首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urban-scale air pollutants for sulfur dioxide, nitrogen dioxide, particulate matter with aerodynamic diameter > or = 10 microm, and ozone (O3) were simulated over the Seoul metropolitan area, Korea, during the period of July 2-11, 2002, and their predicting capabilities were discussed. The Air Pollution Model (TAPM) and the highly disaggregated anthropogenic and the biogenic gridded emissions (1 km x 1 km) recently prepared by the Korean Ministry of Environment were applied. Wind fields with observational nudging in the prognostic meteorological model TAPM are optionally adopted to comparatively examine the meteorological impact on the prediction capabilities of urban-scale air pollutants. The result shows that the simulated concentrations of secondary air pollutant largely agree with observed levels with an index of agreement (IOA) of >0.6, whereas IOAs of approximately 0.4 are found for most primary pollutants in the major cities, reflecting the quality of emission data in the urban area. The observationally nudged wind fields with higher IOAs have little effect on the prediction for both primary and secondary air pollutants, implying that the detailed wind field does not consistently improve the urban air pollution model performance if emissions are not well specified. However, the robust highest concentrations are better described toward observations by imposing observational nudging, suggesting the importance of wind fields for the predictions of extreme concentrations such as robust highest concentrations, maximum levels, and >90th percentiles of concentrations for both primary and secondary urban-scale air pollutants.  相似文献   

2.
The three-dimensional distribution of aerosols and trace gases in the Los Angeles air basin was mapped out during a smoggy day by instrumented aircraft. Strong vertical and horizontal gradients were observed in the concentrations of both primary and secondary pollutants.The day began with much of the basin occupied by polluted air carried over from the day before. New emissions accumulated in the stagnant air until late morning, when a well-organized sea breeze developed at the surface. Onshore flow during the afternoon carried heavily polluted air into inland receptor areas, ahead of a shallow, well-defined, advancing layer of cleaner marine air. The highest ozone concentrations of the day were observed just above the marine layer in stagnant air decoupled from the surface and just ahead of the marine front in photochemically aged air transported into low emission density areas.The data show that air pollution in the basin is a regional problem and that emissions in the western portion of the basin can result in high concentrations of secondary pollutants (e.g. > 0.25 ppm ozone) in areas over 50 km downwind. Layers of well aged pollutants are also shown to occur aloft. These layers can remain overnight and be re-entrained the next day by a deepening mixing layer, contributing to surface concentrations.  相似文献   

3.
Two experimental monitoring campaigns were carried out in 2012 to investigate the air quality in the port of Naples, the most important in southern Italy for traffic of passengers and one of the most important for goods. Therefore, it represents an important air pollution source located close to the city of Naples. The concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2), and BTEX (benzene, toluene, ethylbenzene, and xylenes) in the air were measured at 15 points inside the Naples port area through the use of passive samplers. In addition, a mobile laboratory was positioned in a fixed point inside the port area to measure continuous concentration of pollutants together with particulate matter, ambient parameters, and wind direction and intensity. The pollution levels monitored were compared with those observed in the urban area of Naples and in other Mediterranean ports. Even though the observation time was limited, measured concentrations were also compared with limit values established by European legislation. All the measured pollutants were below the limits with the exception of nitrogen dioxide: its average concentration during the exposition time exceeded the yearly limit value. A spatial analysis of data, according to the measured wind direction and intensity, provided information about the effects that ship emissions have on ambient air quality in the port area. The main evidence indicates that ship emissions influence sulfur dioxide concentration more than any other pollutants analyzed.

