首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The purpose of this study was to determine the influence of chromate production waste site remediation on residential Cr concentrations in house dust. Twenty-three homes in Jersey City, NJ, were identified as having had high (> 500 micrograms/gm, median 739 micrograms/gm), medium (100-400 micrograms/gm, median 245 micrograms/gm), or low (< 100 micrograms/gm, median 48 micrograms/gm) Cr in house dust during a study conducted in 1992-1993 prior to site remediation. House dust samples were collected on four visits from each home between November 1996 and February 1998, extracted with HNO3, and analyzed for Cr with an inductively coupled plasma-mass spectrometer. Homes that had low Cr concentrations in 1992-1993 continued to have low Cr concentrations (median 1 microgram/g). In contrast, substantial declines in Cr concentrations were found in the house dust collected from homes located near the remediated waste sites: previously high-level homes had a median of 50 micrograms/g and mid-level homes had a median of 34 micrograms/g. Site remediation had a beneficial effect on household loadings of Cr, since no differences in post-remediation house dust Cr concentrations were found among the three groups.  相似文献   

2.
Various hazardous substances contained in waste TV sets might be released into environment via dust during recycling activities. Two brominated flame retardants (BFRs), polybrominated diphenyl ethers (PBDEs), and tetrabromobisphenol A (TBBPA), and five kinds of heavy metals (Cu, Pb, Cd, Cr, and Ni) were detected in indoor dust collected from two workshops (TV dismantling workshop and subsequent recycling workshop). PBDEs concentrations in dust from waste wires recycling line (722,000 ng/g) were the highest among the studied sites, followed by those in manual dismantling–sorting line (117,000 ng/g), whereas TBBPA concentrations were the highest in manual dismantling–sorting line (557 ng/g) and printed circuit board (PCB) recycling line (428 ng/g). For heavy metals, Cu and Pb were the most enriched metals in all dust samples. The highest concentration of Pb (22,900 mg/kg) was found in TV dismantling workshop-floor dust. Meanwhile, Cu was the predominant metal in dust from the PCB recycling line, especially in dust collected from electrostatic separation area (42,700 mg/kg). Occupational exposure assessment results showed that workers were the most exposed to BDE-209 among the four PBDE congeners (BDE-47, BDE-99, BDE-153, and BDE-209) in both workshops. The hazard quotient (HQ) indicated that noncancerous effects were unlikely for both BFRs and heavy metals (HQ?<?1), and carcinogenic risks for Cd, Cr, and Ni (risk?<?10?6) on workers in two workshops were relatively low.  相似文献   

3.
Tan J  Cheng SM  Loganath A  Chong YS  Obbard JP 《Chemosphere》2007,68(9):1675-1682
Although the use of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) has been prohibited in Singapore since 1980, OCPs and PCBs still can be detected in the environment and represent a potential threat to public health. In this study, OCPs and PCBs were measured in house dust samples collected from 31 homes across the island-state of Singapore. Organochlorine pesticides, such as hexachlorocyclohexanes (HCHs), chlordanes and dichlorodiphenyltrichloroethanes (DDTs) were tested, with a range of 相似文献   

4.
Polybrominated diphenyl ethers in house dust in Singapore   总被引:8,自引:0,他引:8  
The use of polybrominated diphenyl ethers (PBDEs) as flame retardants in Singapore is not strictly regulated; therefore these compounds can be readily found in furniture, electronic devices, and building materials. This study was the first of its kind to be conducted in Singapore to measure concentrations of PBDEs in house dust. Samples were collected from 31 homes in various locations across the island-state of Singapore, and a total eight PBDEs congeners were measured. PBDEs were detected in all 31 dust samples and the number of BDE congener detected per home ranged between 3 and 8. The most abundant BDE congeners found were BDE 47, 99 and 209, with a median value of 20 ng g(-1) dust, 24 ng g(-1) dust and 1000 ng g(-1) dust, respectively. BDE 209 contributed 88% to the median of all the congeners, and BDE 47 and 99 contributed 1.8% and 3.5%, respectively. Different congener profiles were observed between this and studies conducted elsewhere, which is consistent with the use of different commercial PBDE around the world. No significant correlations between PBDE dust levels and residential characteristics (number of TVs and computers, floor area or flooring material) were observed. The daily intake of PBDEs via the inhalation pathway was estimated. House dust may be regarded as the most important exposure route of PBDEs for children.  相似文献   

