首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Henry's law constant is important in the gas-liquid mass transfer process. Apparent dimensionless Henry's law constant, or the gas-liquid partition coefficient (K'H), for both hydrophilic (methanol, isopropyl alcohol, and acetone) and hydrophobic (toluene and p-xylene) organic compounds in deionized (DI) water, a wastewater with a maximum total dissolved organic carbon (DOC) content of 700 mg/L, and DI water mixed with a maximum activated sludge suspended solid (SS) concentration of 40,000 mg/L were measured using the single equilibrium technique at 293 K. Experimental results demonstrate that the K'H of any of the test volatile organic compounds varied among three situations. First, the K'H of the hydrophilic compounds in mixed liquor with the maximum SS concentration was 9-21% higher than those in DI water. Second, those for toluene and p-xylene were 77% and 93% lower, respectively, in the mixed liquor with the maximum SS concentration. Third, the K'H values of all of the test compounds in the wastewater were only 10% lower than those in DI water. A model was developed to relate K'H with wastewater DOC and the SS concentration in the activated sludge using an organic carbon-water partition coefficient and activated sludge-water partition coefficient as model parameters. The model was verified and model parameters for test compounds estimated.  相似文献   

2.
Goal, Scope and Background Dissolved organic carbon (DOC) constitutes a parameter of organic pollution for waters and wastewaters, which is not so often studied, and it is not yet regulated by directives. The term ‘DOC’ is used for the fraction of organics that pass through a 0.45 μm pores’ size membrane. The type of wastewater plays an important role in the quality of DOC and it has been shown that DOC may contain aquatic humic substances, hydrophobic bases, hydrophobic neutrals, hydrophilic acids, hydrophilic bases and hydrophilic neutrals. The quality of the DOC is expected to affect its fate in a wastewater treatment plant (WWTP), since a considerable fraction of DOC is not biodegradable, and it may be released in the aquatic environment together with the treated effluent. In the present study, the occurrence of DOC during the wastewater treatment process is investigated and its removal rates during primary, secondary and overall treatment are being estimated. Furthermore, a correlation is being attempted between DOC and the concentrations of selected Persistent Organic Pollutants (POPs) and Heavy Metals (HMs) in the dissolved phase of wastewaters, to examine whether there are common sources for these pollution parameters in WWTPs. Also, DOC is being correlated with the partition coefficients of the above-mentioned pollutants in wastewater, in order to examine the effect of ‘solubility enhancement’ in WWTPs and to evaluate the result of this phenomenon in the efficiency of a WWTP to remove organic pollutants. Methods For the purposes of this study, 24-h composite wastewater samples were collected from the influent (raw wastewater, RW), the effluent of primary sedimentation tank (primary sedimentation effluent, PSE) and the effluent of secondary sedimentation tank (secondary sedimentation effluent, SSE). Samples were analyzed for the presence of 26 POPs (7 PCBs and 19 organochlorine pesticides), 8 HMs and DOC. Results and Discussion Mean concentrations of DOC in RW and PSE were at similar levels (∼ 70 mg l−1), suggesting that primary treatment has a minor effect on the DOC content of wastewater. DOC concentrations in SSE were significantly lower (∼ 19 mg l−1) as a result of the degradation of organic compounds in the biological reactor. Calculated removals of DOC were 0.8% in the primary treatment, 63% in the secondary treatment, and 69% in the overall treatment, exhibiting large differences from other organic pollution parameters, such as BOD and COD. The overall DOC removal was found to be independent from the DOC concentration in raw wastewater. Poor correlation was also observed between the DOC content and the concentrations of wastewater contaminants, such as persistent organic pollutants (POPs) and heavy metals (HMs), probably suggesting that their occurrence in WWTPs is due to different sources. A good negative linear relationship was revealed between DOC concentrations and the logarithms of the distribution coefficients (K d) of various POPs and HMs between the solid and the liquid phases of wastewater. This relationship suggests that DOC facilitates hydrophobic pollutants to remain in the dissolved phase thus causing lower removal percentages during the treatment process. Conclusion DOC was measured at three stages of a municipal WWTP that receives mainly domestic wastewater and urban runoff. DOC concentrations in untreated and primarily treated wastewater were almost equal, and only after the secondary sedimentation there was a decrease. Concentrations and removal rates of DOC were in the same levels as in other WWTPs that receive municipal wastewater. The origin of DOC was found to be different to the one of POPs and of HMs, as no correlation was observed between the concentrations of DOC and the concentrations of these pollutants. On the contrary, DOC was found to have significant negative correlation with the K d of all pollutants examined, suggesting that it plays an important role in the partitioning of those pollutants between the dissolved and the sorbed phase of wastewaters. This effect of DOC on partitioning can affect the ability of WWTPs to remove toxic pollutants, and that way it facilitates the discharge of those chemicals in the aquatic ecosystems together with the treated effluent. Recommendation By the results of this work it is shown that the presence of DOC in wastewaters can significantly affect the partition of hazardous pollutants between the dissolved and the sorbed phase. It is therefore of importance that this parameter is controlled more in wastewaters, since it can cause a decrease in the efficiency of WWTPs to remove quantitatively persistent pollutants.  相似文献   

