首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This study examines exhaust emissions from 11 vehicles tested on compressed natural gas, liquefied petroleum gas, methanol, ethanol, and reformulated gasoline fuels (22 vehicle/ fuel combinations). The paper highlights ozone precursor and toxic emissions. Emission rates from some of the presumably well-maintained, low-mileage test vehicles were higher than expected, but fuel effects were consistent with findings of similar studies. Aggregate toxic and non-methane organic emission rates from the variable/flexible fuel vehicles were higher with alcohol fuels than with reformulated gasoline. Lower specific reactivities for emissions with the alcohol fuels offset this negative trait. Specific reactivities of the organic emissions with the alternative fuels were consistently lower than those with the gasoline blends. Compressed natural gas and liquefied petroleum gas fuels had the lowest values. Although specific reactivities were expected to vary from fuel-to-fuel, they also varied considerably from vehicle-to-vehicle.  相似文献   

2.
ABSTRACT

Mobile sources are among the largest contributors of four hazardous air pollutants—benzene, 1,3-butadiene, acetal-dehyde, and formaldehyde—in urban areas. At the same time, federal and state governments are promoting the use of alternative fuel vehicles as a means to curb local air pollution. As yet, the impact of this movement toward alternative fuels with respect to toxic emissions has not been well studied. The purpose of this paper is to compare toxic emissions from vehicles operating on a variety of fuels, including reformulated gasoline (RFG), natural gas, ethanol, methanol, liquid petroleum gas (LPG), and electricity. This study uses a version of Argonne National Laboratory's Greenhouse Gas, Regulated Emissions, and Energy Use in Transportation (GREET) model, appropriately modified to estimate toxic emissions. The GREET model conducts a total fuel-cycle analysis that calculates emissions from both downstream (e.g., operation of the vehicle) and upstream (e.g., fuel production and distribution) stages of the fuel cycle. We find that almost all of the fuels studied reduce 1,3-buta-diene emissions compared with conventional gasoline (CG). However, the use of ethanol in E85 (fuel made with 85% ethanol) or RFG leads to increased acetaldehyde emissions, and the use of methanol, ethanol, and compressed natural gas (CNG) may result in increased formaldehyde emissions. When the modeling results for the four air toxics are considered together with their cancer risk factors, all the fuels and vehicle technologies show air toxic emission reduction benefits.  相似文献   

3.
Abstract

A study design was developed and demonstrated for deployment of a portable emission measurement system (PEMS) for excavators. Excavators are among the most commonly used vehicles in construction activities. The PEMS measured nitric oxide, carbon monoxide, hydrocarbons, carbon dioxide, and opacity-based particulate matter. Data collection, screening, processing, and analysis protocols were developed to assure data quality and to quantify variability in vehicle fuel consumption and emissions rates. The development of data collection procedures was based on securing the PEMS while avoiding disruption to normal vehicle operations. As a result of quality assurance, approximately 90% of the attempted measurements resulted in valid data. On the basis of field data collected for three excavators, an average of 50% of the total nitric oxide emissions was associated with 29% of the time of operation, during which the average engine speed and manifold absolute pressure were significantly higher than corresponding averages for all data. Mass per time emission rates during non-idle modes (i.e., moving and using bucket) were on average 7 times greater than for the idle mode. Differences in normalized average rates were influenced more by intercycle differences than intervehicle differences. This study demonstrates the importance of accounting for intercycle variability in real-world in-use emissions to develop more accurate emission inventories. The data collection and analysis methodology demonstrated here is recommended for application to more vehicles to better characterize real-world vehicle activity, fuel use, and emissions for nonroad construction equipment.  相似文献   

4.
5.
Abstract

This study investigated the emissions of polycyclic aromatic hydrocarbons (PAHs), carcinogenic potential of PAH and particulate matter (PM), brake-specific fuel consumption (BSFC), and power from diesel engines under transient cycle testing of six test fuels: premium diesel fuel (PDF), B100 (100% palm biodiesel), B20 (20% palm biodiesel + 80% PDF), BP9505 (95% paraffinic fuel + 5% palm biodiesel), BP8020 (80% paraffinic fuel + 20% palm biodiesel), and BP100 (100% paraffinic fuel; Table 1). Experimental results indicated that B100, BP9505, BP8020, and BP100 were much safer when stored than PDF. However, we must use additives so that B100 and BP100 will not gel as quickly in a cold zone. Using B100, BP9505, and BP8020 instead of PDF reduced PM, THC, and CO emissions dramatically but increased CO2 slightly because of more complete combustion. The CO2-increased fraction of BP9505 was the lowest among test blends. Furthermore, using B100, B20, BP9505, and BP8020 as alternative fuels reduced total PAHs and total benzo[a]pyrene equivalent concentration (total BaPeq) emissions significantly. BP9505 had the lowest decreased fractions of power and torque and increased fraction of BSFC. These experimental results implied that BP9505 is feasible for traveling diesel vehicles. Moreover, paraffinic fuel will likely be a new alternative fuel in the future. Using BP9505 instead of PDF decreased PM (22.8%), THC (13.4%), CO (25.3%), total PAHs (88.9%), and total BaPeq (88.1%) emissions significantly.  相似文献   

