首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The research objective was to adapt the ultraviolet (UV)-photolysis method to determine dissolved organic nitrogen (DON) in aqueous extracts of aerosol samples. DON was assumed to be the difference in total concentration of inorganic nitrogen forms before and after sample irradiation. Using a 2(2) factorial design the authors found that the optimal conversion of urea, amino acids (alanine, aspartic acid, glycine, and serine), and methylamine for a reactor temperature of 44 degrees C occurred at pH 2.0 with a 24-hr irradiance period at concentrations <33 microM of organic nitrogen. Different decomposition mechanisms were evident: the photolysis of amino acids and methylamine released mainly ammonium (NH4+), but urea released a near equimolar ratio of NH4+ and nitrate (NO3-). The method was applied to measure DON in the extracts of aerosol samples from Tampa, FL, over a 32-day sampling period. Average dissolved inorganic (DIN) and DON concentrations in the particulate matter fraction PM10 were 78.1 +/- 29.2 nmol-Nm(-3) and 8.3 +/- 4.9 nmol-Nm(-3), respectively. The ratio between DON and total dissolved nitrogen ([TDN] = DIN + DON) was 10.1 +/- 5.7%, and the majority of the DON (79.1 +/- 18.2%) was found in the fine particulate matter (PM2.5) fraction. The average concentrations of DIN and DON in the PM2.5 fraction were 54.4 +/- 25.6 nmol-Nm(-3) and 6.5 +/- 4.4 nmol-Nm(-3), respectively.  相似文献   

2.
This study investigates the water-soluble ionic constituents (Na+, K+, NH4 +, Ca2+, Mg2+, Cl?, NO3 ?, SO4 2?) associated to PM2.5 particle fraction at two urban sites in the city of Thessaloniki, northern Greece, an urban traffic site (UT) and urban background site (UB). Ionic constituents represent a significant fraction of PM2.5 mass (29.6 at UT and 41.5 % at UB). The contribution of marine aerosol was low (<1.5 %). Secondary inorganic aerosols (SIA) represent a significant fraction of PM2.5 mass contributing to 26.9?±?12.4 % and 39.2?±?13.2 % at UT and UB sites, respectively. Nitrate and sulfate are fully neutralized by ammonium under the existing conditions. The ionic constituents were evaluated in relation to their spatial and temporal variation, their gaseous precursors, meteorological conditions, local and long-range transport.  相似文献   

3.
Sources of submicron aerosol during fog-dominated wintertime at Kanpur   总被引:1,自引:0,他引:1  
The main objective of this atmospheric study was to determine the major sources of PM1 (particles having aerodynamic diameter <1.0 μm) within and near the city of Kanpur, in the Indo-Gangetic Plain. Day and night, 10 h long each, filter-based aerosol samples were collected for 4 months (November 2009 to February 2010) throughout the winter season. These samples were subjected to gravimetric and quantitative chemical analyses for determining water-soluble ions (NH4 +, F?, Cl?, NO3 ?, and SO4 2?) using an ion chromatograph and trace elements using an inductively coupled plasma–optical emission spectrometer. The mean PM1 mass concentrations were recorded as 114?±?71 μg/m3 (day) and 143?±?86 μg/m3 (night), respectively. A significantly higher diurnal contribution of ions (NH4 +, F?, Cl?, NO3 ?, and SO4 2?) in PM1 mass was observed during the fog-affected days and nights throughout the winter season, for which the average values were recorded as 38.09?±?13.39 % (day) and 34.98?±?12.59 % (night), respectively, of the total PM1 mass. This chemical dataset was then used in a source-receptor model, UNMIX, and the model results are described in detail. UNMIX provided a maximum number of five source factors, including crustal material, composite vehicle, secondary aerosol, coal combustion, and iron/steel production and metallurgical industries, as the dominant air pollution sources for this study.  相似文献   

4.
An apartment bedroom located in a residential area of Aveiro (Portugal) was selected with the aim of characterizing the cellulose content of indoor aerosol particles. Two sets of samples were taken: (1) PM10 collected simultaneously in indoor and outdoor air; (2) PM10 and PM2.5 collected simultaneously in indoor air. The aerosol particles were concentrated on quartz fibre filters with low-volume samplers equipped with size selective inlets. The filters were weighed and then extracted for cellulose analysis by an enzymatic method. The average indoor cellulose concentration was 1.01 ± 0.24 μg m?3, whereas the average outdoor cellulose concentration was 0.078 ± 0.047 μg m?3, accounting for 4.0% and 0.4%, respectively, of the PM10 mass. The corresponding average ratio between indoor and outdoor cellulose concentrations was 11.1 ± 4.9, indicating that cellulose particles were generated indoors, most likely due to the handling of cotton-made textiles as a result of routine daily activities in the bedroom. Indoor cellulose concentrations averaged 1.22 ± 0.53 μg m?3 in the aerosol coarse fraction (determined from the difference between PM10 and PM2.5 concentrations) and averaged 0.38 ± 0.13 μg m?3 in the aerosol fine fraction. The average ratio between the coarse and fine fractions of cellulose concentrations in the indoor air was 3.6 ± 2.1. This ratio is in line with the primary origin of this biopolymer. Results from this study provide the first experimental evidence in support of a significant contribution of cellulose to the mass of suspended particles in indoor air.  相似文献   