3.
ABSTRACT

Xylene is the main component of many volatile industrial pollution sources, and the use of biotechnology to remove volatile organic compounds (VOCs) has become a growing trend. In this study, a biotrickling filter for gaseous xylene treatment was developed using activated sludge as raw material to study the biodegradation process of xylene. Reaction conditions were optimized, and long-term operation was performed. The optimal pH was 7.0, gas-liquid ratio was 15:1 (v/v), and temperature was 25 °C. High-throughput sequencing technique was carried out to analyze microbial communities in the top, middle, and bottom layers of the reactor. Characteristics of microbial diversity were elucidated, and microbial functions were predicted. The result showed that the removal efficiency (RE) was stable at 86%–91%, the maximum elimination capacity (EC) was 303.61 g·m?3·hr?1, residence time was 33.75 sec, and the initial inlet xylene concentration was 3000 mg·m?3, which was the highest known degradation concentration reported. Kinetic analysis of the xylene degradation indicated that it was a very high-efficiency-activity bioprocess. The rmax was 1059.8 g·m?3·hr?1, and Ks value was 4.78 g·m?3 in stationary phase. In addition, microbial community structures in the bottom and top layers were significantly different: Pseudomonas was the dominant genus in the bottom layer, whereas Sphingobium was dominant in the top layer. The results showed that intermediate metabolites of xylene could affect the distribution of community structure. Pseudomonas sp. can adapt to high concentration xylene–contaminated environments.

Implications: We combined domesticated active sludge and reinforced microbial agent on biotrickling filter. This system performed continuously under a reduced residence time at 33.75 sec and high elimination capacity at 303.61 g·m?3·hr?1 in the biotrickling reactor for about 260 days. In this case, predomestication combined with reinforcing of microorganisms was very important to obtaining high-efficiency results. Analysis of microbial diversity and functional prediction indicated a gradient distribution along with the concentration of xylene. This implied a rational design of microbial reagent and optimizing the inoculation of different sites of reactor could reduce the preparation period of the technology.  相似文献   

4.
为了研究微波强化Fenton/活性炭工艺处理高浓度制药废水的影响因素,以阜新某集团公司生产制药原料排出的废水为研究对象,利用静态实验,采用混凝-微波强化Fenton/活性炭工艺对高浓度制药废水进行实验。实验用水为100 mL、COD为576~1 440 mg/L的制药废水,当活性炭投加量为2 g,H2O2投加量为3/4Qth,pH值为5,微波辐照功率和时间分别为500 W和7 min时,COD去除率可达到92.6%,出水COD在42.6~106.6 mg/L范围内。实验结果表明,活性炭的投加量、H2O2的投加量、pH值、微波辐照功率和辐照时间对微波强化Fenton/活性炭工艺的处理效果影响都较显著。  相似文献   

5.
Biological air filtration for reduction of emissions of volatile sulfur compounds (e.g., hydrogen sulfide, methanethiol and dimethyl sulfide) from livestock production facilities is challenged by poor partitioning of these compounds into the aqueous biofilm or filter trickling water. In this study, Henry’s law constants of reduced volatile sulfur compounds were measured for deionized water, biotrickling filter liquids (from the first and second stages of a two-stage biotrickling filter), and NaCl solutions by a dynamic method using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) at a temperature range of 3–45 °C. NaCl solutions were used to estimate salting-out constants up to an ionic strength of 0.7 M in order to evaluate the effect of ionic strength on partitioning between air and biofilter liquids. Thermodynamic parameters (enthalpy and entropy of phase exchange) were obtained from the measured partition coefficients as a function of temperature. The results show that the partition coefficients of organic sulfur compounds in the biotrickling filter liquids were generally very close to the corresponding partition coefficients in deionized water. Based on the estimated ionic strength of biofilter liquids, it is assessed that salting-out effects are of no importance for these compounds. For H2S, a higher enthalpy of air–liquid partitioning was observed for 2nd stage filter liquid, but not for 1st stage filter liquid. In general, the results show that co-solute effects for sulfur compounds can be neglected in numerical biofilter models and that the uptake of volatile sulfur compounds in biotrickling filter liquids cannot be increased by decreasing ionic strength.  相似文献   

