首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The probabilistic National Ambient Air Quality Standards (NAAQS) Exposure Model applied to carbon monoxide (pNEM/CO) was developed by the U.S. Environmental Protection Agency (EPA) to estimate frequency distributions of population exposure to carbon monoxide (CO) and the resulting carboxyhemoglobin (COHb) levels. To evaluate pNEM/CO, the model was set up to simulate CO exposure data collected during a Denver Personal Exposure Monitoring Study (PEM) conducted during the winter of 1982-1983. This paper compares computer-simulated exposure distributions obtained by pNEM/CO with the observed cumulative relative frequency distributions of population exposure to CO from 779 people in the Denver PEM study.

The subjects were disaggregated into two categories depending upon whether they lived in a home with a gas stove or an electric stove. The observed and predicted population exposure frequency distributions were compared in terms of 1-hr daily maximum exposure (1DME) and 8-hr daily maximum moving average exposure (8DME) for people living in homes with gas stove or an electric stove. For 1DME, the

computer-simulated results from pNEM/CO agreed most closely within the range of 6-13 ppm, but overestimated occurrences at low exposure (<6 ppm) and underestimated occurrences at high exposure (>13 ppm). For 8DME, the predicted exposures agreed best with observed exposures in the range of CO concentration between 5.5 and 7 ppm, and over-predicted occurrences below 5.5 ppm and under-predicted occurrences above 7 ppm.  相似文献   

2.
A study on source apportionment of indoor dust and particulate matter (PM10) composition was conducted in a university building by using chemometrics. The objective of this study was to investigate the potential sources of selected heavy metals and ionic species in PM10 and indoor dust. PM10 samples were collected using a low-volume sampler (LVS) and indoor dust was collected using a soft brush. Inductively coupled plasma spectrometry (ICP-MS) was used to determine the concentration of heavy metals, while the concentration of cations and anions was determined by atomic absorption spectrometer (AAS) and ion chromatography (IC), respectively. The concentration of PM10 recorded in the building throughout the sampling period ranged from 20 ± 10 μgm?3 to 80 ± 33 μgm?3. The composition of heavy metals in PM10 and indoor dust were dominated by zinc (Zn), followed by lead (Pb), copper (Cu), and cadmium (Cd). Principle component analysis (PCA) and multiple linear regression (MLR) showed that the main sources of pollutants in PM10 came from indoor renovations (73.83%), vehicle emissions (16.38%), earth crust sources (9.68%), and other outdoor sources (0.11%). For indoor dust, the pollutant source was mainly earth crust. This study suggests that chemometrics can be used for forensic investigation to determine the possible sources of indoor contaminants within a public building.  相似文献   

