首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codis-posed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations >40,000 ppmv. Conversely, H2S concentrations were <1 ppmv in those columns containing concrete. Concrete plays a role in decreasing H2S by increasing pH out of the range for SRB growth and by reacting with H2S. This study also showed that wood lowered H2S concentrations initially by decreasing leachate pH values. Based on the results, two possible control mechanisms to mitigate H2S generation in C&D debris landfills are suggested.  相似文献   

2.
24-h PM2.5 carbonaceous samples were collected between 27 November and 9 December 1999 in Seoul, and between 7 and 20 June 2000 in Kwangju to investigate characteristics of carbonaceous species, and the relationship between elemental carbon (EC) and Aethalometer-based black carbon (BC) measurements. 5-min PM2.5 BC and criteria air pollutant data were also measured using the Aethalometer and ambient air monitoring system. The PM2.5 samples were analyzed for EC and OC using a selective thermal manganese dioxide oxidation (TMO) method. The daily average EC and OC concentrations in Seoul were higher in the winter than in the summer (Atmos. Environ. 35 (2001a) 657). It was found that difference between ambient BC levels in the two cities was not directly proportional to the population ratio (∼8) or diesel traffic ratio (∼5.9) since particulate matter or BC concentration is strongly influenced by a result of varying traffic and meteorological conditions at the site. Using the primary OC/EC ratio approach, the results suggest that most of the measured OC in Kwangju is of primary origin during the summer. In Seoul, the observed OC includes additional secondary organic aerosol during the wintertime conditions. The relationship between the 24-h TMO-EC and Aethalometer BC measurements in PM2.5 reflected very good agreement for the two urban sites, with correlation coefficients of R2=0.99 and 0.92, and BC/EC slopes of 0.93 and 1.07, respectively. It was found that comparing TMO-EC to BC at a different location in Korea, a different scaling factor was needed.  相似文献   

3.
The measurements of C2–C9 volatile organic compounds (VOC) were carried out at a site in Seoul, the capital of Korea from August 1998 to July 1999. Air samples were collected for 24 h in 6 l SUMMA canisters every 6 days. The canister samples were quantitatively analyzed by a GC/FID and GC/MS. The species with the highest mean concentration among the 70 identified was propane (7.8 ppb), followed by toluene (6.4 ppb) and ethylene (5.9 ppb). The high concentration of propane was mainly attributed to the emissions by liquefied petroleum gas (LPG) usage for cooking and heating, and butane fuel for transportation. The general trend of the seasonal variation shows higher concentrations in winter and lower ones in summer. This behavior was mainly caused by the variations of temperature, and resultant VOC source strengths, coupled with the variations of the mixing depth. According to the analysis of concentration ratios, the seasonal contributions of the major emission sources to the VOC concentrations were influenced by ambient temperature. Further, it was identified that the contributions by the use of solvents, natural gas, LPG, and butane fuel were closely related to the variations of consumption pattern according to seasons. Through the analysis of the concentration correlations between less reactive compound and highly reactive ones for summer and winter months, it was found that photochemical reactivity affects relative concentration of reactive compound.  相似文献   

4.
The annular denuder system (ADS) was used to characterize seasonal variations of acidic air pollutants in Seoul, South Korea. Fifty- four 24 h samples were collected over four seasons from October 1996 to September 1997. The annual mean concentrations of HNO3, HNO2, SO2 and NH3 in the gas phase were 1.09, 4.51, 17.3 and 4.34 μg m-3, respectively. The annual mean concentrations of PM2.5(dp≤2.5 μm in aerodynamic diameter, 50% cutoff), SO2-4, NO-3 and NH+4 in the particulate phase were 56.9, 8.70, 5.97 and 4.19 μg m-3, respectively. All chemical species monitored from this study showed statistical seasonal variations. Nitric acid (HNO3) and ammonia (NH3) exhibited substantially higher concentrations during the summer, while nitrous acid (HNO2) and sulfur dioxide(SO2) were higher during the winter. Concentrations of PM2.5, SO2-4, NO-3 and NH+4 in the particulate phase were higher during the winter months. SO2-4, NO-3 and NH+4 accounted for 26–38% of PM2.5. High correlations were found among PM2.5, SO2-4, NO-3 and NH+4. The mean H+ concentration measured only in the fall was 5.19 nmole m-3.  相似文献   

5.
6.
Environmental Science and Pollution Research - To investigate the causative component for certain health outcomes, the associations between the properties of ambient particles and cause-specific...  相似文献   