5.
To better understand the origins of aerosol nitrogen, we measured concentrations of total nitrogen (TN) and its isotope ratios (δ15N) in tropical Indian aerosols (PM10) collected from Chennai (13.04°N; 80.17°E) on day- and night-time basis in winter and summer 2007. We found high δ15N values (+15.7 to +31.2‰) of aerosol N (0.3–3.8 μg m?3), in which NH4+ is the major species (78%) with lesser contribution from NO3? (6%). Based on the comparison of δ15N in Chennai aerosols with those reported for atmospheric aerosols from mid-latitudes and for the particles emitted from point sources (including a laboratory study), as well as the δ15N ratios of cow-dung samples (this study), we found that the atmospheric aerosol N in Chennai has two major sources; animal excreta and bio-fuel/biomass burning from South and Southeast Asia. We demonstrate that a gas-to-particle conversion of NH3 to NH4HSO4 and (NH4)2SO4 and the subsequent exchange reaction between NH3 and NH4+ are responsible for the isotopic enrichment of 15N in aerosol nitrogen.  相似文献   

6.
Agra, one of the oldest cities “World Heritage site”, and Delhi, the capital city of India are both located in the border of Indo-Gangetic Plains (IGP) and heavily loaded with atmospheric aerosols due to tourist place, anthropogenic activities, and its topography, respectively. Therefore, there is need for monitoring of atmospheric aerosols to perceive the scenario and effects of particles over northern part of India. The present study was carried out at Agra (AGR) as well as Delhi (DEL) during winter period from November 2011 to February 2012 of fine particulate (PM2.5: d?<?2.5 μm) as well as associated carbonaceous aerosols. PM2.5 was collected at both places using medium volume air sampler (offline measurement) and analyzed for organic carbon (OC) and elemental carbon (EC). Also, simultaneously, black carbon (BC) was measured (online) at DEL. The average mass concentration of PM2.5 was 165.42?±?119.46 μg m?3 at AGR while at DEL it was 211.67?±?41.94 μg m?3 which is ~27 % higher at DEL than AGR whereas the BC mass concentration was 10.60 μg m?3. The PM2.5 was substantially higher than the annual standard stipulated by central pollution control board and United States Environmental Protection Agency standards. The average concentrations of OC and EC were 69.96?±?34.42 and 9.53?±?7.27 μm m?3, respectively. Total carbon (TC) was 79.01?±?38.98 μg m?3 at AGR, while it was 50.11?±?11.93 (OC), 10.67?±?3.56 μg m?3 (EC), and 60.78?±?14.56 μg m?3 (TC) at DEL. The OC/EC ratio was 13.75 at (AGR) and 5.45 at (DEL). The higher OC/EC ratio at Agra indicates that the formation of secondary organic aerosol which emitted from variable primary sources. Significant correlation between PM2.5 and its carbonaceous species were observed indicating similarity in sources at both sites. The average concentrations of secondary organic carbon (SOC) and primary organic carbon (POC) at AGR were 48.16 and 26.52 μg m?3 while at DEL it was 38.78 and 27.55 μg m?3, respectively. In the case of POC, similar concentrations were observed at both places but in the case of SOC higher over AGR by 24 in comparison to DEL, it is due to the high concentration of OC over AGR. Secondary organic aerosol (SOA) was 42 % higher at AGR than DEL which confirms the formation of secondary aerosol at AGR due to rural environment with higher concentrations of coarse mode particles. The SOA contribution in PM2.5 was also estimated and was ~32 and 12 % at AGR and DEL respectively. Being high loading of fine particles along with carbonaceous aerosol, it is suggested to take necessary and immediate action in mitigation of the emission of carbonaceous aerosol in the northern part of India.  相似文献   

7.
ABSTRACT

The Aerosol Research and Inhalation Epidemiology Study (ARIES) was designed to provide high-quality measurements of PM25, its components, and co-varying pollutants for an air pollution epidemiology study in Atlanta, GA.

