首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Partially speciated hydrocarbon (HC) emissions data from several small utility engines, as measured by a Fourier Transform Infrared analyzer, are presented. The engines considered have nominal horsepower ratings between 3.7 and 9.3 kW. Both side-valve and overhead-valve engines are studied, and four different fuels are used in the engines. The results indicate that the small HCs present in the exhaust tend to be in the form of either methane or unsatur-ated HCs. Other small alkanes, such as ethane and propane, are present in only relatively small concentrations. In terms of ozone formation potential, the HCs in the form of methane will lead to little ozone, but the distribution of the C2 and C3 species is not ideal from an ozone reduction standpoint. It is also found that the presence of oxygen in the fuels appears to lead to somewhat more complete combustion, although the effects are not large. Finally, the overhead-valve engines appear to have lower HC emissions than side-valve engines, which is primarily due to higher operating A/F ratios and the engine geometry.  相似文献   

2.
A number of selected industrial processes considered as potential sources of benzo{a)- pyrene and other polynuclear hydrocarbons were surveyed. Polynuclear hydrocarbon emission levels were measured directly for asphalt hot road mix preparation and asphalt airblowing. Emissions of other pollutants, including particulate matter, carbon monoxide, and total gaseous hydrocarbons were also measured, and are reported together with pertinent data on process design and operation. Results are discussed with reference to the type of process; the type of equipment used, including control devices; and other factors. The significance of some additional processes as contributors of polynuclear hydrocarbons was examined indirectly by collecting atmospheric samples of polynuclear hydrocarbons in residential areas in the vicinity of (1) a carbon black manufacturing area, (2) a steel and coke manufacturing area, (3) an organic chemical industry complex, and (4) a residential and small-industry coal burning area.  相似文献   

3.
Hydrocarbon emissions from gas turbine engines can be divided into unreactive and reactive components. The unreactive component consists of paraffins which do not take part in smog producing reactions with NOx. The reactive portion includes olefins, aro-matics and oxygenated derivatives of hydrocarbons which take part in smog producing reactions with NOx. Odor is attributed normally to the aromatics and oxygenates.

Previous work led to the development of a high temperature subtractive analyzer (APCA 22, 696 (1972) which separates hydrocarbon emissions into a) paraffins and b) aromatics, olefins, and oxygenates. Liquid chromatographic techniques have also been used to separate the hydrocarbons into a) aliphatics, b) aromatics, and c) oxygenates. These aliphatics include olefins.

In this work, engine emissions have been analyzed by these two techniques as a function of engine type, engine thrust (power) and fuel type. Specific engines tested were JT4, JT3D and JT9D. Fuels studied were JP5, and Jet A fuel. Power settings ranged from sub idle to high power. Results using the high temperature subtractive analyzer indicate that the % unreactive hydrocarbons ranges from 30 % at idle to near zero at high power for these engine types and fuels. In general, the higher the total hydrocarbon level, the higher the % unreactive hydrocarbons. Total hydrocarbons decrease sharply with increase in thrust. The emissions from different types of engines at various power settings were collected on an adsorbent Chromosorb 102 and the adsorbate analyzed by liquid chromatographic techniques at A. D. Little, Inc. These results showed similar trends from low power to high power. The oxygenate fraction increased and aliphatic portion decreased. However, the data for this portion of the work were very limited and no firm conclusions can be drawn.  相似文献   