7.
Lee G  Jang Y  Lee H  Han JS  Kim KR  Lee M 《Chemosphere》2008,73(4):619-628
We measured the concentrations of peroxyacetyl nitrate (PAN) and other photochemically reactive species, including O(3), NO(2), and non-methane hydrocarbons (NMHCs), in the Seoul Metropolitan area (SMA) during May through June in 2004 and 2005. PAN was determined using a fast chromatograph with luminol-based chemiluminescence detection. Mixing ratios of PAN ranged from below the detection limit (0.1ppbv) to 10.4ppbv with an average of 0.8ppbv. O(3) concentrations ranged from 0 to 141ppbv. The average PAN/O(3) ratio of 0.07 was higher than that observed in cities of Europe and North America (0.02) where control strategies have been enforced to reduce hydrocarbon emissions through extensively reformulated gasoline programs. Strong positive correlations between daily PAN and O(3) maxima during the day demonstrate that similar photochemical factors controlled the production of these two chemicals. However, relationships between PAN and its precursors, NO(2) and NMHCs, suggest that PAN production was more sensitive to NO(2) than NMHCs levels whereas O(3) production was limited by the overall availability of NMHCs. It is likely that the compositions of NMHCs in SMA were favorable for PAN production because of the low fractions of oxygenated compounds in automobile fuels. PAN maxima were observed around noon, which was 2-3h earlier than the much broader O(3) maxima that occurred in the midafternoon. After reaching the maximum, PAN concentrations rapidly dropped within a few hours, which could be largely due to thermal destruction and to limited production under the typically low NO(2) levels that occurred in the early afternoon. The heterogeneous destruction of particulate matter could be an additional sink for PAN in SMA.  相似文献   

8.
In the present study, TSP-bound metal concentrations were measured from seven different urbanized locations in Seoul, Korea for the period from March 2001 through May 2002. Our measurement data were analyzed to explore the possible influences of spatial and temporal factors on metal distribution characteristics. To determine the importance of those aspects, the measured concentrations were compared between different metals and between different sites in terms of several criteria: (1) absolute concentrations and enrichment factor (EF) values; (2) coefficient of variation (CV) values of metal concentrations; (3) relative patterns of temporal variations; and (4) relative abundance of strong correlations. According to our analysis of metal distribution characteristics in the study area, the main results of our study can be summarized as follows: (1) a number of metals (e.g., Cd, Cu, and Pb) are highly enriched relative to the average crustal ratios (to Fe); (2) the behavior of Cu is found to vary irregularly, while Fe, Mn, and Pb are tightly coupled both spatially and temporally in the study area; (3) for most elements except Cu and Cd, seasonal variations are observed in a systematic manner; and (4) when compared against those observed in other parts of the world, our Cu and Cd concentrations observed in many locations of Seoul are notably high. The overall results of our study suggest that the distribution characteristics of metals can be regulated strongly by spatial and temporal factors and that such controls are distinguished very clearly between different metal types.  相似文献   

9.
Concentrations of elemental carbon (EC) and organic carbon (OC) in particles at Seoul and Cheju Island, Korea were observed in 1994. PM10 and PM2.5 were collected by a modified SCAQS (Southern California Air Quality Study) sampler from Seoul during June 1994 and PM2.5 were collected by a low-volume sampler at Cheju Island during July and August 1994. The selective thermal oxidation method with MnO2 catalyst was used for analysis. The EC concentrations from Seoul were higher than those at Los Angeles, USA during the SCAQS study while the OC concentrations were comparable to those during the SCAQS study. At Cheju Island, the OC concentrations were higher than those at other clean areas in the world but the EC concentrations were lower than or comparable to those at other clean areas in the world. The OC to EC ratios of Seoul suggest that the carbonaceous species are mostly from primary emission sources. In Cheju, during July 1994 air pollutant levels were high and it was suggested that atmospheric transformation/transport of organics and biogenic emissions were main sources of carbonaceous species in particles. The carbonaceous species levels were low during August 1994 and it was suggested that the levels could be considered as marine background concentrations in the region during summer.  相似文献   