Air pollution epidemiology studies have typically relied on available data on particle mass often collected using filter-based methods. Filter-based PM2.5 sampling is susceptible to both positive and negative errors in the measurement of aerosol mass and particle-phase component concentrations in the undisturbed atmosphere. These biases are introduced by collection of gas-phase aerosol components on the filter media or by volatilization of particle phase components from collected particles. As part of the ARIES, we collected daily 24-hr PM2.5 mass and speciation samples and continuous PM2.5 data at a mixed residential-light industrial site in Atlanta. These data facilitate analysis of the effects of a wide variety of factors on sampler performance. We assess the relative importance of PM2.5 components and consider associations and potential mechanistic linkages of PM2.5 mass concentrations with several PM2.5 components.

For the 12 months of validated data collected to date (August 1, 1998-July 31, 1999), the monthly average Federal Reference Method (FRM) PM2 5 mass always exceeded the proposed annual average standard (12-month average = 20.3 ± 9.5 ug/m3). The particulate SO4 2- fraction (as (NH4)2SO4) was largest in the summer and exceeded 50% of the FRM mass. The contribution of (NH4)2SO4 to FRM PM2.5 mass dropped to less than 30% in winter. Particu-late NO3 - collected on a denuded nylon filter averaged 1.1 ± 0.9 ug/m3. Particle-phase organic compounds (as organic carbon × 1.4) measured on a denuded quartz filter sampler averaged 6.4 ± 3.1 ug/m3 (32% of FRM PM2 5 mass) with less seasonal variability than SO4 2-.  相似文献   

8.
Improvement of air quality models is required so that they can be utilized to design effective control strategies for fine particulate matter (PM2.5). The Community Multiscale Air Quality modeling system was applied to the Greater Tokyo Area of Japan in winter 2010 and summer 2011. The model results were compared with observed concentrations of PM2.5 sulfate (SO42-), nitrate (NO3?) and ammonium, and gaseous nitric acid (HNO3) and ammonia (NH3). The model approximately reproduced PM2.5 SO42? concentration, but clearly overestimated PM2.5 NO3? concentration, which was attributed to overestimation of production of ammonium nitrate (NH4NO3). This study conducted sensitivity analyses of factors associated with the model performance for PM2.5 NO3? concentration, including temperature and relative humidity, emission of nitrogen oxides, seasonal variation of NH3 emission, HNO3 and NH3 dry deposition velocities, and heterogeneous reaction probability of dinitrogen pentoxide. Change in NH3 emission directly affected NH3 concentration, and substantially affected NH4NO3 concentration. Higher dry deposition velocities of HNO3 and NH3 led to substantial reductions of concentrations of the gaseous species and NH4NO3. Because uncertainties in NH3 emission and dry deposition processes are probably large, these processes may be key factors for improvement of the model performance for PM2.5 NO3?.
Implications: The Community Multiscale Air Quality modeling system clearly overestimated the concentration of fine particulate nitrate in the Greater Tokyo Area of Japan, which was attributed to overestimation of production of ammonium nitrate. Sensitivity analyses were conducted for factors associated with the model performance for nitrate. Ammonia emission and dry deposition of nitric acid and ammonia may be key factors for improvement of the model performance.  相似文献   

9.
Organic carbon (OC) and elemental carbon (EC) concentrations, associated to PM10 and PM2.5 particle fractions, were concurrently determined during the warm and the cold months of the year (July–September 2011 and February–April 2012, respectively) at two urban sites in the city of Thessaloniki, northern Greece, an urban-traffic site (UT) and an urban-background site (UB). Concentrations at the UT site (11.3?±?5.0 and 8.44?±?4.08 14 μg m?3 for OC10 and OC2.5 vs. 6.56?±?2.14 and 5.29?±?1.54 μg m?3 for EC10 and EC2.5) were among the highest values reported for urban sites in European cities. Significantly lower concentrations were found at the UB site for both carbonaceous species, particularly for EC (6.62?±?4.59 and 5.72?±?4.36 μg m?3 for OC10 and OC2.5 vs. 0.93?±?0.61 and 0.69?±?0.39 μg m?3 for EC10 and EC2.5). Despite that, a negative UT-UB increment was frequently evidenced for OC2.5 and PM2.5 in the cold months possibly indicative of emissions from residential wood burning at the urban-background site. At both sites, cconcentrations of OC fractions were significantly higher in the cold months; on the contrary, EC fractions at the UT site were prominent in the warm season suggesting some influence from maritime emissions in the nearby harbor area. Secondary organic carbon, being estimated using the EC tracer method and seasonally minimum OC/EC ratios, was found to be an appreciable component of particle mass particularly in the cold season. The calculated secondary contributions to OC ranged between 35 and 59 % in the PM10 fraction, with relatively higher values in the PM2.5 fraction (39–61 %). The source origin of carbonaceous species was investigated by means of air parcel back trajectories, satellite fire maps, and concentration roses. A local origin was mainly concluded for OC and EC with limited possibility for long range transport of biomass (agricultural waste) burning aerosol.  相似文献   