4.
5.
Formaldehyde (CH2O) emissions from particleboard underlayment have been measured in 0.17 and 0.2 m3 chambers at separate laboratories to test the comparability of small scale environmental chamber measurements under different ventilation and product loading conditions. Absolute CH2O calibration was established through intermethod comparison of different monitoring techniques against a CH2O generation apparatus. Interlaboratory precision was enhanced via co-calibration of each laboratory’s CH2O colorimetric analyzer against the same blank and bi-level generation source at the beginning and end of the study. The results show excellent intermethod and interlaboratory agreement in both the CH2O calibration and particleboard emissions testing. The CH2O emission rates of the test specimens demonstrate a Fick’s Law dependence on CH2O vapor concentration. Measured CH2O concentrations are described by a single-compartment, single emitter model, and are inversely proportional to the ratio [N/L (m/h)] of the air exchange rate [N(h-1)] and product loading [L(m-1)]. Comparison tests at varying N and L, but uniform N/L were performed; similar CH2O concentrations were measured for N and L levels selected from an indoor compartment model, and for fivefold larger N and L values, which are more convenient for small-scale chamber testing.  相似文献   

6.
Mathematical modeling of ambient air photochemistry requires comprehensive mobile source hydrocarbon emission speciation. Passenger car tailpipe and evaporative hydrocarbon emissions have been examined using procedures described in the Federal Register for emissions certification. Hydrocarbon emission rates and compositions were determined for four passenger cars: a 1963 Chevrolet, a 1977 Ford Mustang II, a 1978 Mercury Monarch, and a 1979 Ford LTD-II. These vehicles are representative of a wide range of exhaust and evaporative emissions control configurations. Both emission rates and compositions were dependent on the emissions control devices used with the vehicles, and the fuel composition and vapor pressure. In agreement with the literature, tailpipe catalyst control systems removed unsaturated olefinic, aromatic, and acetylenic hydrocarbons to a greater extent than saturated paraffinic hydrocarbons. The impact of evaporative control devices on composition was not well defined, however the limited data suggested a sensitivity to fuel aromatic content. The emission rate of benzene, emphasized because of its potential carcinogenicity, was sensitive to both fuel benzene and total aromatic content.  相似文献   

7.
Sulfur hexafluoride (SF6) tracer was used in a series of the experiments to simulate emissions of benzene, toluene, ethyl-benzene, and xylenes (BTEX) from a refinery wastewater basin. The ratio of the measured tracer release to the ambient tracer concentration established a dilution factor which was then used to calculate the mass flux of BTEX from the wastewater basin using the ambient BTEX concentration data. Measured fluxes of BTEX varied from 7 g/min to 70 g/min.

The CHEMDAT7 air emissions model was then used to predict emissions for comparison with the emissions measured using the tracer flux simulation. CHEMDAT7 typically overpredicted total measured BTEX emissions by factors of twelve to seventeen. The degree of overprediction varied both by the individual compound and the module of CHEMDAT7 used to predict emission fluxes.  相似文献   

8.
During the summer of 1966, a selected group of automobiles from the Cincinnati phase of the GSA study were used in an irradiation chamber study. The study was conducted to evaluate the photochemical air pollution potential of representative models of the equipped and unequipped automobiles. Only one set of automobiles, the unequipped Chevelles, produced exhaust capable upon irradiation of forming significant levels of oxidant and PAN. Neither the equipped Chevelles nor any of the Fords or Plymouths, whether equipped or unequipped, produced exhaust having the characteristics necessary to form oxidant or PAN upon irradiation. The eye irritation level reported by the panel upon irradiation of exhaust from unequipped Chevelles was much higher than that produced by the irradiated exhausts from any of the other types of automobiles. Overall, there does appear to be some small improvement with respect to eye irritation in comparing equipped with unequipped automobiles. To a large extent, the improvement in the air pollution potential of exhaust from equipped Chevelles compared to the unequipped Chevelles can be attributed to the reduction in the hydrocarbon to nitrogen oxide ratio. The irradiated exhaust from equipped Chevelles, except for aldehyde levels, is about the same in photochemical air pollution potential as are the exhausts from both equipped and unequipped Fords and Plymouths which are maintained under lean operating conditions. Such irradiation chamber measurements are related to exhaust not hydrocarbon reactivities. Hydrocarbon reactivities can be obtained by direct measurement of reactive and nonreactive hydrocarbons in the automotive emissions.  相似文献   