10.
Hydrogeologic and hydrochemical data for subway tunnel seepage waters in Seoul (Republic of Korea) were examined to understand the effect of underground tunnels on the degradation of urban groundwater. A very large quantity of groundwater (up to 63 million m3 year− 1) is discharged into subway tunnels with a total length of 287 km, resulting in a significant drop of the local groundwater table and the abandonment of groundwater wells. For the tunnel seepage water samples (n = 72) collected from 43 subway stations, at least one parameter among pathogenic microbes (total coliform, heterotrophic bacteria), dissolved Mn and Fe, NH4+, NO3, turbidity, and color exceeded the Korean Drinking Water Standards. Locally, tunnel seepage water was enriched in dissolved Mn (avg. 0.70 mg L− 1, max. 5.58 mg L− 1), in addition to dissolved Fe, NH4+, and pathogenic microbes, likely due to significant inflow of sewage water from broken or leaking sewer pipes.Geochemical modeling of redox reactions was conducted to simulate the characteristic hydrochemistry of subway tunnel seepage. The results show that variations in the reducing conditions occur in urban groundwater, dependent upon the amount of organic matter-rich municipal sewage contaminating the aquifer. The organic matter facilitates the reduction and dissolution of Mn- and Fe-bearing solids in aquifers and/or tunnel construction materials, resulting in the successive increase of dissolved Mn and Fe. The present study clearly demonstrates that locally significant deterioration of urban groundwater is caused by a series of interlinked hydrogeologic and hydrochemical changes induced by underground tunnels.  相似文献   

11.
This study examines the characteristics of volatile organic compounds (VOCs) and their major emission sources at the Bulgwang site in Seoul, Korea. The annual levels of VOCs (96.2–121.1 ppb C) have shown a decreasing trend from 2004 to 2008. The most abundant component in Seoul was toluene, which accounted for over 23.5 % of the total VOCs on the parts per billion on a carbon basis, and the portions of alkanes with two to six carbons constituted the largest major lumped group, ranging from 40.1 to 48.4 % (45.3?±?3.7 %) of the total VOCs. Major components of the solvent (toluene, m/p-xylene, o-xylene, and ethylbenzene) showed high in daytime and summer and low in nighttime and winter due mainly to the variation of the ambient temperature. The species mostly emitted from gasoline vapor (i/n-butane, i/n-pentane, n-hexane, and 2-methylpentane) and vehicular exhaust (ethylene, acetylene, and benzene) showed bimodal peaks in the diurnal variation around the commuting hours because of the high traffic volume. For the 14 out of 15 highest concentration species, the weekend effect was only evident on Sundays because of the stepwise implementation of the 5-day work-week system. Principal components analysis (PCA) was applied in order to identify the sources of the 15 highest concentration VOCs and, as a result, three principal components such as gasoline vapor (48.9 %), vehicular exhaust (17.9 %), and evaporation of solvents (9.8 %) were obtained to explain a total of 76.6 % of the data variance. Most influential contributing sources at the sampling site were traffic-related ones although the use of solvent was the dominant emission source based on the official emission inventory.  相似文献   

12.
Seasonal variations of aerosol optical properties in Seoul (polluted urban site) and Gosan (coastal background site), Korea, with an emphasis on the relative humidity were investigated using ground-based aerosol measurements and optical model calculations. The mass fraction of elemental carbon was 9–20%, but the optical contribution of these particles to light extinction was higher, up to 33–55% in Seoul. In Gosan, the contribution of non-sea-salt water-soluble aerosols on extinction was 81–93% due to the high mass fraction of these particles. Based on daily MODIS datasets, our analysis showed that the aerosol optical depths at Seoul and Gosan were highest in spring due to the influence of dust particles. The aerosol water content at Gosan, calculated using a thermodynamic equilibrium model, was higher than that at Seoul; this was attributed to the high relative humidity and high fraction of water-soluble aerosols at Gosan. At Seoul, despite abundant water vapors in summer, the possibility of hygroscopic growth of water-soluble aerosols was not more significant than that at Gosan.  相似文献   

13.
This study assessed bacterial concentrations in indoor air at 25 underground railway stations in Seoul, Korea, and investigated various related factors including the presence of platform screen doors (PSD), depth of the station, year of construction, temperature, relative humidity, and number of passengers. A total of 72 aerosol samples were collected from all the stations. Concentrations of total airborne bacteria (TAB) ranged from not detected (ND) to 4997 CFU m?3, with an overall geometric mean (GM) of 191 CFU m?3. Airborne bacteria were detected at 23 stations (92%) and Gram-negative bacteria (GNB) were detected at two stations (8%). TAB concentrations of four stations (16%) exceeded 800 CFU m?3, the Korea indoor bio-aerosol guideline. The results of the study showed that TAB concentrations at the stations without PSD showed higher TAB concentrations than those with PSD, though not at statistically significant levels. TAB concentrations of deeper stations revealed significantly higher levels than those of shallower stations. Based on this study, it is recommended that mitigation measures be applied to improve the indoor air quality (IAQ) of underground railway stations in Seoul, with focused attention on deeper stations.  相似文献   