6.
ABSTRACT

Although it is much safer and more fuel-efficient to transport children to school in buses than in private vehicles, school buses in the United States still consume 822 million gal of diesel fuel annually, and school transportation costs can account for a significant portion of resource-constrained school district budgets. Additionally, children in diesel-powered school buses may be exposed to higher levels of particulates and other pollutants than children in cars. One solution to emission and fuel concerns is use of hybrid-electric school buses, which have the potential to reduce emissions and overall lifecycle costs compared with conventional diesel buses. Hybrid-electric technologies are available in the passenger vehicle market as well as the transit bus market and have a track record indicating fuel economy and emissions benefits. This paper summarizes the results of an in-use fuel economy evaluation for two plug-in hybrid school buses deployed in two different school districts in Iowa. Each school district selected a control bus with a route similar to that of the hybrid bus. Odometer readings, fuel consumption, and maintenance needs were recorded for each bus. The buses were deployed in 2008 and data were collected through May 2010. Fuel consumption was calculated for each school district. In Nevada, IA, the overall average fuel economy was 8.23 mpg for the hybrid and 6.35 mpg for the control bus. In Sigourney, IA, the overall average fuel economy was 8.94 mpg for the hybrid and 6.42 mpg for the control bus. The fuel consumption data were compared for the hybrid and control buses using a Wilcoxon signed rank test. Results indicate that fuel economy for the Nevada hybrid bus was 29.6% better than for the Nevada control bus, and fuel economy for the Sigourney hybrid bus was 39.2% higher than for the Sigourney control bus. Both differences were statistically significant.

IMPLICATIONS The results of the research presented in this paper can be readily used by school districts and policy-makers who are interested in purchasing hybrid school buses. Very little information about actual on-road fuel consumption or costs is available. Because the cost of a hybrid bus can be significantly more than the cost of a conventional bus, the information provided in this paper can be very useful for an agency to determine the costs and benefits of a hybrid bus. The information is also useful to researchers who are studying hybrid school and transit buses.  相似文献   

7.
Different ways for modeling the impact of vehicle emission inspection and maintenance programs on fleet hydrocarbon emissions are examined. A dynamic model is developed for forecasting fleet emissions in which individual vehicle performance is modeled as a stochastic process and vehicle emissions are tracked over time. Emissions inspection and repair are incorporated into the model, allowing for the stochastic aspects of both testing and repair. This model is compared to EPA’s model for evaluating the impact of vehicle emissions inspection and maintenance. We find that the way vehicle emission equipment deterioration overtime is modeled is important for forecasting emissions from the fleet and for assessing the success of inspection and maintenance programs. For inspection programs, we find that factors such as the proportion of vehicles tested, and repair effectiveness and duration have the greatest impact on emission reductions. The ability of different emission testing regimes to identify polluting vehicles has less impact on a program’s overall potential for emissions reduction. Policy recommendations for I&M testing and predictions of emission reduction credits from these tests will depend in important ways on the methods used in the underlying emissions models.  相似文献   

8.
ABSTRACT

The emissions from a fleet of 11 vehicles, including three from the State of Alaska, were tested at 75, 0, and -20 °F with base gasolines and E10 gasolines, that is, gasolines with 10% by volume ethanol added. The data for the changes in emissions for the test run at 75 °F are included, since most other studies on the effects of E10 gasoline on emissions were run at that temperature. The three Alaskan vehicles were also tested at 20 °F. The testing followed the Federal Test Procedure, and regulated emissions—CO, total hydrocarbons (THC), and nitrogen oxides (NOx)—CO2, speciated organics, and fuel economy were measured. A total of 490 FTP tests were run. The data obtained indicated that with most vehicles, at the temperatures tested, improvements in both CO and THC emissions were obtained with the use of E10 fuel. At the lowest temperature used, -20 °F, most vehicles had an increase in NO emissions with the use of E10 fuel. At the other temperatures, however, more vehicles showed a decrease in NOx emissions with the use of E10. With all vehicles at all temperatures tested, the emissions of acetaldehyde increased significantly when E10 fuel was used. The highest increase was about 8 to 1. Benzene, formaldehyde, and 1,3 butadiene showed both increases and decreases in the emissions when using E10 fuel. Unexpected results were obtained with the fuel economy, with about half of the tests showing an increase in fuel economy with the use of E10 fuel.  相似文献   