3.
This paper presents a new statistical model designed to extend our understanding from prior personal exposure field measurements of urban populations to other cities where ambient monitoring data, but no personal exposure measurements, exist. The model partitions personal exposure into two distinct components: ambient concentration and nonambient concentration. It is assumed the ambient and nonambient concentration components are uncorrelated and add together; therefore, the model is called a random component superposition (RCS) model. The 24-hr ambient outdoor concentration is multiplied by a dimensionless "attenuation factor" between 0 and 1 to account for deposition of particles as the ambient air infiltrates indoors. The RCS model is applied to field PM10 measurement data from three large-scale personal exposure field studies: THEES (Total Human Environmental Exposure Study) in Phillipsburg, NJ; PTEAM (Particle Total Exposure Assessment Methodology) in Riverside, CA; and the Ethyl Corporation study in Toronto, Canada. Because indoor sources and activities (smoking, cooking, cleaning, the personal cloud, etc.) may be similar in similar populations, it was hypothesized that the statistical distribution of nonambient personal exposure is invariant across cities. Using a fixed 24-hr attenuation factor as a first approximation derived from regression analysis for the respondents, the distributions of nonambient PM10 personal exposures were obtained for each city. Although the mean ambient PM10 concentrations in the three cities varied from 27.9 micrograms/m3 in Toronto to 60.9 micrograms/m3 in Phillipsburg to 94.1 micrograms/m3 in Riverside, the mean nonambient components of personal exposures were found to be closer: 52.6 micrograms/m3 in Toronto; 52.4 micrograms/m3 in Phillipsburg; and 59.2 micrograms/m3 in Riverside. The three frequency distributions of the nonambient components of exposure also were similar in shape, giving support to the hypothesis that nonambient concentrations are similar across different cities and populations. These results indicate that, if the ambient concentrations were completely controlled and set to zero in all three cities, the median of the remaining personal exposures to PM10 would range from 32.0 micrograms/m3 (Toronto) to 34.4 micrograms/m3 (Phillipsburg) to 48.8 micrograms/m3 (Riverside). The highest-exposed 30% of the population in the three cities would still be exposed to 24-hr average PM10 concentrations of 47-74 micrograms/m3; the highest 20% would be exposed to concentrations of 56-92 micrograms/m3; the highest 10% to concentrations of 88-131 micrograms/m3; and the highest 5% to 133-175 micrograms/m3, due only to indoor sources and activities. The distribution for the difference between personal exposures and indoor concentrations, or the "personal cloud," also was similar in the three cities, with a mean of 30-35 micrograms/m3, suggesting that the personal cloud accounts for more than half of the nonambient component of PM10 personal exposure in the three cities. Using only the ambient measurements in Toronto, the nonambient data from THEES in Phillipsburg was used to predict the entire personal exposure distribution in Toronto. The PM10 exposure distribution predicted by the model showed reasonable agreement with the PM10 personal exposure distribution measured in Toronto. These initial results suggest that the RCS model may be a powerful tool for predicting personal exposure distributions and statistics in other cities where only ambient particle data are available.  相似文献   

4.
5.
ABSTRACT

The main goal of this study was to evaluate the magnitude of outdoor exposure to fine particulate matter (PM10) potentially experienced by the population of metropolitan Mexico City. With the use of a geographic information system (GIS), spatially resolved PM10 distributions were generated and linked to the local population. The PM10 concentration exceeded the 24-hr air quality standard of 150 μg/m3 on 16% of the days, and the annual air quality standard of 50 μg/m3 was exceeded by almost twice its value in some places. The basic methodology described in this paper integrates spatial demographic and air quality databases, allowing the evaluation of various air pollution reduction scenarios. Achieving the annual air quality standard would represent a reduction in the annual arithmetic average concentration of 14 μg/m3 for the typical inhabitant. Human exposure to particulate matter (PM) has been associated with mortality and morbidity in Mexico City; reducing the concentration levels of this pollutant would represent a reduction in mortality and morbidity and the associated cost of such impacts. This methodology is critical to assessing the potential benefits of the current initiative to improve air quality implemented by the Environmental Metropolitan Commission of Mexico City.  相似文献   

6.
ABSTRACT

This paper describes efforts to reduce particulate matter (PM) emissions from restaurant operations, including application of an existing control method to a new equipment type. Commercial charbroiling in the South Coast Air Basin results in emissions of approximately 10 tons/day of fine particulate matter (PM2.5) and 1.3 tons/day of volatile organic compounds (VOCs). Over a seven-year period, the South Coast Air Quality Management District worked with industry to develop test methods for measuring emissions from various cooking operations, evaluate control technologies, and develop a rule to reduce these emissions.

Of the two basic types of charbroilers—chain-driven and underfired—underfired produce four times the emissions when equivalent amounts of product are cooked. Cost-effective control technology is currently available only for chain-driven charbroilers. The application of flameless catalytic oxidizers to chain-driven charbroilers was found to effectively reduce emissions by at least 83% and is cost-effective. The catalysts have been used worldwide at restaurants for several years. Research efforts are underway to identify control options for underfired charbroilers.

