首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
ABSTRACT

Ozone reactivity scales play an important role in selecting which chemical compounds are used in products ranging from gasoline to pesticides to hairspray in California, across the United States and around the world. The California Statewide Air Pollution Research Center (SAPRC) box model that calculates ozone reactivity uses a representative urban atmosphere to predict how much additional ozone forms for each kilogram of compound emission. This representative urban atmosphere has remained constant since 1988, even though more than 25 years of emissions controls have greatly reduced ambient ozone concentrations across the United States during this time period. Here we explore the effects of updating the representative urban atmosphere used for ozone reactivity calculations from 1988 to 2010 conditions by updating the meteorology, emission rates, concentration of initial conditions, concentration of background species, and composition of volatile organic compound (VOC) profiles. Box model scenarios are explored for 39 cities across the United States to calculate the Maximum Incremental Reactivity (MIR) scale for 1,233 individual compounds and compound-mixtures. Median MIR values across the cities decreased by approximately 20.3% when model conditions were updated. The decrease is primarily due to changes in atmospheric composition ultimately attributable to emissions control programs between 1998 and 2010. Further effects were caused by changes in meteorological variables stemming from shifting seasons for peak ozone events (summer versus early fall). Lumped model species with the highest MIR values in 1988 experienced the greatest decrease in MIR values when conditions were updated to 2010. Despite the reduction in the absolute reactivity in the updated 2010 atmosphere, the relative ranking of the VOCs according to their reactivity did not change strongly compared to the original 1988 atmosphere. These findings indicate that past decisions about ozone control programs remain valid today, and the ozone reactivity scale continues to provide relevant guidance for future policy decisions even as new products are developed.

Implications: Updating the representative urban atmosphere used for the Maximum Incremental Reactivity (MIR) scale from 1988 to 2010 conditions caused the reactivity of 1223 individual compounds and combined mixtures to decrease by an average of 20.3% but the relative ranking of the VOCs was not strongly affected. This means that previous guidance about preferred chemical formulations to reduce ozone formation in cities across the United States remain valid today, and the MIR scale continues to provide relevant guidance for future policy decisions even as new products are developed.  相似文献   

3.
Abstract

In an earlier paper the ozone-forming potential of n-propyl bromide (NPB) was studied with a new methodology designed to address issues associated with a marginal smog-forming compound. However, the U.S. Environmental Protection Agency (EPA) subsequently revised its policy and now recommends using the Maximum Incremental Reactivity (MIR) scale to rank the ozone-forming potential of all volatile organic compounds (VOCs), including those of marginal ozone productivity. Nevertheless, EPA contemplated exceptions to the box-model-derived MIR scale by allowing use of photochemical grid-model simulations for case specific reactivity assessments. The California Air Resources Board (CARB) also uses the MIR scale and CARB has a Reactivity Scientific Advisory Committee that can consider exceptions to the MIR scale. In this study, grid-model simulations that were recommended by EPA are used to evaluate the incremental ozone impacts of NPB using an update to the chemical mechanism developed in an earlier paper. New methods of analysis of the grid-model output are further developed here to quantify the relative reactivities between NPB and ethane over a wide range of conditions. The new grid-model-based analyses show that NPB is significantly different and generally less in ozone-forming potential (i.e., reactivity) than predicted by the box-model-based MIR scale relative to ethane, EPA’s “bright-line” test for non-VOC status. Although NPB has low reactivity compared to typical VOCs on any scale, the new grid-model analyses developed here show that NPB is far less reactive (and even has negative reactivity) compared to the reactivity predicted by the MIR scale.  相似文献   

4.
ABSTRACT

This article describes an effort to re-examine the scientific bases of the existing, more than two decades-old U.S. Environmental Protection Agency (EPA) policy on volatile organic compound reactivity in light of recent scientific knowledge and understanding. The existing policy allows “negligibly reactive” organic emissions, that is, emissions with ambient ozone production potential lower than that of ethane, to be exempted from all ozone regulations. It relies on use of kOH and incremental reactivity data for determining whether an organic compound is negligibly reactive. Recent scientific evidence suggests that (1) exempting the negligibly reactive organic emissions from all regulations is unjustifiable, (2) the choice of ethane as the benchmark organic species for distinguishing reactive from negligibly reactive organics may be inappropriate, (3) the assumptions and methods used for classifying organic compounds as “reactive” and “negligibly reactive” should be reconsidered, and (4) the volatility factor should be considered, more appropriately, in much the same way as the reactivity factor.  相似文献   