9.
Achievement of air quality goals now more than ever requires careful consideration of alternative control strategies in view of national concerns with energy and the economy. Three strategies which might be used by coal-fired steam electric plants to achieve ambient air quality standards for sulfur dioxide have been compared, and the analysis shows that the desired objective can be achieved using the intermittent control strategy with substantially less impact on the environment, less consumption of energy, and at a much lower economic cost than using either stack gas scrubbing or low-sulfur coal.  相似文献   

10.
An addition of additives to fuel oils prior to combustion is one way of reducing combustible contaminant emissions to the outer air. Reported test results show that some additives improve, moderately, the combustive properties of fuel oils. Combustion is also improved but to a lesser degree, in boiler systems that are deficient in operation and design. Being combustible, polynuclear hydrocarbons emissions would be reduced by use of additives. Other types of additives to reduce slagging and inhibit corrosion from combustion of fuel oils are also available. The cost of using additives is low. Improved additives are required, especially ones to better combustion in the deficient boiler systems. These can be found by research and literature surveys. Their effectiveness and nontoxicity would be confirmed by laboratory and field testing.  相似文献   

11.
Abstract

Worldwide concerns about sulfur oxide (SOx) emissions from ships are motivating the replacement of marine residual oil (RO) with cleaner, lower-sulfur fuels, such as marine gas oil (MGO) and marine diesel oil (MDO). Vessel operators can use MGO and MDO directly or blended with RO to achieve environmental and economic objectives. Although expected to be much cleaner in terms of criteria pollutants, these fuels require additional energy in the upstream stages of the fuel cycle (i.e., fuel processing and refining), and thus raise questions about the net impacts on greenhouse gas emissions (primarily carbon dioxide [CO2]) because of production and use. This paper applies the Total Energy and Environmental Analysis for Marine Systems (TEAMS) model to conduct a total fuel cycle analysis of RO, MGO, MDO, and associated blends for a typical container ship. MGO and MDO blends achieve significant (70–85%) SOx emissions reductions compared with RO across a range of fuel quality and refining efficiency assumptions. We estimate CO2 increases of less than 1% using best estimates of fuel quality and refinery efficiency parameters and demonstrate how these results vary based on parameter assumptions. Our analysis suggests that product refining efficiency influences the CO2 tradeoff more than differences in the physical and energy parameters of the alternative fuels, suggesting that modest increases in CO2 could be offset by efficiency improvements at some refineries. Our results help resolve conflicting estimates of greenhouse gas tradeoffs associated with fuel switching and other emissions control policies.  相似文献   

12.
The body of information presented in this paper is directed towards engineers in the field of environmental sciences involved in measuring and/or evaluating the emissions from a variety of diesel engines or vehicles. This paper summarizes recent data obtained by EPA on identification and quantification of different emissions (i.e. characterization) from a variety of diesel engines.

Extensive work has been done comparing emissions from some light duty diesel and gasoline passenger cars. The work on the diesel vehicles was expanded to include tests with five different diesel fuels to determine how fuel composition affects emissions. This work showed that use of a poorer quality fuel frequently made emissions worse. The investigation of fuel composition continued with a project in which specific fuel parameters were systematically varied to determine their effect on emissions. EPA is presently testing a variety of fuels derived from coal and oil shale to determine their effects on emissions.

EPA has also tested a heavy duty Volvo diesel bus engine designed to run on methanol and diesel fuel, each injected through its own injection system. The use of the dual fuel resulted in a reduction in particulates and NO x but an increase in HC and CO compared to a baseline Volvo diesel engine running on pure diesel fuel.