Implementation of Rule 1138, Control of Emissions from Restaurant Operations, adopted November 14, 1997, will result in reductions of 0.5 tons/day of PM2.5 and 0.2 tons/day of VOCs. Future rules will result in reductions from underfired charbroilers and possibly other restaurant equipment when cost-effective solutions are available.  相似文献   

7.
Karaca F  Alagha O  Ertürk F 《Chemosphere》2005,59(8):1183-1190
Inhalable particulate matter (PM10) has been monitored at several stations by Istanbul Municipality. On the other hand, information about fine fraction aerosols (PM2.5) in Istanbul atmosphere was not reported. In this study, 86 daily aerosol samples were collected between July 2002 and July 2003. The PM10 annual arithmetic mean value of 47.1 microg m(-3), was lower than the Turkish air quality standard of 60 microg m(-3). On the other hand, this value was found higher than the annual European Union air quality PM(10) standard of 40 microg m(-3). Furthermore, the annual mean concentration of PM2.5 20.8 microg m(-3) was found higher than The United States EPA standard of 15 microg m(-3). The statistics and relationships of fine, coarse, and inhalable particles were studied. Cyclic behavior of the monthly average concentrations of PM10 and PM2.5 data were investigated. Several frequency distribution functions were used to fit the measured data. According to Chi-squared and Kolmogorov-Smirnov tests, the frequency distributions of PM2.5 and PM10 data were found to fit Log-logistic functions.  相似文献   

8.
Goal, Scope and Background Cadavers for gross anatomy laboratories are usually prepared by using embalming fluid which contains formaldehyde (FA) as a principal component. During the process of dissection, FA vapors are emitted from the cadavers, resulting in the exposure of medical students and their instructors to elevated levels of FA in the laboratory. The American Conference of Governmental Industrial Hygienists (ACGIH) has set a ceiling limit for FA at 0.3 ppm. In Japan, the Ministry of Health, Labour and Welfare has set an air quality guideline defining two limit values for environmental exposure to FA: 0.08 ppm as an average for general workplaces and 0.25 ppm for specific workplaces such as an FA factory. Although there are many reports on indoor FA concentrations in gross anatomy laboratories, only a few reports have described personal FA exposure levels. The purpose of the present study was to clarify personal exposure levels as well as indoor FA concentrations in our laboratory in order to investigate the relationship between them. Methods The gross anatomy laboratory was evaluated in the 4th, 10th and 18th sessions of 20 laboratory sessions in total over a period of 10 weeks. Air samples were collected using a diffusive sampling device for organic carbonyl compounds. Area samples were taken in the center and four corners of the laboratory during the entire time of each session (4-6 hours). Personal samples were collected from instructors and students using a sampling device pinned on each person's lapel, and they were 1.1 to 6 hours in duration. Analysis was carried out using high performance liquid chromatography. Results and Discussion Room averages of FA concentrations were 0.45, 0.38 and 0.68 ppm for the 4th, 10th and 18th sessions, respectively, ranging from 0.23 to 1.03 ppm. These levels were comparable to or relatively lower than the levels reported previously, but were still higher than the guideline limit for specific workplaces in Japan and the ACGIH ceiling limit. The indoor FA concentrations varied depending on the contents of laboratory sessions and seemed to increase when body cavity or deep structures were being dissected. In all sessions but the 4th, FA levels at the center of the room were higher than those in the corners. This might be related to the arrangement of air supply diffusers and return grills. However, it cannot be ruled out that FA levels in the corners were lowered by leakage of FA through the doors and windows. Average personal exposure levels were 0.80, 0.45 and 0.51 ppm for instructors and 1.02, 1.08 and 0.89 ppm for students for the 4th, 10th and 18th session, respectively. The exposure levels of students were significantly higher than the mean indoor FA concentrations in the 4th and 10th sessions, and the same tendency was also observed in the 18th session. The personal exposure level of instructors was also significantly higher than the indoor FA level in the 4th session, while they were almost the same in the 10th and 18th sessions. Differences in behavior during the sessions might reflect the differential personal exposure levels between students and instructors. Conclusion The present study revealed that, if a person is close to the cadavers during the gross anatomy laboratory, his/her personal exposure level is possibly 2 to 3-fold higher than the mean indoor FA concentration. This should be considered in the risk assessment of FA in gross anatomy laboratories. Recommendation and Outlook If the risk of FA in gross anatomy laboratories is assessed based on the indoor FA levels, the possibility that personal exposure levels are 2 to 3-fold higher than the mean indoor FA level should be taken into account. Otherwise, the risk should be assessed based on the personal exposure levels. However, it is hard to measure everyone's exposure level. Therefore, further studies are necessary to develop a method of personal exposure assessment from the indoor FA concentration.  相似文献   