6.
Abstract

An activated sludge aeration tank (40 × 40 × 300 cm, width × length × height) with a set of 2-mm orifice air spargers was used to treat gas-borne volatile organic compounds (VOCs; toluene, p-xylene, and dichloromethane) in air streams. The effects of liquid depth (Z), aeration intensity (G/A), the overall mass-transfer rate of oxygen in clean water (K L a O2 ), the Henry’s law constant of the tested VOC (H), and the influent gaseous VOC concentration (C 0) on the efficiency of removal of VOCs were examined and compared with a literature-cited model. Results show that the measured VOC removal efficiencies and those predicted by the model were comparable at a G/A of 3.75–11.25 m3/m2·hr and C 0 of ~1000–6000 mg/m3. Experimental data also indicated that the designed gas treatment reactor with K L a O2 = 5–15 hr?1 could achieve >85% removal of VOCs with H = 0.24–0.25 at an aerated liquid depth of 1 m and >95% removal of dichloromethane with H = 0.13 at a 1-m liquid depth.  相似文献   

7.
Dissolved organic carbon/water distribution coefficients (K(DOC)) were measured for a selection of PCBs with octanol/water partition coefficients (K(OW)) ranging from 10(5.6) to 10(7.5). A solid phase dosing and sampling technique was applied to determine K(DOC) to Aldrich humic acid. This technique is in particular suitable for determining the distribution of very hydrophobic chemicals to complex matrices like humic acids. The K(DOC) values were calculated from the experimental data using a linear model. Determined K(DOC)'s were evaluated in relation to octanol/water partition coefficients of the test compounds, and compared to literature data. Measured K(DOC) values were somewhat higher than literature data, which can probably be attributed to the overestimation of freely dissolved aqueous concentration as a result of incomplete phase separation in other studies, and to the unique character of Aldrich humic acid as a "sorbent" or co-solute or to the fact that Aldrich humic acid is not a typical DOC, and other (adsorption) processes can occur. This study reports DOC distribution coefficients that belong to the highest ones ever measured. In addition, the DOC distribution was discussed in relation to current risk assessment modeling.  相似文献   

8.
D. Freitag  L. Ballhorn  H. Geyer  F. Korte 《Chemosphere》1985,14(10):1589-1616
The concept of “Environmental Hazard Profile” developed at this institute has been tested with 100 14C-labelled organic compounds. Concentration factors in activated sludge, in algae and fish were determined. The microbial degradation of the chemicals to CO2 in activated sludge and the decomposition to CO2 under artificial light were determined. Ranking of compounds is given in the order of falling concentration factors and accumulation in rats respectively, and decreasing rates of decomposition. Relationship between chemical structure and accumulative and degradative behaviours is demonstrated using some selected groups of chemicals, such as benzenes, phenols, biphenyls and polyaromatic hydrocarbons. Correlations between the octanol/water partition coefficient, concentration factors and rates of decomposition could be established. Evaluation of test compounds was possible using hazard profiles obtained by the sum of single test results.  相似文献   

9.
The organic matter present in the concentrate streams generated from reverse osmosis (RO) based municipal wastewater reclamation processes poses environmental and health risks on its disposal to the receiving environment (e.g., estuaries, bays). The potential of a biological activated carbon (BAC) process combined with pre-oxidation using a UVC/H2O2 advanced oxidation process for treating a high salinity (TDS ∼ 10 000 mg L−1) municipal wastewater RO concentrate (ROC) was evaluated at lab scale during 90 d of operation. The combined treatment reduced the UVA254 and colour of the ROC to below those for the influent of the RO process (i.e., biologically treated secondary effluent), and the reductions in DOC and COD were approximately 60% and 50%, respectively. UVC/H2O2 was demonstrated to be an effective means of converting the recalcitrant organic compounds in the ROC into biodegradable substances which were readily removed by the BAC process, leading to a synergistic effect of the combined treatment in degrading the organic matter. The tests using various BAC feed concentrations suggested that the biological treatment was robust and consistent for treating the high salinity ROC. Using Microtox analysis no toxicity was detected for the ROC after the combined treatment, and the trihalomethane formation potential was reduced from 3.5 to 2.8 mg L−1.  相似文献   