Finally, some Ames bioassay tests have been performed on samples from the diesel passenger cars operated on various fuels and blends. An increase in Ames test response (mutagenicity) was seen when the higher aromatic blend was used and also when a commercial cetane improver was used. Samples from the Volvo diesel bus engine fueled with methanol and diesel fuel showed that use of a catalyst increased the Ames response.  相似文献   

13.
Abstract

This study reports on the analysis of emissions and fuel consumption from motor vehicles using a modal approach. The four standard driving modes are idling, accelerating, cruising, and decelerating. On‐road data were collected using instrumented test vehicles traveling many times through the urban areas of Hong Kong. A model was developed for estimating vehicular fuel consumption and emissions as a function of instantaneous speed and driving mode. Piecewise interpolation functions were proposed for each nonidling driving mode. Idling emission and fuel consumption rates were estimated as negative exponential functions of idling time. Preliminary modeling results showed good agreements for the test vehicles and indicated that the on‐road measurements are feasible for the development of modal emission and fuel consumption models.  相似文献   

14.
Abstract

China’s national government and Beijing city authorities have adopted additional control measures to reduce the negative impact of vehicle emissions on Beijing’s air quality. An evaluation of the effectiveness of these measures may provide guidance for future vehicle emission control strategy development. In-use emissions from light-duty gasoline vehicles (LDGVs) were investigated at five sites in Beijing with remote sensing instrumentation. Distance-based mass emission factors were derived with fuel consumption modeled on real world data. The results show that the recently implemented aggressive control strategies are significantly reducing the emissions of on-road vehicles. Older vehicles are contributing substantially to the total fleet emissions. An earlier program to retrofit pre-Euro cars with three-way catalysts produced little emission reduction. The impact of model year and driving conditions on the average mass emission factors indicates that the durability of vehicles emission controls may be inadequate in Beijing.  相似文献   

15.
ABSTRACT

The introduction of reformulated gasolines significantly reduced exhaust hydrocarbon (HC) mass emissions, but few data are available concerning how these new fuels affect exhaust reactivity. Similarly, while it is well established that high-emitting vehicles contribute a significant portion of total mobile source HC mass emissions, it is also important to evaluate the exhaust reactivity from these vehicles. The objective of this study was to evaluate the relative influence on in-use vehicle exhaust reactivity of three critical factors: fuel, driving cycle, and vehicle emission status. Nineteen in-use vehicles were tested with seven randomly assigned fuel types and two driving cycles: the Federal Test Procedure (FTP) and the Unified Cycle (UC). Total exhaust reactivity was not statistically different between the FTP and UC cycles but was significantly affected by fuel type. On average, the exhaust reactivity for California Phase 2 fuel was the lowest (16 % below the highest fuel type) among the seven fuels tested for cold start emissions. The average exhaust reactivity for high-emitting vehicles was significantly higher for hot stabilized (11%) and hot start (15%) emissions than for low-emitting vehicles. The exhaust reactivities for the FTP and UC cycles for light-end HCs and carbonyls were significantly different for the hot stabilized mode. There was a significant fuel effect on the mean specific reactivity (SR) for the mid-range HCs, but not for light-end HCs or carbonyls, while vehicle emission status affected the mean SR for all three HC compound classes.  相似文献   

16.
Abstract

The conversion of methane to liquid products, hydrogen (H2), and ammonia (NH3) was investigated experimentally using microgap discharge plasma at an environmentally friendly condition. The experimental results indicated that H2 and NH3 were detected as the main gas products. The highest yield and production rate of H2 was 14.4% (v/v) and 2974.6 μmol/min, respectively, whereas the highest yield and production rate of NH3 was 8000 ppm (v/v) and 165.1 μmol/min, respectively. Particularly, the liquid products were collected on the plate and consisted of pyrrole, 2-methyl-1,4-pentadiene, α-amidopyri-dine, 2,5-dimethylpyrrole, methylpyrazine, 1-hexyne, 1,4-heptadiene, and polycyclic organic compounds. Some liquid products were the intermediates of drug, ?avor, dye, and organic synthesis, as well as edible ?avor. The collection efficiency in mass and energy efficiency were 26.3% at once and 22.9 g/kWh, respectively. The whole reaction process was considered to be in line with green chemistry principles.  相似文献   