9.
The particulate matter (PM) concentration and composition, the PM10, PM2.5, PM1 fractions, were studied in the urban area of Genoa, a coastal town in the northwest of Italy. Two instruments, the continuous monitor TEOM and the sequential sampler PARTISOL, were operated almost continuously on the same site from July 2001 to September 2004. Samples collected by PARTISOL were weighted to obtain PM concentration and then analysed by PIXE (particle induced X-ray emission) and by ED-XRF (energy dispersion X-ray fluorescence), obtaining concentrations for elements from Na to Pb. Some of the filters used in the TEOM microbalance were analysed by ED-XRF to calculate Pb concentration values averaged over 7-30 d periods.  相似文献   

10.
In this work we present a detailed study of atmospheric PM10 pollution in Andalusia (Southern Spain) based on geochemical maps. The study includes determination of PM10 levels and bulk chemical composition with samples from 17 representative monitoring stations (rural, urban background, traffic hot spot, and urban zones with industrial influence) during 2007. The knowledge of background levels and concentrations of relevant chemical compounds and elements allows the quantification of the main sources of pollution in relevant cities and sites of ecological interest.In comparison to other stations in Spain and mainland Europe, PM10 in Andalusia is characterized by high levels of crustal matter and secondary inorganic components (SIC). This has been attributed to the following causes: 1) High road traffic and industrial emissions, 2) High frequency of North African air mass outbreaks contributing between 3 and 4 μg m?3 in western Andalusia and 4–7 μg m?3 in eastern Andalusia, and 3) Climate factors such as low rainfall, dry soils favouring resuspension, and high photochemical activity.Atmospheric particulate matter in urban areas located in the vicinity of industrial estates is enriched in secondary inorganic compounds and metals. Three main hot spots have been identified according their high trace element concentrations: Huelva (As, Cu, Zn, Se, and Bi), Strait of Gibraltar (V, Ni, Cr, and Co) and Bailén (V and Ni). The transport of pollutants from cities and industrial estates to areas of ecological interest (e.g. Doñana National Park) has been found to cause the increase in background levels in a number of trace elements (e.g. As) in the air. An important outcome of this study is that geochemical maps of atmospheric matter are a powerful tool for illustrating spatial variation patterns of geochemical components and identifying specific pollution hot spots.  相似文献   

11.
The 24-h average coarse (PM10) and fine (PM2.5) fraction of airborne particulate matter (PM) samples were collected for winter, summer and monsoon seasons during November 2008-April 2009 at an busy roadside in Chennai city, India. Results showed that the 24-h average ambient PM10 and PM2.5 concentrations were significantly higher in winter and monsoon seasons than in summer season. The 24-h average PM10 concentration of weekdays was significantly higher (12-30%) than weekends of winter and monsoon seasons. On weekends, the PM2.5 concentration was found to slightly higher (4-15%) in monsoon and summer seasons. The chemical composition of PM10 and PM2.5 masses showed a high concentration in winter followed by monsoon and summer seasons.The U.S.EPA-PMF (positive matrix factorization) version 3 was applied to identify the source contribution of ambient PM10 and PM2.5 concentrations at the study area. Results indicated that marine aerosol (40.4% in PM10 and 21.5% in PM2.5) and secondary PM (22.9% in PM10 and 42.1% in PM2.5) were found to be the major source contributors at the study site followed by the motor vehicles (16% in PM10 and 6% in PM2.5), biomass burning (0.7% in PM10 and 14% in PM2.5), tire and brake wear (4.1% in PM10 and 5.4% in PM2.5), soil (3.4% in PM10 and 4.3% in PM2.5) and other sources (12.7% in PM10 and 6.8% in PM2.5).  相似文献   