Implications: Two monitoring campaigns were carried out to measure BTEX, SO2, NO2, and PM10 (particulate matter with an aerodynamic diameter <10 μm) air concentrations in the port of Naples. NO2 hourly average and PM10 daily average comply with European legislative standards. Spatial variation of pollutants long the axis corresponding to the prevailing wind direction seems to indicate a certain influence of ship emissions for SO2. For NO2 and PM10, a correlation between concentrations in the harbor and those measured by the air quality monitoring stations sited in the urban area of Naples was observed, indicating a possible contribution of the near road traffic to the air pollution in the port of Naples.  相似文献   

4.
Measurements of carbonyl compound concentrations at different sites in the Paris area have been carried out. Interpretation of the results made use of the following data: general meteorological conditions, wind field analysis and type of primary pollutant sources. The principal phenomena observed were: a sharp formaldehyde decrease during rainfall; concentration levels of lower aldehydes in rural sites comparable to those found in the literature; an important variation in the ratio of primary aldehydes to secondary aldehydes depending on meteorological conditions; a significant increase in lower aldehyde concentrations downwind from the urban center despite vertical dispersion of the pollutants.  相似文献   

5.
In this study, the authors endeavored to develop an effective framework for improving local urban air quality on meso-micro scales in cities in China that are experiencing rapid urbanization. Within this framework, the integrated Weather Research and Forecasting (WRF)/CALPUFF modeling system was applied to simulate the concentration distributions of typical pollutants (particulate matter with an aerodynamic diameter <10 μm [PM10], sulfur dioxide [SO2], and nitrogen oxides [NOx]) in the urban area of Benxi. Statistical analyses were performed to verify the credibility of this simulation, including the meteorological fields and concentration fields. The sources were then categorized using two different classification methods (the district-based and type-based methods), and the contributions to the pollutant concentrations from each source category were computed to provide a basis for appropriate control measures. The statistical indexes showed that CALMET had sufficient ability to predict the meteorological conditions, such as the wind fields and temperatures, which provided meteorological data for the subsequent CALPUFF run. The simulated concentrations from CALPUFF showed considerable agreement with the observed values but were generally underestimated. The spatial-temporal concentration pattern revealed that the maximum concentrations tended to appear in the urban centers and during the winter. In terms of their contributions to pollutant concentrations, the districts of Xihu, Pingshan, and Mingshan all affected the urban air quality to different degrees. According to the type-based classification, which categorized the pollution sources as belonging to the Bengang Group, large point sources, small point sources, and area sources, the source apportionment showed that the Bengang Group, the large point sources, and the area sources had considerable impacts on urban air quality. Finally, combined with the industrial characteristics, detailed control measures were proposed with which local policy makers could improve the urban air quality in Benxi. In summary, the results of this study showed that this framework has credibility for effectively improving urban air quality, based on the source apportionment of atmospheric pollutants.

Implications: The authors endeavored to build up an effective framework based on the integrated WRF/CALPUFF to improve the air quality in many cities on meso-micro scales in China. Via this framework, the integrated modeling tool is accurately used to study the characteristics of meteorological fields, concentration fields, and source apportionments of pollutants in target area. The impacts of classified sources on air quality together with the industrial characteristics can provide more effective control measures for improving air quality.

Through the case study, the technical framework developed in this study, particularly the source apportionment, could provide important data and technical support for policy makers to assess air pollution on the scale of a city in China or even the world.  相似文献   


6.
Measurements of urban air quality at monitoring stations in developed countries have frequently involved the criteria gaseous pollutants, particulates, hazardous air pollutants, perceived air quality and relevant meteorological conditions. Large numbers of indicators have therefore been established to quantify emissions, concentrations and environmental and human health impacts of each of these groups of substances. To simplify the data for management, several indicators have been grouped together to form urban air quality indices but the weightings of individual variables is contentious. In industrialising and developing countries, data may be limited and traditional air pollutant indicators cannot often be constructed. The emphasis therefore has to be placed on the development of policy-relevant indicators, such as Response Indicators that reflect different policy principles for regulating air pollutant emissions. Indices that quantify the air quality management capabilities and capacities at the city level provide further useful decision-relevant tools. Four sets of indices, namely, 1. air quality measurement capacity, 2. data assessment and availability, 3. emissions estimates, and 4. management enabling capabilities, and a composite index to evaluate air quality management capability, were constructed and applied to 80 cities. The indices revealed that management capability varied widely between the cities. In some of the cities, existing national knowledge on urban air quality could have been more effectively used for management. It was concluded that for effective urban air quality management, a greater emphasis should be given, not just to monitoring and data capture programmes, but to the development of indicators and indices that empower decision-makers to initiate management response strategies. Over-reliance on restricted, predetermined sets of traditional air quality indicators should be avoided.  相似文献   