10.
The effect of organic matter on the solid-phase extraction (SPE) efficiency for pesticides belonging to different chemical groups (urea-derivatives, carbamates and triazines) and having different polarities, was simultaneously studied for the first time in pure and simulated water samples. SPE was carried out in precolumns packed with C18 silica or styrene-divinylbenzene copolymer PLRP-S phases on-line coupled to high performance liquid chromatography (HPLC) analysis. Retention factors in water (k'W) were estimated for 25 compounds and used for the calculation of the theoretical breakthrough volume (VbT) in pure water. Experimental breakthrough volumes (VbE) were first determined using purified and deionized water as the matrix for selected compounds having VbT < 500 mL; then, the same water with an added humic acid sodium salt (HA) at 0.4–5.6 mg/L of dissolved organic carbon (DOC) content, was used as the matrix for compounds having VbE < 500 mL in pure water. Several polar pesticides showed negative linear or logarithmic VbE curves depending on HA content; their recoveries were also determined in environmental samples having low dissolved organic carbon values, between 0.5–6.4 mg/L. A similar behavior was observed for these compounds in simulated and natural water samples, where DOC concentration and the percolated volume (Vp) mainly determine the solute recoveries values. However, the variation of recoveries as a function of DOC content could be negative or null depending on the two examined conditions (Vp lower or larger than VbE in pure water). Results demonstrated that breakthrough volume must always be considered to correctly interpret the participation of dissolved humic material on the SPE efficiency of organic micropollutants in water.  相似文献   

11.
The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, 29Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4?7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90 %, respectively.  相似文献   

12.
呼吸测量法测定废水中活性异养菌COD组分   总被引:1,自引:1,他引:0  
废水中的活性异养菌(XH)会影响废水生物处理过程动力学,过程模拟需要对其定量表征.通过2种方法对城市污水中XH进行呼吸测量,分别结合XH最大比呼吸速率参数(P方法)和细胞生长过程模型拟合(F方法)测定其中的XH-COD组分.结果表明,F方法的测量结果是P方法的0.6~0.9倍,两者存在一定的丰廿关性;对于含高XH、低易生物降解基质(RBCOD)的废水,呼吸测量得不到明显的呼吸速率指数上升段,影响F方法的测定结果,水样稀释和外加RBCOD是可行的改进办法.使用P方法得到某城市污水厂进水的XH-COD占总COD的23%~46%(平均31%),高于多数文献报道结果.  相似文献   

13.
Chu L  Wang J  Dong J  Liu H  Sun X 《Chemosphere》2012,86(4):409-414
In this study the treatment of coking wastewater was investigated by an advanced Fenton oxidation process using iron powder and hydrogen peroxide. Particular attention was paid to the effect of initial pH, dosage of H2O2 and to improvement in biodegradation. The results showed that higher COD and total phenol removal rates were achieved with a decrease in initial pH and an increase in H2O2 dosage. At an initial pH of less than 6.5 and H2O2 concentration of 0.3 M, COD removal reached 44-50% and approximately 95% of total phenol removal was achieved at a reaction time of 1 h. The oxygen uptake rate of the effluent measured at a reaction time of 1 h increased by approximately 65% compared to that of the raw coking wastewater. This indicated that biodegradation of the coking wastewater was significantly improved. Several organic compounds, including bifuran, quinoline, resorcinol and benzofuranol were removed completely as determined by GC-MS analysis. The advanced Fenton oxidation process is an effective pretreatment method for the removal of organic pollutants from coking wastewater. This process increases biodegradation, and may be combined with a classical biological process to achieve effluent of high quality.  相似文献   

14.
为充分保障再生水回灌地下时的水质安全、提供高质量地下水资源,在土壤处理系统中嵌入纳滤技术强化对再生水的处理效果,并初步探讨土壤系统作为前处理对纳滤膜污染的控制机理.结果表明,未采用臭氧氧化预处理前,土壤处理对再生水DOC和UV254的平均去除率分别为22%和20%.臭氧氧化对UV254的平均去除率为51%,并将土壤对D...  相似文献   