5.
6.
Surface emission from Dhapa, the only garbage disposal ground in Kolkata, is a matter of concern to the local environment and also fuels the issues of occupational and environmental health. Surface emission of the Dhapa landfill site was studied using a flux chamber measurement for nonmethane volatile organic compounds (NMVOCs). Eighteen noncarbonyl volatile organic compounds (VOCs) and 14 carbonyl VOCs, including suspected and known carcinogens, were found in appreciable concentrations. The concentrations of the target species in the flux chamber were found to be significantly higher for most of the species in summer than winter. Surface emission rate of landfill gas was estimated by using two different approaches to assess the applicability for an open landfill site. It was found that the emissions predicted using the model Land GEM version 3.02 is one to two orders less than the emission rate calculated from flux chamber measurement for the target species. Tropospheric ozone formation has a serious impact for NMVOC emission. The total ozone-forming potential (OFP) of the Dhapa dumping ground considering all target NMVOCs was estimated to be 4.9E+04 and 1.2E+05 g/day in winter and summer, respectively. Also, it was found that carbonyl VOCs play a more important role than noncarbonyl VOCs for tropospheric ozone formation. Cumulative cancer risk estimated for all the carcinogenic species was found to be 2792 for 1 million population, while the total noncancer hazard index (HI) was estimated to be 246 for the occupational exposure to different compounds from surface emission to the dump-site workers at Dhapa.
Implications:This paper describes the real-time surface emission of NMVOCs from an open municipal solid waste (MSW) dump site studied using a flux chamber. Our study findings indicate that while planning for new landfill site in tropical meteorology, real-time emission data must be considered, rather than relying on modeled data. The formation of tropospheric ozone from emitted NMVOC has also been studied. Our result shows how an open landfill site acts as a source and adds to the tropospheric ozone for the airshed of a metropolitan city.  相似文献   

7.
Abstract

The California Air Resources Board recently adopted regulations for light- and medium-duty vehicles that require reductions in the ozone-forming potential or “reactivity,” rather than the mass, of nonmethane organic gas (NMOG) emissions. The regulations allow sale of all alternatively fueled vehicles (AFVs) that meet NMOG exhaust emission standards equivalent in reactivity to those set for vehicles fueled with conventional gasoline. Reactivity adjustment factors (RAFs), the ratio of the reactivity (per gram) of the AFV exhaust to that of the conventionally fueled vehicle (CFV), are used to correct the stringent exhaust emission standards. Complete chemical speciation of the exhaust and conversion of each NMOG species to an appropriate mass of ozone using the maximum incremental reactivity (MIR) scale of Carter determines the RAF. The MIR approach defines reactivity where NMOG control is the most effective strategy in reducing ozone concentrations, and assumes it is not important to define reactivity at other conditions, i.e., where NOx is the limiting precursor.

This study used the Carnegie/California Institute of Technology airshed model to evaluate whether the RAF-adjusted AFV emissions result in ozone impacts equivalent to those of CFV emissions. A matrix of two ozone episodes in the South Coast Air Basin (SoCAB) of California, two base emission inventories, and exhaust emissions from three alternative fuels that meet the first level of the low emission vehicle standards bounds the expected range of conditions. Although very good agreement was found previously for individual NMOG species,2 this study noted deviations of up to ±15 percent from the equal ozone impacts for any vehicle/fuel combination required by the California regulations. These deviations appear to be attributable to differences in spatial and temporal patterns of emissions between vehicle fleets, rather than a problem with the MIR approach. The first formally adopted RAF, a value of 0.41 for 85 percent methanol/15 percent gasoline-fueled vehicles, includes a 10 percent increase based on the airshed modeling. The correction to the RAF is different for other fuels and may be different for air basins other than the SoCAB.  相似文献   