7.
A steady-state two-dimensional diffusion model suitable for predicting ambient air pollutant concentrations averaged over a long time period (e.g., month, season or year) and resulting from the transport of pollutants for distances greater than about 100 km from the source is described. Analytical solutions are derived for the primary pollutant emitted from a point source and for secondary pollutant formed from it. Depletion effects, whether due to wet or dry deposition or chemical conversion to another species, are accounted for in these models as first order processes. Thus, solutions for multiple point sources may be superimposed.In this model the time-averaging of the random trajectories of pollutant-contaminated air parcels is represented by horizontal diffusion in a steady, two-dimensional flow field of the time-averaged wind. The resulting concentration isopleths for a point source show significant dispersion both upwind and cross wind of the source with respect to the mean wind field.The analytical theory for the dispersion of a primary pollutant is compared with the numerical predictions of a plume trajectory model for the case of steady emission from a point source. Good overall agreement between the two models is achieved whether or not depletion by wet and dry deposition is included.The theory for the dispersion of a secondary pollutant is compared with measurements of the annual average sulfate concentration in the U.S. Calculations are carried out using SO2 emissions from electric power plants in the United States as a source inventory. Using optimum values of the dispersion parameters, the correlation coefficient of observed and calculated ambient concentrations is 0.87 for the eastern United States and 0.69 for the western region. The optimum dispersion parameters used are comparable to values quoted in the literature.The horizontal length scale characterizing the sulphate concentration distribution from a single source is about 500 km, being noticeably larger than that characterizing the primary (sulfur dioxide) distribution. Using optimum dispersion parameters, a point source of 33 kg s−1 of sulfur dioxide would give rise to a maximum annual average sulfate concentration of 1 μ m−3.A calculation of annual average SO2 concentrations in the United States is carried out using previously derived optimal values of the parameters from the sulfate calculation. The resulting isopleths are similar to measured values in the eastern U.S.  相似文献   

8.
In this study, background concentration sites of Deokjeok and Gosan, which were deemed suitable for monitoring the impact of long-range transported air pollutants, were selected. An investigation of the source types of pollutants, their locations, and relative quantitative contributions to the particulate concentrations at both sites using appropriate methodologies to make initial estimations was conducted. Episodic measurements of PM2.5, PM10, and size distribution, along with its ion and carbon components were performed from 2005 to 2007, and a comprehensive analysis of the results was conducted utilizing back trajectory analysis. As for frequency of wind direction, it was quite apparent that the two sites are heavily influenced by air masses originating from the eastern and northern regions of China. For PM2.5 and PM10, the mass concentrations from north and east China were higher than other cases, originating from the ocean. In the northerly-wind case, meteorological properties for Deokjeok and Gosan and the influence of carbon emissions from northwest Korea resulted in a changing of air mass properties during transport. As was the case with mass concentration, the highest contribution for ionic and carbon components of PM2.5 and PM10 for both sites appeared for the westerly wind case. A specially high relative contribution, greater than 1.4 times, was apparent in the secondary aerosol case because of a large influence of long-range transported pollutants from east China. Carbon components exhibited different behaviors for the northerly and westerly wind cases compared with secondary aerosol. The major reason for this discrepancy appears to be the carbon emissions from northwest Korea.  相似文献   

9.
10.
11.
The behavior of particulate matter (PM) during high-concentration episodes was investigated using monitoring data from Guui station, a comprehensive air monitoring station in Seoul, Korea, from January 2008 to March 2010. Five non-Asian dust (ND) episodes and two Asian dust (AD) episodes of high PM concentrations were selected for the study. During the ND episode, primary air pollutants accumulated due to low wind speeds, and PM2.5 increased along with most other air pollutants. Particles larger than PM2.5 were also high since these particles were generated by vehicular traffic rather than wind erosion. During strong AD episodes, PM10–2.5 primarily increased and gaseous primary air pollutants decreased under high wind speeds. However, even during the AD episode, PM2.5 and gaseous primary air pollutants increased when the effects of AD were weak and wind speeds were low. This study corroborates that accumulation of air pollutants due to a drop in surface wind speed plays an important role in short-term high-concentration occurrences. However, low wind speeds could not be directly linked to local emissions because a significant portion of accumulated air pollutants resulted from long-range transport.  相似文献   