5.
Air quality in Cyprus is influenced by both local and transported pollution, including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993, through December 11, 2008, and in Ayia Marina (rural background representative) from January 1, 1999, through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records, and satellite data were used to identify dust storm days. We investigated long-term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year. A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000–2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact of dust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit.
ImplicationsThis paper examines PM10 concentrations in Nicosia, Cyprus, from 1993 to 2008. The decrease in PM10 levels in Nicosia suggests that the implementation of traffic emission control policies in Cyprus has been effective. However, particle levels still exceeded the European Union annual standard, and dust storms were responsible for a small fraction of the daily PM10 limit exceedances. Other natural particles that are not assessed in this study, such as resuspended soil and sea salt, may be responsible in part for the high particle levels.  相似文献   

6.
Abstract

Approximately 750 total suspended particulates (TSPs) and coarse particulate matter (PM10) filter samples from six urban sites and a background site and >210 source samples were collected in Jiaozuo City during January 2002 to April 2003. They were analyzed for mass and abundances of 25 chemical components. Seven contributive sources were identified, and their contributions to ambient TSP/PM10 levels at the seven sites in three seasons (spring, summer, and winter days) and a “whole” year were estimated by a chemical mass balance (CMB) receptor model. The spatial TSP average was high in spring and winter days at a level of approximately 530 ~g/m3 and low in summer days at 456 ~g/m3; however, the spatial PM10 average exhibited little variation at a level of approximately 325 ~g/m3, and PM10-to-TSP ratios ranged from 0.58 to 0.81, which suggested heavy particulate matter pollution existing in the urban areas. Apportionment results indicated that geological material was the largest contributor to ambient TSP/PM10 concentrations, followed by dust emissions from construction activities, coal combustion, secondary aerosols, vehicle movement, and other industrial sources. In addition, paved road dust and re-entrained dust were also apportioned to the seven source types and found soil, coal combustion, and construction dust to be the major contributors.  相似文献   

7.

The surface group characteristics of mango cultivar peels and seeds were evaluated by infrared spectra, PZC, and functional group composition. The adsorption/reduction of chromium (VI) in aqueous solutions was investigated by varying pH, contact time, initial Cr(VI) concentration, and adsorbent amount. The results show that both peel and seed powders of the mango cultivars showed significant adsorption/reduction capacity for Cr(VI) and that the desorption process obeys pseudo-second-order kinetics. Optimal adsorption occurred at pH 1.0, using a Cr(VI) concentration of 100 mg/L. On average, at pH 1.0, and a concentration of 3 g/L, the maximum adsorption/reduction capacity of Cr(VI) was 83% (peels 76%, seeds 90%). Of the mango powders tested, the most efficient were Tommy seed (100%) and Coite peel (98%) followed by Coite seed (96%) and Tommy peel powders (95%). The adsorption/reduction of Cr(VI) was complete (100%) by the mango seed, in comparison to the peel powders (97%) after 180 min. The data indicates that mango waste products, such as seed and peel powders, are both excellent candidates for the remediation of Cr(VI) from aqueous systems and due to the higher concentration of gallates and galloyl glucosides, the mango seed powders should be the powders of choice for future remediation projects.

  相似文献   

8.
This paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States–Mexico border. During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14–30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g., highway, border crossing, unpaved roads, industry). Continuous PM data were collected every 6 seconds using a valve switching system to sample indoor and outdoor air at each home location. This paper presents the indoor PM data from each home, including the relationship between indoor and outdoor PM. The meteorological conditions associated with elevated ambient PM events in the region are also discussed. Results indicate that indoor air pollution has a strong dependence on cooking fuel, with gas stoves having hourly averaged median PM3 concentrations in the range of 134 to 157 μg m?3 and biomass stoves 163 to 504 μg m?3. Outdoor PM also indicates a large spatial heterogeneity due to the presence of microscale sources and meteorological influences (median PM3: 130 to 770 μg m?3). The former is evident in the median and range of daytime PM values (median PM3: 250 μg m?3, maximum: 9411 μg m?3), while the meteorological influences appear to be dominant during nighttime periods (median PM3: 251 μg m?3, maximum: 10,846 μg m?3). The atmospheric stability is quantified for three nighttime temperature inversion episodes, which were associated with an order of magnitude increase in PM10 at the regulatory monitor in Nogales, AZ (maximum increase: 12 to 474 μg m?3).
Implications:Regulatory air quality standards are based on outdoor ambient air measurements. However, a large fraction of time is typically spent indoors where a variety of activities including cooking, heating, tobacco smoking, and cleaning can lead to elevated PM concentrations. This study investigates the influence of meteorology, outdoor PM, and indoor activities on indoor air pollution (IAP) levels in the United States–Mexico border region. Results indicate that cooking fuel type and meteorology greatly influence the IAP in homes, with biomass fuel use causing the largest increase in PM concentration.  相似文献   