15.
Abstract

Fate of the fungicide chlorothalonil (TCIN) binding to dissolved organic acid fractions was quantified using gas‐purge desorption studies. Binding studies were conducted to measure the dissolved organic carbon partition constant (KDOC) with aquatic fulvic and humic acid fractions purified from cranberry bog water. Desorption studies at DOC concentrations up to 50 mg L‐1 resulted in mean log KDOC values of 4.63 (s.d.=0.5, n=8) and 4.81 (s.d.=0.7, n=7) for fulvic and humic acids, respectively. These values deviated from reported KOC (organic carbon) values by 0.5 to 1.5 orders of magnitude. The relationship between KOC and KDOC did not conform to accepted ratios of 10: 1 to 3: 1, although these studies were conducted with the strong hydrophobic fraction of DOC. Binding was rapid suggesting hydrophobic partitioning or weak Van Der Waals forces as binding mechanisms. The strong binding potential for TCIN to aquatic humic substances corresponds to increased solubility in the aqueous system. Sorption to DOC suggests a possible transport mechanism which may result in elevated concentrations of TCIN in cranberry bog systems.  相似文献   

16.
The most efficient system of horizontal subsurface flow constructed wetlands (HSSFCW) for removing dissolved organic carbon (DOC) in the presence of chlorothalonil pesticide (CLT) present in synthetic domestic wastewater was determined using the macrophyte Phragmites australis. Two concentrations of CLT (85 and 385 μg L?1) and one concentration of glucose (20 mg L?1) were evaluated in four pilot scale horizontal surface flow constructed wetlands coupled with two sizes of silica gravel, igneous gravel, fine chalky gravel (3.18–6.35 mm), coarse gravel (12.70–25.40 mm) and two water surface heights (20 and 40 cm). For a month, wetlands were acclimated with domestic wastewater. Some groups of bacteria were also identified in the biofilm attached to the gravel. In each treatment periodic samplings were conducted in the influent and effluent. Chlorothalonil was quantified by gas chromatography (GC-ECD m), DOC by an organic carbon analyzer and bacterial groups using conventional microbiology in accordance with Standard Methods. The largest removals of DOC (85.82%–85.31%) were found when using fine gravel (3.18–6.35 mm) and the lower layer of water (20 cm). The bacterial groups quantified in the biofilm were total heterotrophic, revivable heterotrophic, Pseudomonas and total coliforms. The results of this study indicate that fine grain gravel (3.18–6.35 mm) and both water levels (20 to 40 cm) can be used in the removal of organic matter and for the treatment of agricultural effluents contaminated with organo-chloride pesticides like CLT in HSSFCW.  相似文献   

17.

Background, aim, and scope  

The behavior of polycyclic aromatic hydrocarbons (PAHs) is affected by dissolved organic matter (DOM) present in pore water of soils and sediments. Since partitioning to DOM reduces the bioavailable or freely dissolved PAH concentration in pore water, it is important to assess the effect of environmental variables on the magnitude of dissolved organic matter to water partition coefficients (K DOC). The objective of this study was to apply passive samplers to measure freely dissolved PAHs allowing depletion from the aqueous phase. The method was applied to determine K DOC at different temperatures for a selection of PAHs with natural DOM of very different origin.  相似文献   

18.
超临界水氧化(简称SCWO)以其特有的优点成为了引人注目的有机废水处理方法.在操作过程中,有机物与氧化剂呈现为快速的均相反应,在数分钟内便可完全氧化生成CO2和H20.尽管已建造了工业规模的SCWO装置并用于处理化学废水,但该技术所存在的设备腐蚀以及设备因盐沉积而堵塞的问题制约着该技术的推广应用.为解决上述问题,科技工作者对SCWO工艺进行了改进,并提出了多种新颖的SCWO反应器设计思想.综述了基于解决设备腐蚀与盐堵塞问题的SCWO研究进展,并对相关问题进行了讨论.  相似文献   

19.
铅锌矿泡沫浮选废水含有大量Pb2 + 离子和有机硫化物 ,经过混凝沉淀和活性炭吸附 ,去除其中的悬浮物、重金属离子和部分COD、降低其起泡性 ,然后回用生产。回用实践证明 ,选矿废水经过上述工艺处理后 ,其浮选选别指标与洁净水基本一致  相似文献   

20.
This study was conducted to investigate the degradation of propham, which is a compound that pollutes water and seriously threatens human health, by subcritical water oxidation and using H2O2 as an oxidising agent. The maximum total organic carbon removal rate of propham was obtained as 73.65% at 40 min of treatment time and 60 mM of H2O2 concentration and 373 K of temperature. In addition, response surface method based on the Box-Behnken design was applied to design the degradation experiments of propham for determination of the combined effects of process variables, namely temperature, concentration of oxidising agent and treatment time. The proposed quadratic model of propham degradation, which was examined with the analysis of variance, was used for navigating the design space. The R2 and adjusted R2 values of the model were determined as 0.9921 and 0.9819 respectively. It was shown that propham was effectively degraded, thus could be removed from the water by using an environmentally friendly method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号