8.
9.
Solvents are one of the most abundant sources of anthropogenic VOCs in the atmosphere, and can comprise a large number of organic compounds having different impacts on the rate and amount of ozone formation. A three-dimensional photochemical air quality model has been used to study the relative impacts of eight solvents, acetone, ethane, ethanol, isobutane, m-xylene, tertiary butyl acetate (TBA), para-chlorobenzotrifluoride (PCBTF) and benzotrifluoride (BTF) in three very different domains: Los Angeles, an urban area with high ozone and NOx levels; the Swiss Plateau, a more regional domain with much lower ozone and NOx levels: and Mexico City, a very high VOC urban area with high ozone levels. The results show that there can be a wide range of VOC reactivities under variable environmental conditions. Variability also exists between metrics, which are used to quantify reactivity. In most cases, halogenated aromatics were the least reactive and isobutane and m-xylene the most. The results here, finding that normalized reactivities are less variable than the absolute reactivity, support the applicability of relative VOC reactivity scales for use in air quality management.  相似文献   

10.
Abstract

1-Bromo-propane (1-BP) is a replacement for high-end chlorofluorocarbon (HCFC) solvents. Its reaction rate constant with the OH radical is, on a weight basis, significantly less than that of ethane. However, the overall smog formation chemistry of 1-BP appears to be very unusual compared with typical volatile organic compounds (VOCs) and relatively complex because of the presence of bromine. In smog chamber experiments, 1-BP initially shows a faster ozone build-up than what would be expected from ethane, but the secondary products containing bromine tend to destroy ozone such that 1-BP can have a net overall negative reactivity. Alternative sets of reactions are offered to explain this unusual behavior. Follow-up studies are suggested to resolve the chemistry. Using one set of bromine-related reactions in a photo-chemical grid model shows that 1-BP would be less reactive toward peak ozone formation than ethane with a trend toward even lower ozone impacts in the future.  相似文献   

11.
Abstract

Grass, and particularly cut grass, recently has been shown to emit significant amounts of volatile organic compounds (VOCs) into the atmosphere. Some components of these emissions are highly reactive and may contribute to photochemical smog in urban areas. A simple model for estimating the VOC emissions from grass and for grass cutting that allows these processes to be included in urban/regional emissions inventories is presented here. Using previous work and recent literature values, estimates are made of these biogenic volatile organic compound (BVOC) emissions for two typical urban airsheds, those including the cities of Sydney and Melbourne in Australia. Grass and cut grass could contribute ~2% for Sydney and 3% for Melbourne of the total VOCs emitted into these urban atmospheres annually. These contributions could rise to 4 and 5%, respectively, during the weekends of the summer growing season and, thus, could contribute to weekday/weekend ozone differences. It is recommended that the emissions of BVOCs from grass and cut grass be included in urban and global emissions inventories so that more accurate predictions of smog chemistry can be determined.  相似文献   

12.
Polycyclic aromatic hydrocarbons (PAHs) are of environmental concern because many PAHs are either carcinogens or potential carcinogens. Petroleum products are a major source of PAHs. The occurrence of PAH contamination is widespread and novel treatment technologies for the remediation of contaminated soils are necessary.Ozone has been found to be extremely useful for the degradation of PAHs in soils. For these compounds, the reaction with molecular ozone appears to be the more important degradation pathway. Greater than 95% removal of phenanthrene was achieved with an ozonation time of 2.3 h at an ozone flux of 250 mg h−1. After 4.0 h of treatment at an ozone flux of 600 mg h−1, 91 % of the pyrene was removed. We have also found that the more hydrophobic PAHs (e.g. chrysene) react more slowly than would be expected on the basis of their reactivity with ozone, suggesting that partitioning of the contaminant into soil organic matter may reduce the reactivity of the compound. Even so, after 4 h of exposure to ozone, the chrysene concentration in a contaminated Metea soil was reduced from 100 to 50 mg kg−1 .Ozone has been found to be readily transported through columns packed with a number of geological materials, including Ottawa sand, Metea soil, Borden aquifer material and Wurtsmith aquifer material. All of these geological materials exerted a limited (finite) ozone demand, i.e. the rate of ozone degradation in soil columns is very slow after the ozone demand is met. Moisture content was found to increase the ozone demand, most likely owing to the dissolution of gaseous ozone into the pore water. As once the initial ozone demand is met, little degradation of ozone is observed, it should be possible to achieve ozone penetration to a considerable distance away from the injection well, suggesting that in-situ ozonation is a feasible means of treating uncontaminated unsaturated soils. This is substantiated by two field studies where in-situ ozonation was apparently successful at remediating the sites.  相似文献   

13.
ABSTRACT

A speciated, hourly, and gridded air pollutants emission modeling system (SHEMS) was developed and applied in predicting hourly nitrogen dioxide (NO2) and ozone (O3) levels in the Seoul Metropolitan Area (SMA). The primary goal of the SHEMS was to produce a systemized emission inventory for air pollutants including ozone precursors for modeling air quality in urban areas.