9.
Human exposure to PCBs is nearly universal in North America. While most exposure can be linked to consumption of contaminated fish, detection of PCBs in non-fish eating populations suggests that other routes of exposure including inhalation of PCB-laden particles or volatile congeners, ingestion of contaminated soil or dust, or dermal absorption following direct contact are also important. In an effort to assess the role of the residential environment as a source of exposure, vacuum dust was collected from the homes of 26 Wisconsin residents whose serum PCB levels had been measured approximately 2 years earlier. More than 60 congeners were detected in dust with all of the samples containing congeners 101, 110, 138 and 153. Total PCB levels ranged from 8.8 to 1186 ng g−1 with levels being highest in vacuum dust from homes built between 1959 and 1970. Total PCB levels ranged from 0.05 to 8.34 μg L−1 in serum collected from the adults living in these households, with congeners 138, 153 and 180 predominating. Hexa- and hepta-chlorinated biphenyls comprised 73% of the total residues detected in serum. However, most of the residues found in dust were lower chlorinated congeners with tetra- and penta-chlorinated biphenyls being dominant. Following log transformation, a positive association was found between serum and house dust PCB levels. This association was stronger among infrequent consumers of Great Lake fish, but of borderline statistical significance. This exploratory study suggests that house dust may be a significant source of exposure to PCBs and supports the need for further investigations.  相似文献   

10.
ABSTRACT

A new technology for monitoring airborne heavy metals on aerosols and particulates based on spark-induced breakdown spectroscopy (SIBS) was evaluated at a joint U.S. Environmental Protection Agency (EPA)/U.S. Department of Energy test at the rotary kiln incinerator simulator (RKIS) facility at EPA/Research Triangle Park, NC, in September 1997. The instrument was configured to measure lead and chromium in a simulated combustion flue gas in real time and in situ at target levels of 15 and 75 u, g/dry standard cubic meters. Actual metal concentrations were measured during the tests using EPA Reference Method (RM) 29.

The SIBS technology detected both lead and chromium at the low- and high-level concentrations. Additionally, the hardware performed without failure for more than 100 hr of operation and acquired data for 100% of the RM tests. The chromium data were well correlated with concentration increases resulting from duct operations and pressure fluctuations that are known to entrain dust.  相似文献   

11.
Knobeloch L  Imm P  Anderson H 《Chemosphere》2012,88(7):779-783
Perfluoroalkyl chemicals (PFCs) have been used as surfactants and stain repellants in a variety of consumer products for more than 50 years and there is growing concern regarding their persistence and toxicity. Human exposure to these chemicals is essentially universal in North America and researchers have linked them to a variety of health problems ranging from higher rates of cancer, to developmental and reproductive problems, and higher cholesterol levels. Major exposure pathways are food and water ingestion, dust ingestion via hand to mouth transfer. In an effort to assess residential exposure, the Wisconsin Department of Health Services tested vacuum cleaner contents from thirty-nine homes for 16 perflouroalkyl chemicals. PFOS, PFOA, PFHxS, PFHpA and PFNA were found in all of the vacuum dust samples and dust from eight homes contained all 16 PFCs included in our analysis. The most commonly detected compounds were perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate (PFHxS) and perfluorooctanoic acid (PFOA) which together made up 70% of the total PFC residues in dust from these homes. Summed PFC concentrations in these dust samples ranged from 70 to 2513 ng/g (median 280 ng/g). Our investigation suggests that these chemicals may be ubiquitous contaminants in US homes.  相似文献   