12.
Measurements of chemical species and meteorological parameters were made at a site located 440 m above the mean basin level of Mexico City, over a two-week period in November during Project Azteca. Data from three of the stations of Mexico City's air quality monitoring network (Red Automática de Monitoreo Ambiental, RAMA) were also used to estimate the dilution in concentration experienced by pollutants as they are transported upslope during the course of the day. Both carbon monoxide and sulfur dioxide show a dilution of up to 50%, while ozone is usually more concentrated at the elevated site. These comparisons clearly highlight the intrinsic differences between primary and secondary gases, which are supported also by time–space, cross correlation analysis. The thermal mesoscale wind circulation dominates concentrations of pollutants at the research site: upslope during the day and downslope during the night. The data present clear evidence that downslope flows during the night contribute to ozone concentration at basin sites.  相似文献   

13.
Alpine valleys are sensitive to anthropogenic emissions. Local atmospheric dynamics are a key factor that may lead to an accumulation of pollutants in the bottom of the Chamonix and Maurienne valleys. Assessment of 2010 pollutant concentrations variability needs to take these specificities into account. A meteorological data classification is combined with different emission scenarios in order to run an air quality model. Using simulations of representative scenarios rather than complete years allows for a fine spatial and temporal representation of local atmospheric dynamics and gives access to detailed chemical breakdowns. Results demonstrate the variability of primary and secondary species due to emissions and the predominance of local effects on pollutant concentrations.  相似文献   

14.
Meteorological variables such as temperature, wind speed, wind directions, and Planetary Boundary Layer (PBL) heights have critical implications for air quality simulations. Sensitivity simulations with five different PBL schemes associated with three different Land Surface Models (LSMs) were conducted to examine the impact of meteorological variables on the predicted ozone concentrations using the Community Multiscale Air Quality (CMAQ) version 4.5 with local perspective. Additionally, the nudging analysis for winds was adopted with three different coefficients to improve the wind fields in the complex terrain at 4-km grid resolution. The simulations focus on complex terrain having valley and mountain areas at 4-km grid resolution. The ETA M–Y (Mellor–Yamada) and G–S (Gayno–Seaman) PBL schemes are identified as favorite options and promote O3 formation causing the higher temperature, slower winds, and lower mixing height among sensitivity simulations in the area of study. It is found that PX (Pleim–Xiu) simulation does not always give optimal meteorological model performance. We also note that the PBL scheme plays a more important role in predicting daily maximum 8-h O3 than land surface models. The results of nudging analysis for winds with three different increased coefficients' values (2.5, 4.5, and 6.0 × 10?4 s?1) over seven sensitivity simulations show that the meteorological model performance was enhanced due to improved wind fields, indicating the FDDA nudging analysis can improve model performance considerably at 4-km grid resolution. Specifically, the sensitivity simulations with the coefficient value (6.0 × 10?4) yielded more substantial improvements than with the other values (2.5 and 4.5 × 10?4). Hence, choosing the nudging coefficient of 6.0 × 10?4 s?1 for winds in MM5 may be the best choice to improve wind fields as an input, as well as, better model performance of CMAQ in the complex terrain area. As a result, a finer grid resolution is necessary to evaluate and access of CMAQ results for giving a detailed representation of meteorological and chemical processes in the regulatory modeling. A recommendation of optimal scheme options for simulating meteorological variables in the complex terrain area is made.  相似文献   