17.
Abstract

Heavy-duty trucks make up only 3% of the on-road vehicle fleet, yet they account for >7% of vehicle miles traveled in the United States. They also contribute a significant proportion of regulated ambient emissions. Heavy vehicles emit emissions at different rates than passenger vehicles. They may also behave differently on‐road, yet may be treated similarly to passenger vehicles in emissions modeling. Input variables to the MOBILE software, such as average vehicle speed, are typically specified the same for heavy trucks as for passenger vehicles. Although not frequently considered in modeling emissions, speed differences between passenger vehicles and heavy trucks may influence emissions, because emission rates are correlated to average speed. Differences were evaluated by collecting average and spot speeds for heavy trucks and passenger vehicles on arterials and spot speeds on freeways in Des Moines, IA, and Minneapolis/St. Paul, MN. Speeds were compared by study site. Space mean speeds for heavy trucks were lower than passenger vehicle speeds for all of the arterials with differences ranging from 0.8 to 19 mph. Spot speeds for heavy trucks were also lower at all of the arterial and freeway locations with differences ranging from 0.8 to 6.1 mph. The impact that differences in on‐road speeds had on emissions was also evaluated using MOBILE version 6.2. Misspecification of average truck speed is the most significant at lower and higher speed ranges.  相似文献   

18.
Exhaust and evaporative emissions were examined from vehicles fueled with methanol or a gasoline-methanol blend. Regulated automobile pollutants, as well as detailed hydrocarbons, methanol, and aldehydes were measured, and exhaust emission trends were obtained for vehicle operation over five different driving cycles. Results indicated that use of the blended fuel does not generally have any significant effect on base-line exhaust emission rates of regulated pollutants; however, emission rates of aldehydes increased during the Federal Test Procedure. Aldehyde emissions from the methanol-fueled car were roughly an order of magnitude higher than those resulting from blended fuel usage. The hydrocarbon composition of evaporative emissions with the blended fuel was similar to that with the base-line fuel except when canister breakthrough occurred. Evaporative emissions during breakthrough were comprised chiefly of N-butane.  相似文献   

19.
Abstract

A state-of-the-science thermodynamic model describing gas-particle absorption processes was used to predict the gas-particle partitioning of mixtures of approximately 60 carbonyl compounds emitted from low-emission gasoline-powered vehicles, three-way catalyst gasoline-powered vehicles, heavy-duty diesel vehicles under the idle-creep condition (HDDV idle), and heavy-duty diesel vehicles under the five-mode test (HDDV 5-mode). Exhaust was diluted by a factor of 120–580 with a residence time of approximately 43 sec. The predicted equilibrium absorption partitioning coefficients differed from the measured partitioning coefficients by several orders of magnitude. Time scales to reach equilibrium in the dilution sampling system were close to the actual residence time during the HDDV 5-mode test and much longer than the actual residence time during the other vehicle tests. It appears that insufficient residence time in the sampling system cannot uniformly explain the failure of the absorption mechanism to explain the measured partitioning. Other gas-particle partitioning mechanisms (e.g., heterogeneous reactions, capillary adsorption) beyond the simple absorption theory are needed to explain the discrepancy between calculated carbonyl partitioning coefficients and observed partitioning. Both of these alternative partitioning mechanisms imply great challenges for the measurement and modeling of semi-volatile primary organic aerosol (POA) species from motor vehicles. Furthermore, as emitted particle concentrations from newer vehicles approach atmospheric background levels, dilution sampling systems must fundamentally change their approach so that they use realistic particle concentrations in the dilution air to approximately represent real-world conditions. Samples collected with particle-free dilution air yielding total particulate matter concentrations below typical ambient concentrations will not provide a realistic picture of partitioning for semi-volatile compounds.  相似文献   

20.
ABSTRACT

The application of artificial intelligence techniques for performance optimization of the fuel lean gas reburn (FLGR) system is investigated. A multilayer, feedforward artificial neural network is applied to model static nonlinear relationships between the distribution of injected natural gas into the upper region of the furnace of a coal-fired boiler and the corresponding oxides of nitrogen (NOx) emissions exiting the furnace. Based on this model, optimal distributions of injected gas are determined such that the largest NOx reduction is achieved for each value of total injected gas. This optimization is accomplished through the development of a new optimization method based on neural networks. This new optimal control algorithm, which can be used as an alternative generic tool for solving multidimensional nonlinear constrained optimization problems, is described and its results are successfully validated against an off-the-shelf tool for solving mathematical programming problems. Encouraging results obtained using plant data from one of Commonwealth Edison's coal-fired electric power plants demonstrate the feasibility of the overall approach.

Preliminary results show that the use of this intelligent controller will also enable the determination of the most cost-effective operating conditions of the FLGR system by considering, along with the optimal distribution of the injected gas, the cost differential between natural gas and coal and the open-market price of NOx emission credits. Further study, however, is necessary, including the construction of a more comprehensive database, needed to develop high-fidelity process models and to add carbon monoxide (CO) emissions to the model of the gas reburn system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号