现短程硝化提供了新的依据。  相似文献   

17.
基于BaPS技术的高山草甸土硝化和反硝化季节变化   总被引:4,自引:0,他引:4  
高永恒  罗鹏  吴宁  陈槐 《生态环境》2008,17(1):384-387
应用气压分离(BaPS)技术测定了川西北高山草甸土硝化和反硝化季节动态变化.结果表明:植物生长季节内,土壤总硝化、反硝化和N2O释放率的变化趋势一致,即从6月份(硝化率:N 8.40 mg kg-1 d-1;反硝化率:N 0.48 mg kg-1 d-1;N2O释放率:N 84.48 靏 kg-1 d-1)开始增加,7月份(N 19.36 mg kg-1 d-1;N 0.60 mg kg-1 d-1;N 100.13 靏 kg-1 d-1)达到最大值,然后开始下降,到9月份(N 1.81 mg kg-1 d-1;N 0.24 mg kg-1 d-1;N 40.09 靏 kg-1 d-1)降为最小值.氮素物质基础(NO3--N和NH4 -N)不是影响该高山草甸土硝化和反硝化的主要因素,土壤温度和湿度是该高山草甸土硝化、反硝化作用的主要影响因子.  相似文献   

18.
优势菌种硝化新工艺处理垃圾渗滤液的研究   总被引:2,自引:0,他引:2  
李平 《生态环境》2005,14(4):545-548
通过摇瓶富集与开放体系扩大培养获得高含量的硝化细菌优势菌液,用于硝化反应器的强化挂膜启动、驯化。采用优势菌种生物硝化新工艺研究了含高质量浓度氨氮垃圾渗滤液的硝化特性,并对工艺条件进行了优化。结果表明,优势菌液中亚硝化细菌与硝化细菌的含量分别达到9.0×107和3.5×107MPN/mL。实际废水动态运行的结果显示,当进水垃圾渗滤液平均氨氮质量浓度为284.4mg/L时,出水平均氨氮质量浓度为14.3mg/L,硝化速率高达NH4+-N28.1g/(m3.h),与传统硝化工艺相比高出近一倍。本工艺处理垃圾渗滤液的优化操作工艺条件为:pH、氨氮质量浓度及DO分别控制在7.5~8.5、300mg/L、1.1~2.6mg/L。  相似文献   

19.
于2008年在上海市浦东农业区设置采样点按月收集降水样品,测定降水NO3--N和NH4+-N浓度,分析氮浓度的变化规律及其影响因素,并计算氮沉降通量。结果表明,浦东农业区降水氮浓度和年沉降通量均较高,ρ(NO 3--N)平均值为0.44 mg.L-1,年沉降通量为5.19 kg.hm-2.a-1;ρ(NH 4+-N)平均值为1.36 mg.L-1,年沉降通量为15.91 kg.hm-2.a-1;TN年沉降通量为21.10 kg.hm-2.a-1,其中NH4+-N占75.4%。降水NO3--N和NH 4+-N浓度在主要生长季(4—10月)低于非主要生长季(11月至次年3月);而NH 4+-N沉降量在主要生长季高于非主要生长季,NO3--N沉降量在主要生长季和非主要生长季差异较小,这主要是人为活动、降水日数与降水量以及风向等因素的综合作用所致。降水氮输入对研究区初级生产力的提高具有积极意义,但降雨氮浓度已超过水体富营养化阈值,可能加剧农业区内水体富营养化。  相似文献   

20.
接种污泥源对厌氧氨氧化启动效能的影响   总被引:3,自引:0,他引:3  
厌氧氨氧化(anaerobic ammonium oxidation,ANAMMOX)菌生长缓慢是影响其实际应用的主要问题之一,选取合适的接种污泥十分重要.本研究采用好氧污泥、厌氧颗粒污泥和厌氧消化污泥3种接种污泥,分别经过61、70和85 d的运行均实现了厌氧氨氧化过程,氨氮去除率分别为82%、92%和91%,总氮去除率达76%、82%和80%.分别接种3种污泥源的厌氧序批式反应器(ASBR)R1、R2、1t3出水pH值最终稳定在8.4、8.5、8.5.好氧污泥呈絮状,但沉降性比接种前好,厌氧颗粒污泥解体后最终形成粒径集中在0.5~1.0 mm的污泥,厌氧消化污泥则呈沙化状态,有细小颗粒出现.根据厌氧氨氧化细胞产率系数及NH4+-N、NO2--N去除量和NO3--N生成量之间的计量学关系,估算出厌氧氨氧化菌产率系数(以1 mol NH4+产生的CH2O0.5N0.15量计)分别为0.080、0.105和0.114 mol·mol-1,说明反应器内厌氧氨氧化菌有不同程度的衰减.总体而言,厌氧颗粒污泥是富集厌氧氨氧化菌的最适污泥源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号