The SHEMS is principally composed of three parts: (1) a pre-processor to process emission factors, activity levels, and spatial and temporal information using a geographical information system; (2) an emission model for each source type; and (3) a post-processor to produce report and input data for air quality models through database modeling. The source categories in SHEMS are point, area, mobile, natural, and other sources such as fugitive emissions. The emission database produced by SHEMS contains 22 inventoried compounds: sulfur dioxide, NO2, carbon monoxide, and 19 speciated volatile organic compounds. To validate SHEMS, the emission data were tested with the Urban Airshed Model to predict NO2 and O3 concentrations in the SMA during selected episode days in 1994. The results turned out to be reliable in describing temporal variation and spatial distribution of those pollutants.  相似文献   

14.
In an earlier paper the ozone-forming potential of n-propyl bromide (NPB) was studied with a new methodology designed to address issues associated with a marginal smog-forming compound. However, the U.S. Environmental Protection Agency (EPA) subsequently revised its policy and now recommends using the Maximum Incremental Reactivity (MIR) scale to rank the ozone-forming potential of all volatile organic compounds (VOCs), including those of marginal ozone productivity. Nevertheless, EPA contemplated exceptions to the box-model-derived MIR scale by allowing use of photochemical grid-model simulations for case specific reactivity assessments. The California Air Resources Board (CARB) also uses the MIR scale and CARB has a Reactivity Scientific Advisory Committee that can consider exceptions to the MIR scale. In this study, grid-model simulations that were recommended by EPA are used to evaluate the incremental ozone impacts of NPB using an update to the chemical mechanism developed in an earlier paper. New methods of analysis of the grid-model output are further developed here to quantify the relative reactivities between NPB and ethane over a wide range of conditions. The new grid-model-based analyses show that NPB is significantly different and generally less in ozone-forming potential (i.e., reactivity) than predicted by the box-model-based MIR scale relative to ethane, EPA's "bright-line" test for non-VOC status. Although NPB has low reactivity compared to typical VOCs on any scale, the new grid-model analyses developed here show that NPB is far less reactive (and even has negative reactivity) compared to the reactivity predicted by the MIR scale.  相似文献   

15.
Abstract

Comparison of the effects and kinetics of UV photolysis and four advanced oxidation systems (ozone, ozone/hydrogen peroxide, ozone/UV radiation and UV radiation/hydrogen peroxide) for the removal of simazine from water has been investigated. At the conditions applied, the order of reactivity was ozone < ozone/hydrogen peroxide < UV radiation < ozone/UV radiation and UV radiation/hydrogen peroxide. Rate constants of the reactions between ozone and simazine and hydroxyl radical and simazine were found to be 8.7 M‐1s‐1 and 2.1x109 M‐1s‐1, respectively. Also, a quantum yield of 0.06 mol.photon‐1 was found for simazine at 254 nm UV radiation. The high value of the quantum yield corroborated the importance of the direct photolysis process. Percentage contributions of direct reaction with ozone, reaction with hydroxyl radicals and direct photolysis were also quantified.  相似文献   

16.
A reduced chemical scheme (CRIv2-R5) which describes ozone formation from the tropospheric degradation of methane and 22 emitted non-methane hydrocarbons and oxygenated volatile organic compounds has been applied in a global-3D chemistry transport model (STOCHEM). The scheme, which contains 220 species in 609 reactions, has been used to simulate ozone and its precursors for the meteorological year of 1998 and the results have been compared with those from STOCHEM runs with its original chemistry. Compared with the original chemistry scheme, the degradation of a larger number of more reactive VOCs in the CRI scheme results in the formation (and their consequent transportation) of more NOx active reservoirs thus leading to formation of more ozone away from land-based sources. Conversely, the more reactive VOCs also lead to greater removal of OH in continental areas and greater formation of OH in marine environments. STOCHEM run with the CRI scheme simulates more ozone (by up to 10 ppb), which results in better agreement with observed vertical ozone profiles. The CRI scheme transforms the globally and annually integrated ozone budget for the considered year in STOCHEM from a net loss of ?55 Tg yr?1 to a net gain of +50 Tg yr?1.  相似文献   