14.
Ambient measurements were made using two sets of annular denuder system during the four seasons (April 2001 to February 2002) and were then compared with the results during the period of 1996-1997 to estimate the trends and seasonal variations in concentrations of gaseous and fine particulate matter (PM2.5) principal species. Annual averages of gaseous HNO3 and NH3 increased by 11% and 6%, respectively, compared with those of the previous study, whereas HONO and SO2 decreased by 11% and 136%, respectively. The PM2.5 concentration decreased by -17%, 35% for SO4(2-), and 29% for NH4+, whereas NO3- increased by 21%. Organic carbon (OC) and elemental carbon (EC) were 12.8 and 5.98 microg/m(-3), accounting for -26 and 12% of PM2.5 concentration, respectively. The species studied accounted for 84% of PM2.5 concentration, ranging from 76% in winter to 97% in summer. Potential source contribution function (PSCF) analysis was used to identify possible source areas affecting air pollution levels at a receptor site in Seoul. High possible source areas in concentrations of PM2.5, NO3-, SO4(2-), NH4+, and K+ were coastal cities of Liaoning province (possibly emissions from oil-fired boilers on ocean liners and fishing vessels and industrial emissions), inland areas of Heibei/Shandong provinces (the highest density areas of agricultural production and population) in China, and typical port cities (Mokpo, Yeosu, and Busan) of South Korea. In the PSCF map for OC, high possible source areas were also coastal cities of Liaoning province and inland areas of Heibei/Shandong provinces in China. In contrast, high possible source areas of EC were highlighted in the south of the Yellow Sea, indicating possible emissions from oil-fired boilers on large ships between South Korea and Southeast Asia. In summary, the PSCF results may suggest that air pollution levels in Seoul are affected considerably by long-range transport from external areas, such as the coastal zone in China and other cities in South Korea, as well as Seoul itself.  相似文献   

15.
Abstract

Ambient measurements were made using two sets of annular denuder system during the four seasons (April 2001 to February 2002) and were then compared with the results during the period of 1996–1997 to estimate the trends and seasonal variations in concentrations of gaseous and fine particulate matter (PM2.5) principal species. Annual averages of gaseous HNO3 and NH3 increased by 11% and 6%, respectively, compared with those of the previous study, whereas HONO and SO2 decreased by 11% and 136%, respectively. The PM2.5 concentration decreased by ~17%, 35% for SO4 2?, and 29% for NH4 +, whereas NO3 ? increased by 21%. Organic carbon (OC) and elemental carbon (EC) were 12.8 and 5.98 μg/m-3, accounting for ~26 and 12% of PM2.5 concentration, respectively. The species studied accounted for 84% of PM2.5 concentration, ranging from 76% in winter to 97% in summer.

Potential source contribution function (PSCF) analysis was used to identify possible source areas affecting air pollution levels at a receptor site in Seoul. High possible source areas in concentrations of PM2.5, NO3 ?, SO4 2?, NH4 +, and K+ were coastal cities of Liaoning province (possibly emissions from oil-fired boilers on ocean liners and fishing vessels and industrial emissions), inland areas of Heibei/Shandong provinces (the highest density areas of agricultural production and population) in China, and typical port cities (Mokpo, Yeosu, and Busan) of South Korea. In the PSCF map for OC, high possible source areas were also coastal cities of Liaoning province and inland areas of Heibei/Shandong provinces in China. In contrast, high possible source areas of EC were highlighted in the south of the Yellow Sea, indicating possible emissions from oil-fired boilers on large ships between South Korea and Southeast Asia. In summary, the PSCF results may suggest that air pollution levels in Seoul are affected considerably by long-range transport from external areas, such as the coastal zone in China and other cities in South Korea, as well as Seoul itself.  相似文献   

16.
Simultaneous measurements of gaseous species and fine-mode, particulate inorganic components were performed at the University of Seoul, Seoul in Korea. In the simultaneous measurements, a certain level of nitrous acid (HONO) was observed in the gas-phase, indicating possible heterogeneous HONO production on the surface of the ambient aerosols. On the other hand, high particulate nitrite (NO2?) concentrations of 1.41(±2.26) μg/m3 were also measured, which sometimes reached 18.54 μg/m3. In contrast, low HONO-to-NO2 ratios of 0.007(±0.006) were observed in Seoul. This indicates that a significant fraction of HONO is dissolved in atmospheric aerosols. Around the Seoul site, sufficient alkalinity may have been provided to the atmospheric aerosols from the excessive presence of NH3 in the gas-phase. Due to the alkaline particulate conditions (defined in this study as a particle pH >~3.29), the HONO molecules produced at the surface of the atmospheric aerosols appeared to have been converted into particulate nitrite, thereby preventing their further participation in the atmospheric O3/NOy/HOx photochemical cycles. It was estimated that a minimum average of 65% of HONO was captured by alkaline, anthropogenic, urban particles in the Seoul measurements.  相似文献   