9.
10.
Abstract

In this study, polycyclic aromatic hydrocarbon (PAH) emissions from two batch-type medical waste incinerators (MWIs), one with a mechanical grate and the other with a fixed grate, both operated by a medical center, were assessed. Both MWIs shared the same air-pollution control devices (APCDs), with an electrostatic precipitator and a wet scrubber installed in series. Results show that when APCDs were used, total PAHs and total benzo- [a]pyrene equivalent (total BaPeq) emission concentrations of both MWIs were reduced from 2220 to 1870 µg/m3 and 50 to 12.4 µg/m3, respectively. We used the Industrial Source Complex Short Term model (ISCST) to estimate the ground-level concentrations of the residential area and the traffic intersection located at the down-wind side of the two MWIs. For the traffic intersection, we found both total PAHs and total BaPeq transported from MWIs to both studied areas were not significant. For the residential area, similar results were found when APCDs were used in MWIs. When APCDs were not included, we found that total PAHs transported from MWIs accounted for <12%, but total BaPeq accounted for >90%, of the on-site measured concentrations. These results suggest that the use of proper APCDs during incineration would significantly reduce the carcinogenic potencies associated with PAH emissions from MWIs to the residential area.  相似文献   

11.
ABSTRACT

Research Triangle Institute and the U.S. Environmental Protection Agency conducted several projects to measure hydrocarbon emissions associated with the manufacture of fiberglass-reinforced plastics. The purpose of these projects was to evaluate pollution prevention techniques to reduce emissions by altering raw materials, application equipment, and operator technique. Analytical techniques were developed to reduce the cost of these emission measurements. Emissions from a small test mold in a temporary total enclosure (TTE) correlated with emissions from full-size production molds in a separate TTE. Gravimetric mass balance measurements inside the TTE generally agreed to within ± 30 % with total hydrocarbon (THC) measurements in the TTE exhaust duct. Pure styrene evaporation tests served as quality control checks for THC measurements and generally agreed to within ± 5 %.  相似文献   

12.
Oxidation of formaldehyde over supported platinum catalyst produced CO2 as a major product and CO as a minor product under a wide range of Inlet concentrations and reaction temperatures. The temporal variation of CO yield proceeded through a maximum suggesting that it was produced as an intermediate in the pathway leading to CO2. CO selectivity (S co = y co/x HCHO) was maximized by operating at oxygen concentration below the stoichiometric point and at high reaction temperatures. A mechanism for formaldehyde oxidation is proposed which involves adsorption of formaldehyde followed by catalytic decomposition to CO and H2 and oxidation of the surface species; the rate limiting step apparently shifts from the decomposition at high oxygen concentration to the oxidation of surface species at low concentration. The rate expression was obtained from the postulated mechanism and found to be consistent with the experimental results. The maximum for the yield of CO provided a second method by which to confirm the postulated rate expression.  相似文献   

13.
Six single-component fuels (isooctane, n-heptane, 1-hexene, cyclohexane, methyl-t-butyl ether (MTBE), and toluene) and a multicomponent tracer fuel were burned in a pulse flame combustor (PFC) and reacted over a three-way automotive catalyst. The composition of the raw, uncatalyzed PFC exhaust was characterized in Part I of this study. In Part II, we focus on the conversions of the individual exhaust HC species over the catalyst. In accord with previous studies, the order of reactivity observed for the various classes of HC species was: methane (least reactive) < saturated HC < aromatics < unsaturated HC (most reactive). These differences in catalytic reactivity led to increases in the relative concentrations of methane and some saturated hydrocarbons in the post catalyst exhaust, and corresponding decreases in the relative concentrations of aromatic and unsaturated hydrocarbons. Oxygenated organic compounds showed wide variability in catalytic reactivity depending on the specific compounds involved. Catalytic conversion of the air toxic, 1,3-butadiene, was essentially complete to within detection limits. Benzene and toluene appeared to have similar intrinsic catalytic reactivities. However, net conversion of benzene in most instances was significantly less than that of toluene owing to demethylation of toluene (to form benzene) occurring in parallel with benzene oxidation. Rich combustion of both isooctane and tracer fuel led to the production of methane by the catalyst, primarily from reactions of acetylene and small olefins.  相似文献   