17.
Emissions of organic fragmentation products, so-called “secondary emission products” and reactive species from wood-based furniture coatings have been studied in 1 m3 test chambers. the climatic conditions were representative of indoor environments. Relevant compounds and compound groups were the wetting agent 2,4,7,9-tetramethyl-5-dicyne-4,7-diol (T4MDD), the plasticiser di-2-ethyl-hexyl-phthalate (DEHP), aliphatic aldehydes, monoterpenes, photoinitiator fragments, acrylic monomers/reactive solvents and diisocyanate monomers. Such substances may affect human health in several ways. Aliphatic aldehydes and some photoinitiator fragments are of strong odour, while acrylates and diisocyanates cause irritation of skin, eyes and upper airways. Terpenes and reactive solvents like styrene undergo indoor chemistry in the presence of ozone, nitrogen oxides or hydroxy radicals. Secondary emission products and reactive species can achieve significant indoor concentrations. On the other hand, it has been reported that even small quantities can cause health effects. In the cases of indoor studies with special regard to emissions from furniture, chemical analysis should always include these compounds.  相似文献   

18.
Field observations of atmospheric aerosols have established that organic compounds compose a large fraction of the atmospheric aerosol mass. However, the physical/chemical pathway by which organic compounds are incorporated into atmospheric aerosols remains unclear. The potential role of acid-catalyzed reactions of organic compounds on acidic aerosols has been explored as a possible chemical pathway for the incorporation of organic material into aerosols. In the present study, ultraviolet–visible (UV–vis) spectroscopy was used to monitor the kinetics of formation of the products of the acid-catalyzed aldol condensation reaction of a range of aliphatic aldehydes (C2–C8). The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature. While the kinetic data are generally consistent with previous laboratory reports of aldehyde reactivity in various sulfuric acid media, the aldol condensation reactions involving aliphatic aldehydes do not appear fast enough to be responsible for significant transfer of organic material into atmospheric aerosols.  相似文献   

19.
O3 concentrations were simulated over the Seoul metropolitan area in Korea using a simple semi-empirical reaction (SEGRS) model which consists of generic reaction set (GRS), photochemical reaction set, and the diagnostic wind field generation model. The aggregated VOC emission strength was empirically scaled by the comparison of the simulated slope of (O3–2NO–NO2) concentration as a function of cumulative actinic light flux against measurements on high surface ozone concentration days with the relatively weak easterly geostrophic winds at the 850 hPa level in summer when the effect of horizontal advection was fairly small. The results indicated that the spatial distribution patterns and temporal variations of spatially averaged ground-level ozone concentrations were quite well simulated compared with those of observations with the modified volatile organic compound (VOC) emission strength. The diurnal trend of the surface ozone concentration and the maximum concentration compared observations were also quite reasonably simulated. However, the maximum ozone concentration occurring time at Seoul lagged about 2 h and the ozone concentration in the suburban area was slightly overestimated in the afternoon due to the influx of high ozone concentration from the urban area. It was found that the SEGRS model could be effectively used to simulate or predict the ground-level ozone concentration reasonably well without heavy computational cost provided the emission of ozone precursors are given.  相似文献   

20.
ABSTRACT

The concentrations of contaminants in the supply air of mechanically ventilated buildings may be altered by pollutant emissions from and interactions with duct materials. We measured the emission rate of volatile organic compounds (VOCs) and aldehydes from materials typically found in ventilation ducts. The emission rate of VOCs per exposed surface area of materials was found to be low for some duct liners, but high for duct sealing caulk and a neo-prene gasket. For a typical duct, the contribution to VOC concentrations is predicted to be only a few percent of common indoor levels. We exposed selected materials to ~100-ppb ozone and measured VOC emissions. Exposure to ozone increased the emission rates of aldehydes from a duct liner, duct sealing caulk, and neoprene gasket. The emission of aldehydes from these materials could increase indoor air concentrations by amounts that are as much as 20% of odor thresholds. We also measured the rate of ozone uptake on duct liners and galvanized sheet metal to predict how much ozone might be removed by a typical duct in ventilation systems. For exposure to a constant ozone mol fraction of 37 ppb, a lined duct would initially remove ~9% of the ozone, but over a period of 10 days the ozone removal efficiency would diminish to less than 4%. In an unlined duct, in which only galvanized sheet metal is exposed to the air-stream, the removal efficiency would be much lower, ~0.02%. Therefore, ducts in ventilation systems are unlikely to be a major sink for ozone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号