12.
In this paper, we describe the development and laboratory and field evaluation of a continuous coarse (2.5-10 microm) particle mass (PM) monitor that can provide reliable measurements of the coarse mass (CM) concentrations in time intervals as short as 5-10 min. The operating principle of the monitor is based on enriching CM concentrations by a factor of approximately 25 by means of a 2.5-microm cut point round nozzle virtual impactor while maintaining fine mass (FM)--that is, the mass of PM2.5 at ambient concentrations. The aerosol mixture is subsequently drawn through a standard tapered element oscillating microbalance (TEOM), the response of which is dominated by the contributions of the CM, due to concentration enrichment. Findings from the field study ascertain that a TEOM coupled with a PM10 inlet followed by a 2.5-microm cut point round nozzle virtual impactor can be used successfully for continuous CM concentration measurements. The average concentration-enriched CM concentrations measured by the TEOM were 26-27 times higher than those measured by the time-integrated PM10 samplers [the micro-orifice uniform deposit impactor (MOUDI) and the Partisol] and were highly correlated. CM concentrations measured by the concentration-enriched TEOM were independent of the ambient FM-to-CM concentration ratio, due to the decrease in ambient coarse particle mass median diameter with an increasing FM-to-CM concentration ratio. Finally, our results illustrate one of the main problems associated with the use of real impactors to sample particles at relative humidity (RH) values less than 40%. While PM10 concentrations obtained by means of the MOUDI and Partisol were in excellent agreement, CM concentrations measured by the MOUDI were low by 20%, and FM concentrations were high by a factor of 5, together suggesting particle bounce at low RH.  相似文献   

13.
Aerosol samples for PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 2.5 and 10 μm, respectively) were collected from 1993 to 1995 at five sites in Brisbane, a subtropical coastal city in Australia. This paper investigates the contributions of emission sources to PM2.5 and PM10 aerosol mass in Brisbane. Source apportionment results derived from the chemical mass balance (CMB), target transformation factor analysis (TTFA) and multiple linear regression (MLR) methods agree well with each other. The contributions from emission sources exhibit large variations in particle size with temporal and spatial differences. On average, the major contributors of PM10 aerosol mass in Brisbane include: soil/road side dusts (25% by mass), motor vehicle exhausts (13%, not including the secondary products), sea salt (12%), Ca-rich and Ti-rich compounds (11%, from cement works and mineral processing industries), biomass burning (7%), and elemental carbon and secondary products contribute to around 15% of the aerosol mass on average. The major sources of PM2.5 aerosols at the Griffith University (GU) site (a suburban site surrounded by forest area) are: elemental carbon (24% by mass), secondary organics (21%), biomass burning (15%) and secondary sulphate (14%). Most of the secondary products are related to motor vehicle exhausts, so, although motor vehicle exhausts contribute directly to only 6% of the PM2.5 aerosol mass, their total contribution (including their secondary products) could be substantial. This pattern of source contribution is similar to the results for Rozelle (Sydney) among the major Australian studies, and is less in contributions from industrial and motor vehicular exhausts than the other cities. An attempt was made to estimate the contribution of rural dust and road side dust. The results show that road side dusts could contribute more than half of the crustal matter. More than 80% of the contribution of vehicle exhausts arises from diesel-fuelled trucks/buses. Biomass burning, large contributions of crustal matter, and/or local contributing sources under calm weather conditions, are often the cause of the high PM10 episodes at the GU site in Brisbane.  相似文献   

14.
Multi-layer perceptron (MLP) artificial neural network (ANN) models are compared with traditional multiple regression (MLR) models for daily maximum and average O3 and particulate matter (PM10 and PM2.5) forecasting. MLP particulate forecasting models show little if any improvement over MLR models and exhibit less skill than do O3 forecasting models. Meteorological variables (precipitation, wind, and temperature), persistence, and co-pollutant data are shown to be useful PM predictors. If MLP approaches are adopted for PM forecasting, training methods that improve extreme value prediction are recommended.  相似文献   

15.
Abstract

Air quality monitoring was conducted at a rural site with a tower in the middle of California’s San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/M2.5 Air Quality Study. Measurements at the surface and on a tower at 90 m were collected in Angiola, CA, from ecember 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.  相似文献   