17.
Total gaseous mercury (TGM) and carbon monoxide (CO) were measured every 5 min and hourly, respectively, in Seoul, Korea, from February 2005 through December 2006. The mean concentrations of TGM and CO were 3.44 ± 2.13 ng m−3 and 613 ± 323 ppbv, respectively. TGM and CO concentrations were highest during the winter and lowest during the summer. In total, 154 high TGM concentration events were identified: 86 were classified as long-range transport events and 68 were classified as local events. The TGM and CO concentrations were well correlated during all long-range transport events and were weakly correlated during local events. Five-day backward trajectory analysis for long-range transport events showed four potential source regions: China (79%), Japan (13%), the Yellow Sea (6%), and Russia (2%). Our results suggest that measured ΔTGM/ΔCO can be used to identify long-range transported mercury and to estimate mercury emissions from long-range transport.  相似文献   

18.
Kim KH  Kim MY 《Chemosphere》2003,51(8):707-721
The concentrations of three different fractions of particulate matter (PM) including PM2.5, PM10, and TSP were determined concurrently during March-May 2001. Measurements of three PM fractions were made at hourly intervals from four different observatory sites located within the city boundary of Seoul. On the basis of this study, we attempted to describe relationships between the occurrences of the Asian Dust (AD) event and its influences on the PM distribution characteristics. The results of our study demonstrated distinct differences between concentrations of PM fractions at AD and non-AD (NAD) periods. The increase of PM observed during the AD episode appeared to be dominated by the coarse, rather than fine, fraction of PM. In addition, it was found that TSP/PM10 ratios were almost constant, while the coarse/fine or TSP/PM2.5 ratios changed noticeably between AD and NAD periods. In most cases, differences in environmental conditions between AD and NAD periods were prominent and proven to be statistically significant. Moreover, the regression relationships between PM and N-oxides indicate that the source processes governing PM levels between the AD and NAD period can be different. The overall results of our analysis were hence helpful enough to distinguish competing processes in AD and NAD periods, while suggesting indirectly the possible control of different source processes on PM fractionation.  相似文献   

19.
Mineral magnetic properties of roadside dusts in Seoul, Korea, were measured and compared with the results of geochemical analyses in order to investigate the spatio-temporal patterns of urban pollution. Scanning electron microscope (SEM) observations and energy dispersive X-ray spectroscopy (EDS) analyses were carried out to verify the magnetic materials and their potential sources. A total of 1956 dust samples were collected monthly at eight sites, from June 1998 to June 2000. Thermomagnetic data and SEM observations for magnetic extracts indicated that the major magnetic phase was magnetite-like material. In particular, the highest and the lowest magnetic concentrations were observed in industrial areas and a park area, respectively, whereas, heavy traffic areas showed low to intermediate concentration. A linear correlation between enrichment indexes of magnetic susceptibility and heavy metals suggests that magnetic susceptibility can be used as a proxy for heavy metal pollution. The magnetic concentrations and magnetic particle sizes showed systematic seasonal fluctuations (high and large in winter versus low and small in summer) due to the seasonal influx variations of anthropogenic magnetic materials. On the basis of the morphology and elemental composition, the magnetic materials were grouped into three types: magnetic spherules possibly emitted from factories and domestic heating systems, aggregates derived from vehicle emission or motor vehicle brake system, and angular magnetic particles of natural origin.  相似文献   

20.
One hundred ninety-five chemically speciated samples were collected from March 2003 to February 2005 in the Seoul Metropolitan area to investigate the characteristics of the major components in PM2.5 and to characterize the chemical variations between smog and non-smog events. The annual average PM2.5 concentration was 43 μg m−3 that is almost three times higher than the US NAAQS annual PM2.5 standard of 15 μg m−3. During this sampling period, smog and yellow sand events were observed on 27 and 10 days, respectively. The PM2.5 concentrations and its constituents during smog events were about two–three times higher than those during non-smog and yellow sand events. In particular, the mass fractions of secondary aerosols such as sulfate, nitrate, and ammonium during the smog events were higher than those of the other constituents. The mean concentration and mass fraction of secondary organic carbon (SOC) were highest during the winter smog events. Sulfate, nitrate and SOC that can have long residence times were important species during the smog events suggesting that regional scale sources rather than local sources were important. Five-day backward air trajectory analysis showed that the air parcels during smog events passed through the major industrial areas in China more often than those during non-smog events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号