15.
In order to incorporate correctly the large or local scale circulation in the model, a nudging term is introduced into the equation of motion. Nudging effects should be included properly in the model to reduce the uncertainties and improve the air flow field. To improve the meteorological components, the nudging coefficient should perform the adequate influence on complex area for the model initialization technique which related to data reliability and error suppression. Several numerical experiments have been undertaken in order to evaluate the effects on air quality modeling by comparing the performance of the meteorological result with variable nudging coefficient experiment. All experiments are calculated by the upper wind conditions (synoptic or asynoptic condition), respectively. Consequently, it is important to examine the model response to nudging effect of wind and mass information. The MM5–CMAQ model was used to assess the ozone differences in each case, during the episode day in Seoul, Korea and we revealed that there were large differences in the ozone concentration for each run.These results suggest that for the appropriate simulation of large or small-scale circulations, nudging considering the synoptic and asynoptic nudging coefficient does have a clear advantage over dynamic initialization, so appropriate limitation of these nudging coefficient values on its upper wind conditions is necessary before making an assessment. The statistical verifications showed that adequate nudging coefficient for both wind and temperature data throughout the model had a consistently positive impact on the atmospheric and air quality field. On the case dominated by large-scale circulation, a large nudging coefficient shows a minor improvement in the atmospheric and air quality field. However, when small-scale convection is present, the large nudging coefficient produces consistent improvement in the atmospheric and air quality field.  相似文献   

16.
It has recently been recognized that air and noise pollution constitutes an extended problem over the densely populated city of Buenos Aires. Traffic emissions are of paramount concern, especially along narrow and main traffic arteries. In spite of these considerations, few systematic studies have been undertaken to evaluate the air quality in the metropolitan area of the city. In 1996, concentrations of carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3) were simultaneously measured for the first time using a continuous monitoring station. This station was placed in a building at Belgrano Avenue, which is a heavy traffic street in the downtown area of the city (Bogo et al., Atmospheric Environment 33 (1999) 2587. In this work, we analyze the dependence of the measured primary pollutants, CO and the mixture of nitrogen oxides (NOx), with meteorological conditions, traffic emissions and monitoring location. We compare the registered values with the results obtained from modeling the dispersion of the pollutants emitted from mobile and area sources. We also discuss the relevance of street canyon effects compared with background concentrations of these pollutants.  相似文献   

17.
Abstract

A growing number of epidemiological studies conducted worldwide suggest an increase in the occurrence of adverse health effects in populations living, working, or going to school near major roadways. A study was designed to assess traffic emissions impacts on air quality and particle toxicity near a heavily traveled highway. In an attempt to describe the complex mixture of pollutants and atmospheric transport mechanisms affecting pollutant dispersion in this near-highway environment, several real-time and time-integrated sampling devices measured air quality concentrations at multiple distances and heights from the road. Pollutants analyzed included U.S. Environmental Protection Agency (EPA)-regulated gases, particulate matter (coarse, fine, and ultrafine), and air toxics. Pollutant measurements were synchronized with real-time traffic and meteorological monitoring devices to provide continuous and integrated assessments of the variation of near-road air pollutant concentrations and particle toxicity with changing traffic and environmental conditions, as well as distance from the road. Measurement results demonstrated the temporal and spatial impact of traffic emissions on near-road air quality. The distribution of mobile source emitted gas and particulate pollutants under all wind and traffic conditions indicated a higher proportion of elevated concentrations near the road, suggesting elevated exposures for populations spending significant amounts of time in this microenvironment. Diurnal variations in pollutant concentrations also demonstrated the impact of traffic activity and meteorology on near-road air quality. Time-resolved measurements of multiple pollutants demonstrated that traffic emissions produced a complex mixture of criteria and air toxic pollutants in this microenvironment. These results provide a foundation for future assessments of these data to identify the relationship of traffic activity and meteorology on air quality concentrations and population exposures.  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) were measured in the Baltimore and adjacent Chesapeake Bay in July 1997. Time series of 4- and 12-h samples were taken at two sites 15 km apart in order to evaluate the influence of a number of processes on the short-term variability of PAH in the Baltimore and northern Chesapeake Bay atmospheres. PAH concentrations were 2–3-fold higher in the Baltimore atmosphere than in the adjacent Chesapeake Bay atmosphere. For example, gas-phase phenanthrene and pyrene concentrations were 12.5 and 2.14 ng m−3 in the Baltimore site and 5.57 and 0.548 ng m−3 in the Chesapeake Bay, respectively. The influence of wind direction, wind speed and temperature was evaluated by multiple linear regressions which indicated that atmospheric gas-phase PAH concentrations over the Chesapeake Bay were significantly higher when the air mass was from the urban/industrial Baltimore area. Furthermore, the increase of gas-phase low-MW PAH concentrations with temperature and wind speed suggests that volatilization from the bay is an important source of pollutants to the atmosphere, at least when air masses are not influenced by the Baltimore urban and industrial area. Indeed, while on the long-term, the Chesapeake Bay is a receptor of atmospherically deposited PAHs, on the short-term and during appropriate meteorological conditions, the bay acts as a source of pollutants to the atmosphere. Aerosol-phase PAH concentrations and temporal trends showed a strong dependence on aerosol soot content due to the high affinity of PAHs to the graphitic structure of soot. These results confirm the important influence of urban areas as a source of pollution to adjacent aquatic environments and as a driving factor of the short-term variability, either directly by transport of urban-generated pollutants or by volatilization of previously deposited pollutants. Conversely, the complex diurnal trends of gas-phase PAHs at the Baltimore site suggests that degradation processes dominate the diurnal trends of PAHs in urban atmospheres. This conclusion is supported by estimated rate constants for PAH reaction with OH radicals which show good agreement with reported values within a factor of two.  相似文献   