14.
Abstract

This study investigated the emissions of polycyclic aromatic hydrocarbons (PAHs), carcinogenic potential of PAH and particulate matter (PM), brake-specific fuel consumption (BSFC), and power from diesel engines under transient cycle testing of six test fuels: premium diesel fuel (PDF), B100 (100% palm biodiesel), B20 (20% palm biodiesel + 80% PDF), BP9505 (95% paraffinic fuel + 5% palm biodiesel), BP8020 (80% paraffinic fuel + 20% palm biodiesel), and BP100 (100% paraffinic fuel; Table 1). Experimental results indicated that B100, BP9505, BP8020, and BP100 were much safer when stored than PDF. However, we must use additives so that B100 and BP100 will not gel as quickly in a cold zone. Using B100, BP9505, and BP8020 instead of PDF reduced PM, THC, and CO emissions dramatically but increased CO2 slightly because of more complete combustion. The CO2-increased fraction of BP9505 was the lowest among test blends. Furthermore, using B100, B20, BP9505, and BP8020 as alternative fuels reduced total PAHs and total benzo[a]pyrene equivalent concentration (total BaPeq) emissions significantly. BP9505 had the lowest decreased fractions of power and torque and increased fraction of BSFC. These experimental results implied that BP9505 is feasible for traveling diesel vehicles. Moreover, paraffinic fuel will likely be a new alternative fuel in the future. Using BP9505 instead of PDF decreased PM (22.8%), THC (13.4%), CO (25.3%), total PAHs (88.9%), and total BaPeq (88.1%) emissions significantly.  相似文献   

15.
ABSTRACT

In the present work, engine and tailpipe (after a three-way catalytic converter) emissions from an internal combustion engine operating on two oxygenated blend fuels [containing 2 and 11% weight/weight (w/w) methyl tertiary butyl ether (MTBE)] and on a nonoxygenated base fuel were characterized. The engine (OPEL 1.6 L) was operated under various conditions, in the range of 0-20 HP. Total unburned hydrocarbons, carbon monoxide, methane, hexane, ethylene, acetaldehyde, acetone, 2-propanol, benzene, toluene, 1,3-butadiene, acetic acid, and MTBE were measured at each engine operating condition. As concerns the total HC emissions, the use of MTBE was beneficial from 1.90 to 3.81 HP, which were by far the most polluting conditions. Moreover, CO emissions in tailpipe exhaust were decreased in the whole operation range with increasing MTBE in the fuel.

The greatest advantage of MTBE addition to gasoline was the decrease in ethylene, acetaldehyde, benzene, toluene, and acetic acid emissions in engine exhaust, especially when MTBE content in the fuel was increased to 11% w/w. In tailpipe exhaust, the catalyst operation diminished the observed differences. Ethylene, methane,and acetaldehyde were the main compounds present in exhaust gases. Ethylene was easily oxidized over the catalyst,while acetaldehyde and methane were quite resistant to oxidation.  相似文献   

16.
Formaldehyde, acrolein, and low molecular weight aldehydes are collected in 1% NaHSO3 solution in Greenberg-Smith or midget impingers from industrial effluents. Efficiency of collection is excellent when two impingers are used in series. Formaldehyde is measured in an aliquot of the collection medium by the chromo-tropic acid procedure, acrolein by a modified mercuric-chloride-hexylresorcinol procedure, and C2-C5 aldehydes by a gas chromatographic procedure. The method permits the analysis of all C1-C5 aldehydes on a single collection sample. Data on aldehyde concentrations from a variety of effluents are presented.  相似文献   