12.
Reducing airborne dust is an essential process for improving hen housing environment. Dust reduction effects of neutral electrolyzed water (pH 8.2) spray were investigated in a commercial tunnel-ventilated layer breeding house during production in northern China. A multipoint sampler was used to measure airborne dust concentration to study the dust reduction effects and distribution in the house. Compared with the control treatment (without spray), airborne dust level was reduced 34% in the 3 hr after spraying 216 mL m?2 neutral electrolyzed water in the breeding house. The dust concentration was significantly higher during the periods of feed distribution (1.13 ± 0.13 mg m?3) and artificial insemination (0.72 ± 0.13 mg m?3) compared with after spray (0.47 ± 0.09 mg m?3) and during lights-off period (0.29 ± 0.08 mg m?3) in the three consecutive testing days (P < 0.05). The experimental cage area was divided into four zones along the length of the house, with zone 1 nearest to the evaporative cooling pad and zone 4 nearest to the fans. The air temperature, relative humidity, airflow rate, and dust concentration were measured at the sampling points of the four zones in 3 consecutive days and mortality of the birds for the duration of a month were investigated. The results showed that the air temperature, airflow rate, dust concentration, and number of dead birds increase from zone 1 to zone 4 in the tunnel-ventilated layer breeding house.

Implications: It is difficult to effectively reduce hen house airborne dust levels and limited information is available on airborne dust distribution in tunnel-ventilated hen houses. This work investigates (i) the application of neutral electrolyzed water spray for reducing dust in a layer breeding houses; (ii) dust concentration variations in 24-hr house operation; as well as (iii) the effects of location on dust concentrations. It was demonstrated that neutral electrolyzed water spray can be efficiently used for dust reduction in poultry houses. Further, a better understanding of the dust concentration variations in 24-hr house operation and in different spatial zones can contribute to bird housing environment management and poultry house design so as to improve bird health.  相似文献   

13.
The use of organophosphorus flame retardants (PFRs) as flame retardants and plasticizers has increased due to the ban on common polybrominated diphenyl ether mixtures. However, only limited information on PFR contamination is available so far from Southeast Asia. In the present study, residual levels of PFRs in house dust and exposure through dust ingestion were investigated in the Philippines. House dust samples (n?=?37) were collected from Malate (residential area) and Payatas (municipal dumping area) in the Philippines and analyzed using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. Among the targeted seven PFRs, triphenyl phosphate (TPP) was the predominant compound. Median levels of ΣPFRs in Malate (530 ng/g) were two times higher (p?<?0.05) than in Payatas (240 ng/g). The estimated daily intake of PFRs in the Philippines (of areas studied) via house dust ingestion was below the guideline values. House dust may be an important contributor in the overall exposure of humans to TPP even when considering dietary sources. To our knowledge, this is a first report on PFR contamination in house dust from developing country. PFRs were ubiquitously detected in the home environments in the Philippines. Although estimated exposure levels through dust ingestion were below the guideline, it was suggested that toddlers are at higher risk. Therefore, further investigations to understand the behavior of PFRs in house and other microenvironments and overall exposure pathways for the country’s populace to PFRs are necessary.  相似文献   

14.
Indoor dust samples were collected from 40 homes in Kocaeli, Turkey and were analyzed simultaneously for 14 polybrominated diphenyl ethers (PBDEs) and 16 poly aromatic hydrocarbons (PAHs) isomers. The total concentrations of PBDEs (Σ14PBDEs) ranged from 29.32 to 4790 ng g?1, with a median of 316.1 ng g?1, while the total indoor dust concentrations of 16 PAHs (Σ16PAHs) extending over three to four orders of magnitude ranged from 85.91 to 40,359 ng g?1 with a median value of 2489 ng g?1. Although deca-PBDE products (BDE-209) were the principal source of PBDEs contamination in the homes (median, 138.3 ng g?1), the correlation in the homes was indicative of similar sources for both the commercial penta and deca-PBDE formulas. The PAHs diagnostic ratios indicated that the main sources of PAHs measured in the indoor samples could be coal/biomass combustion, smoking, and cooking emissions. For children and adults, the contributions to ∑14PBDEs exposure were approximately 93 and 25 % for the ingestion of indoor dust, and 7 and 75 % for dermal contact. Exposure to ∑16PAHs through dermal contact was the dominant route for both children (90.6 %) and adults (99.7 %). For both groups, exposure by way of inhalation of indoor dust contaminated with PBDEs and PAHs was negligible. The hazard index (HI) values for BDE-47, BDE-99, BDE-153, and BDE-209 were lower than the safe limit of 1, and this result suggested that none of the population groups would be likely to experience potential health risk due to exposure to PBDEs from indoor dust in the study area. Considering only ingestion + dermal contact, the carcinogenic risk levels of both B2 PAHs and BDE-209 for adults were 6.2 × 10?5 in the US EPA safe limit range while those for children were 5.6 × 10?4 and slightly higher than the US EPA safe limit range (1 × 10?6 and 1 × 10?4). Certain precautions should be considered for children.  相似文献   