16.
24-h simultaneous samplings of PM10 and PM2.5 particulate matter (PM) have been carried out during the period December 1997–September 1998 in the central urban area of Milan. The mass concentrations of the two fractions showed significant daily variations linked to different thermodynamic conditions of the planetary boundary layer (PBL) and characterised by higher values during wintertime. The elemental composition, determined by energy dispersive X-ray fluorescence technique, was quite different in the two fractions: in the finer one the presence of elements with crustal origin is reduced while the anthropogenic elements, with a relevant environmental and health impact, appear to be enriched. The composition data allowed a quantification of two major components of the atmospheric particulate: sulphates (mainly of secondary origin) and particles with crustal origin. An important but unmeasured component is likely constituted by organic and elemental carbon compounds.The multivariate analysis of elements, gaseous pollutants and mass concentration data-sets leads to the identification of four main sources contributing to PM10 and PM2.5 composition: vehicles exhaust emissions, resuspended crustal dust, secondary sulphates and industrial emissions. The existence of a possible background component with non-local origin is also suggested.  相似文献   

17.
This paper provides source contribution estimates from vehicular and meat-cooking emissions to particulate polycyclic aromatic hydrocarbon (PAH) and elemental carbon (EC) concentrations measured at two Los Angeles sites during a field study in 1989. The source concentration matrix for PAH was based on new data for vehicular emissions and literature data for meat-cooking operations. The chemical mass balance (CMB 7.0) receptor model was used, and source profiles were modified to reflect reactive decay of PAH in the atmosphere. The calculations indicate that the Pico Rivera site was dominated by auto emissions, which account for more than 90 percent of all the PAH (except chrysene), carbon monoxide (CO), and 61 percent of the EC concentrations. In contrast, emissions from meat cooking contributed significantly (20 to 75 percent) to the concentrations of four-ring PAH measured at a residential site at Upland. The five-ring and larger PAH were attributed to auto emissions at Upland as well.  相似文献   

18.
Non-mineral carbon is the main component of PM10 and PM2.5 at an urban roadside site in Madrid accounting for more than 50% of the total bulk mass in winter pollution episodes. In these cases a 70-80% of the particle mass is anthropogenic. Particles of crustal/mineral origin contribute significantly to the observed PM10 concentrations, especially in spring and summer. They have also been found in the PM2.5 fraction although secondary particles are the next most important contributor in this size. Long-range transport particle episodes of Saharan dust significantly contribute to exceedence of the new daily limiting PM10 value in the urban network and at nearby rural background stations. This type of long-range transport event also influences PM2.5 concentrations. The crustal contribution can account for up to 67 and 53% of the PM10 and PM2.5 bulk mass in such cases.  相似文献   

19.
Airborne particulate matter (PM(10)) was collected from July 1997 to July 1998 at three locations in the city of Thessaloniki. PM(10) samples were analyzed for Cl(-), NO3(-), SO4(2-), Ca(2+), Mg(2+), Na(+), K(+) and NH4(+). The average PM(10) concentrations were found similar in all three sites with higher values in cold period. The ionic content comprised the 17-23% of the PM(10) mass and sulfate made up the 35-38% of the PM(10) ionic content with an average concentration of 4.80-7.26 microg m(-3). Good correlation was found for SO4(2-) and NO3(-) with Ca(2+), Mg(2+) and Cl(-). Two factors were found to influence the variance of ionic constituents in PM(10) by using factor analysis. Data evaluation considering wind direction showed that higher PM(10) and other ionic concentrations are associated with calm conditions, suggesting influences of local sources.  相似文献   

20.
A new personal PM10 sampling head has been developed by the Institute of Occupational Medicine (IOM), Edinburgh. The purpose of this study was to compare its performance in the field with the accepted fixed-location PM10 sampler, the tapered element oscillating microbalance (TEOM). The comparisons were carried out on three separate occasions during 1997 at each of two city centre locations in the UK. On each occasion two personal IOM PM10 sampling heads were located adjacent to a TEOM monitor and four successive sets of 24-h filter samples were collected. The data was compared with 24-h average TEOM concentrations, calculated as the arithmetic mean of the recorded hourly averages. There was a statistically significant linear relationship between the two types of monitor, although the concentrations from the IOM PM10 samplers were consistently higher than the TEOM data. It is therefore possible to use the regression equations presented in this paper to correct ambient PM10 concentrations measured by either method to equivalent values. Further research is needed to properly understand the reason for the difference between the TEOM and filter samplers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号