17.
Speciated hydrocarbon emissions data have been collected for six single-component fuels run in a laboratory pulse flame combustor (PFC). The six fuels include n-heptane, isooctane (2, 2, 4-trimethylpentane), cyclohexane, 1-hexene, toluene, and methyl-t-butyl ether (MTBE: an oxygenated fuel extender). Combustion of non-aromatic fuels in the PFC (at a fuel/air equivalence ratio of Φ = 1.02) produced low levels of unburned fuel and high yields of methane and olefins (> 75 percent combined) irrespective of the molecular structure of the fuel. In contrast, hydrocarbon emissions from toluene combustion in the PFC were comprised predominantly of unburned fuel (72 percent). With the PFC, low levels of 1, 3-butadiene (0.3-1.8 percent) were observed from all the fuels except MTBE, for which no measurable level (<0.2 percent) was detected; low levels of benzene were observed from isooctane, heptane, and 1-hexene, but significant levels (9 percent) from cyclohexane and toluene. No measurable amount of benzene (< 0.2 percent) was observed in the MTBE exhaust.

For isooctane and toluene the speciated hydrocarbon emissions from a spark-ignited (SI) single-cylinder engine were also determined. HC emissions from the SI engine contained the same species as observed from the PFC, although the relative composition was different. For the non-aromatic fuel isooctane, unburned fuel represented a larger fraction (50 percent) of the HC emissions when run in the engine. HC emissions from toluene combustion in the engine were similar to those from the PFC.  相似文献   

18.
ABSTRACT

The Arizona inspection and maintenance (I/M) program provides one of the first opportunities to examine the costs and effectiveness of vehicle emission repair. This paper examines various aspects of emission reductions, fuel economy improvements, and repair costs, drawing data from over 80,000 vehicles that failed the I/M test in Arizona between 1995 and the first half of 1996. We summarize the wealth of data on repair from the Arizona program and highlight its limitations. Because missing or incomplete cost information has been a serious shortcoming for the evaluation of I/M programs, we develop a method for estimating repair costs when they are not reported. We find surprising evidence that almost one quarter of all vehicles that take the I/M test are never observed to pass the test. Using a statistical analysis, we provide some information about the differences between the vehicles that pass and those that do not. Older, more polluting vehicles are much more likely never to pass the I/M test, and their expected repair costs are much higher than those for newer cars.

This paper summarizes the evidence on costs and emission reductions in the Arizona program, comparing costs and emissions reductions between cars and trucks. Finally, we examine the potential for more cost-effective repair, first through an analysis of tightening I/M cut points and then by calculating the cost savings of achieving different emission reduction goals when the most cost-effective repairs are made first.  相似文献   

19.
20.
The objective of this study was to characterize exhaust emissions from a series of handheld, 2-stroke small engines. A total of 23 new and used engines from model years 1981–2003 were studied; these engines spanned three phases of emission control (pre-control, phase-1, phase-2). Measured emissions included carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), hydrocarbons (HC), fine particulate matter (PM2.5), and sulfur dioxide (SO2). Emissions reductions in CO (78%) and HC (52%) were significant between pre-control and phase-2 engines. These reductions can be attributed to improvements in engine design, reduced scavenging losses, and implementation of catalytic exhaust control. Total hydrocarbon emissions were strongly correlated with fuel consumption rates, indicating varying degrees of scavenging losses during the intake/exhaust stroke. The use of a reformulated gasoline containing 10% ethanol resulted in a 15% decrease in HC and a 29% decrease in CO emissions, on average. Increasing oil content of 2-stroke engine fuels results in a substantial increase of PM2.5 emissions as well as smaller increases in HC and CO emissions. Results from this study enhance existing emission inventories and appear to validate predicted improvements to ambient air quality through implementation of new phase-2 handheld emission standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号