15.
ABSTRACT

In urban and suburban settings, indoor ozone exposures can represent a significant fraction of an individual's total exposure. The decay rate, one of the factors determining indoor ozone concentrations, is inadequately understood in residences. Decay rates were calculated by introducing outdoor air containing 80-160 parts per billion ozone into 43 residences and monitoring the reduction in indoor concentration as a function of time. The mean decay rate measured in the living rooms of 43 Southern California homes was 2.80 + 1.30 hr-1, with an average ozone deposition velocity of 0.049 + 0.017 cm/sec. The experimental protocol was evaluated for precision by repeating measurements in one residence on five different days, collecting 44 same-day replicate measurements, and by simultaneous measurements at two locations in six homes. Measured decay rates were significantly correlated with house type and the number of bedrooms. The observed decay rates were higher in multiple-family homes and homes with fewer than three bedrooms. Homes with higher surface-area-to-volume ratios had higher decay rates. The ratio of indoor-to-outdoor ozone concentrations in homes not using air conditioning and open windows was 68 + 18%, while the ratio of indoor-to-outdoor ozone was less than 10% for the homes with air conditioning in use.  相似文献   

16.
Abstract

Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (<100 µm) concentrations at the boundary of gravel sites ranged from 280 to 1290 µg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 µg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 µg/m3, were also above the daily air quality standard of 125 µg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 µg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 µm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.  相似文献   

17.
Indoor particulate matter samples were collected in 17 homes in an urban area in Alexandria during the summer season. During air measurement in all selected homes, parallel outdoor air samples were taken in the balconies of the domestic residences. It was found that the mean indoor PM2.5 and PM10 (particulate matter with an aerodynamic diameter ≤2.5 and ≤10 μm, respectively) concentrations were 53.5 ± 15.2 and 77.2 ± 15.1 µg/m3, respectively. The corresponding mean outdoor levels were 66.2 ± 16.5 and 123.8 ± 32.1 µg/m3, respectively. PM2.5 concentrations accounted, on average, for 68.8 ± 12.8% of the total PM10 concentrations indoors, whereas PM2.5 contributed to 53.7 ± 4.9% of the total outdoor PM10 concentrations. The median indoor/outdoor mass concentration (I/O) ratios were 0.81 (range: 0.43–1.45) and 0.65 (range: 0.4–1.07) for PM2.5 and PM10, respectively. Only four homes were found with I/O ratios above 1, indicating significant contribution from indoor sources. Poor correlation was seen between the indoor PM10 and PM2.5 levels and the corresponding outdoor concentrations. PM10 levels were significantly correlated with PM2.5 loadings indoors and outdoors and this might be related to PM10 and PM2.5 originating from similar particulate matter emission sources. Smoking, cooking using gas stoves, and cleaning were the major indoor sources contributed to elevated indoor levels of PM10 and PM2.5.

Implications: The current study presents results of the first PM2.5 and PM10 study in homes located in the city of Alexandria, Egypt. Scarce data are available on indoor air quality in Egypt. Poor correlation was seen between the indoor and outdoor particulate matter concentrations. Indoor sources such as smoking, cooking, and cleaning were found to be the major contributors to elevated indoor levels of PM10 and PM2.5.  相似文献   

18.
The characteristics of petroleum-contaminated sediment (PCS) have been evaluated to assess whether the practice of its beneficial reuse as a sole or supplemental energy source is sustainable relative to other sediment remediation options such as monitored natural recovery (MNR), capping, or off-site disposal. Some of these remediation options for PCS are energy-intensive and/or require land utilization. The energy and compositional analysis results indicate a low carbon content (15–17%(wt)) and corresponding low energy values of 5,200 kJ/kg (2,200 Btu/lb) to 5,600 kJ/kg (2,400 Btu/lb). However, given other decision-making criteria, the sediment may contain enough value to be added as a supplemental fuel given that it is normally considered a waste product and is readily available.