19.
揭示空气重污染红色预警期间污染物与气象因子的变化特征对空气质量预报和污染减排措施评估具有重要参考价值。利用大气污染和气象观测资料,研究了北京2015年11-12月空气重污染红色预警时期污染物浓度、气候特征及气象因子对空气质量影响。结果表明,PM2.5在大气颗粒物中占有较大比重,为首要空气污染物;在重污染峰值时段,城郊PM2.5与PM10比值(R)相差不大,可达0.9以上,空气呈均匀混合的高PM2.5浓度特征,而空气质量较好时城区R值明显高于郊区;研究时段气候特征与历史同期相比有明显差异,其中平均风速偏小19%,平均气温偏高0.23 ℃,气温日较差减小,而多次小型降水增加了空气湿度,导致相对湿度值偏高40%,垂直方向上的逆温层或等温层则加剧了空气重污染的形成和发展,重污染过程中的红色预警措施明显降低了颗粒物浓度;风速与污染物浓度呈指数相关,城郊风速分别低于2.0和2.5 m·s-1时,空气质量较差、污染物浓度随风速升高快速下降,而当城郊风速大于2.0和2.5 m·s-1时变化特征则相反;相对湿度与污染物浓度呈幂相关,相对湿度在65%左右为空气质量特征发生变化的转折点;由于气温日较差存在季节变化,其与空气质量相关关系不太显著。  相似文献   

20.
Abstract

Expected urban air concentrations of the gasoline additive methyl tertiary butyl ether (MTBE) were calculated using volatile emissions estimates and screening transport models, and these predictions were compared with Boston, MA, area urban air measurements. The total volatile flux of MTBE into the Boston primary metropolitan statistical area (PMSA) airshed was calculated based on estimated automobile nontailpipe emissions and the Universal Quasi-Chemical Functional-Group Activity Coefficient computed abundance of MTBE in gasoline vapor. The fate of MTBE in the Boston PMSA was assessed using both the European Union System for the Evaluation of Substances, which is a steady-state multimedia box model, and a simple airshed box model. Both models were parameterized based on the meteorological conditions observed during air sampling in the Boston area. Measured average urban air concentrations of 0.1 and 1 [H9262]g/m3 MTBE during February and September of 2000, respectively, were comparable to corresponding model predictions of 0.3 and 1 μg/m3 and could be essentially explained from estimated temperature-dependent volatile emissions rates, observed average wind speed (the airshed flushing rate), and reaction with ambient tropospheric hydroxyl radical (.OH), within model uncertainty. These findings support the proposition that one can estimate gasoline component source fluxes and use simple multimedia models to screen the potential impact of future proposed gasoline additives on urban airsheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号