The thermogravimetric profiles obtained under both combustion and pyrolytic conditions showed that the sulfur contents were comparable to typical low sulfur bituminous or lignite coals found in the United States, and most of the volatiles could be vaporized below 750°C. The heavy metal concentrations determined before and after combustion of the PCS indicated that further engineering controls may be required for mercury, arsenic, and lead. Due to the potential for reduction of public health and environmental threats, potential economic savings, and conservation of natural resources (petroleum and land), removal of PCS by dredging and beneficial reuse as a supplemental fuel clearly has merit to be considered as a sustainable remediation option.

Implications: This study will provide a logical evaluation process to determine whether petroleum-contaminated sediment can be reused as an energy source. The energy and emissions values were determined and evaluated whether the sediment could be combusted for viable and sustainable use, considering several factors pertinent to evaluate in the remediation decision process. Various analysis methods were employed to determine elemental compositions, heating values, thermal and emission characteristics. This evaluation process may be used as a general methodology for the determination of petroleum-contaminated sediment as a supplemental fuel that may have merit to be considered as a sustainable remediation option.  相似文献   

19.
Aeolian river dust can seriously affect the air quality in central Taiwan. The main purpose of this study was to assess the concentration variations of PM10 and metals at different elementary schools during river dust episodes. River dust samples were taken from eight sites in the main bare soil areas of the Choshui River. PM10 aerosols from four elementary schools in Yulin County were collected by means of high-volume samplers. Fifteen elements (Fe, Al, Ca, Mg, Mn, Zn, Ti, Ni, V, Cr, As, Pb, Cu, Co, and Cd) in the river dust and PM10 were analyzed in this study. The coefficients of divergence (CDs) were obtained by comparing the metal compositions in PM10 aerosols at the four schools on the sampling days with the mean metal contents in the river soil samples as reference. The CD values showed that metal compositions in the aerosols at high-exposure sites during river dust episodes were similar to those compositions in the river dust. The concentrations of PM10 at the high-exposure schools during river dust episodes were much higher than those during non-river-dust episodes. This study also indicated that at the high-exposure sites, both the PM10 and metal concentrations were higher than at the low-exposure and control sites, not only during the river dust episodes, but also after the river dust episodes. The concentrations of toxic metals (Ni, Cr, As, and Cd) at the high-exposure sites were about 11.3 times higher during the river dust episodes (189 ng/m3) than during non-river-dust episodes (16.7 ng/m3) and about 8.9 times higher during the same periods at the control site (21.3 ng/m3).  相似文献   

20.
The study aimed to monitor heavy metal (chromium, Cr; cadmium, Cd; nickel, Ni; copper, Cu; lead, Pb; iron, Fe; manganese, Mn; and zinc, Zn) footprints in biological matrices (urine, whole blood, saliva, and hair), as well as in indoor industrial dust samples, and their toxic effects on oxidative stress and health risks in exposed workers. Overall, blood, urine, and saliva samples exhibited significantly higher concentrations of toxic metals in exposed workers (Cr; blood 16.30 μg/L, urine 58.15 μg/L, saliva 5.28 μg/L) than the control samples (Cr; blood 5.48 μg/L, urine 4.47 μg/L, saliva 2.46 μg/L). Indoor industrial dust samples also reported to have elevated heavy metal concentrations, as an example, Cr quantified with concentration of 299 mg/kg of dust, i.e., more than twice the level of Cr in household dust (136 mg/kg). Superoxide dismutase (SOD) level presented significant positive correlation (p?≤?0.01) with Cr, Zn, and Cd (Cr?>?Zn?>?Cd) which is an indication of heavy metal’s associated raised oxidative stress in exposed workers. Elevated average daily intake (ADI) of heavy metals resulted in cumulative hazard quotient (HQ) range of 2.97–18.88 in workers of different surgical units; this is an alarming situation of health risk implications. Principal component analysis-multiple linear regression (PCA-MLR)-based pie charts represent that polishing and cutting sections exhibited highest metal inputs to the biological and environmental matrices than other sources. Heavy metal concentrations in biological matrices and dust samples showed a significant positive correlation between Cr in dust, urine, and saliva samples. Current study will help to generate comprehensive base line data of heavy metal status in biomatrices and dust from scientifically ignored industrial sector. Our findings can play vital role for health departments and industrial environmental management system (EMS) authorities in policy making and implementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号