10.
Lahore, Pakistan is an emerging megacity that is heavily polluted with high levels of particle air pollution. In this study, respirable particulate matter (PM2.5 and PM10) were collected every sixth day in Lahore from 12 January 2007 to 19 January 2008. Ambient aerosol was characterized using well-established chemical methods for mass, organic carbon (OC), elemental carbon (EC), ionic species (sulfate, nitrate, chloride, ammonium, sodium, calcium, and potassium), and organic species. The annual average concentration (±one standard deviation) of PM2.5 was 194 ± 94 μg m?3 and PM10 was 336 ± 135 μg m?3. Coarse aerosol (PM10?2.5) was dominated by crustal sources like dust (74 ± 16%, annual average ± one standard deviation), whereas fine particles were dominated by carbonaceous aerosol (organic matter and elemental carbon, 61 ± 17%). Organic tracer species were used to identify sources of PM2.5 OC and chemical mass balance (CMB) modeling was used to estimate relative source contributions. On an annual basis, non-catalyzed motor vehicles accounted for more than half of primary OC (53 ± 19%). Lesser sources included biomass burning (10 ± 5%) and the combined source of diesel engines and residual fuel oil combustion (6 ± 2%). Secondary organic aerosol (SOA) was an important contributor to ambient OC, particularly during the winter when secondary processing of aerosol species during fog episodes was expected. Coal combustion alone contributed a small percentage of organic aerosol (1.9 ± 0.3%), but showed strong linear correlation with unidentified sources of OC that contributed more significantly (27 ± 16%). Brick kilns, where coal and other low quality fuels are burned together, are suggested as the most probable origins of unapportioned OC. The chemical profiling of emissions from brick kilns and other sources unique to Lahore would contribute to a better understanding of OC sources in this megacity.  相似文献   

11.
Abstract

To determine the sources of particulate matter less than 2.5?μm (PM2.5 in different ambient atmospheres (urban, roadside, industrial, and rural sites), the chemical components of PM2.5 such as ions (Cl-, NO3-, SO42-, NH4+, Na+, K+, Ca2+, and Mg2+), carbonaceous species, and elements (Al, As, Ba, Cd, Cu, Fe, Mn, Ni, Pb, Se, V, and Zn) were measured. The average mass concentrations of PM2.5 at the urban, roadside, industrial, and rural sites were 31.5?±?14.8, 31.6?±?22.3, 31.4?±?16.0, and 25.8?±?12.4?μg/m3, respectively. Except for secondary ammonium sulfate and ammonium nitrate, the model results showed that the traffic source (i.e., the sum of gasoline and diesel vehicle sources) was the most dominant source of PM2.5 (17.1%) followed by biomass burning (13.8%) at the urban site. The major primary sources of PM2.5 were consistent with the site characteristics (diesel vehicle source at the roadside site, coal-fired plants at the industrial site, and biomass burning at the rural site). Seasonal data from the urban site suggested that ammonium sulfate and ammonium nitrate were the most dominant sources of PM2.5 during all seasons. Further, the contribution of road dust source to PM2.5 increased during spring and fall seasons. We conclude that the determination of the major PM2.5 sources is useful for establishing efficient control strategies for PM2.5 in different regions and seasons.  相似文献   

12.
In this study, fine particulate matter (PM2.5) emitted from a municipal solid waste incinerator (MSWI) was collected using dilution sampling method. Chemical compositions of the collected PM2.5 samples, including carbon content, metal elements, and water-soluble ions, were analyzed. Traditional in-stack hot sampling was simultaneously conducted to compare the influences of dilution on PM2.5 emissions and the characteristics of the bonded chemical species. The results, established by a dilution sampling method, show that PM2.5 and total particulate matter (TPM) emission factors were 61.6 ± 4.52 and 66.1 ± 5.27 g ton-waste?1, respectively. The average ratio of PM2.5/TPM is 0.93, indicating that more than 90% of PM emission from the MSWI was fine particulate. The major chemical species in PM2.5 included organic carbon (OC), Cl?, NH4+, elemental carbon (EC) and Si, which account for 69.7% of PM2.5 mass. OC was from the unburned carbon in the exhaust, which adsorbed onto the particulate during the cooling process. High Cl? emission is primarily attributable to wastes containing plastic bags made of polyvinyl chloride, salt in kitchen refuse and waste biomass, and so on. Minor species that account for 0.01–1% of PM2.5 mass included SO42-, K+, Na, K, NO3?, Al, Ca2+, Zn, Ca, Cu, Fe, Pb, and Mg. The mean ratio of dilution method/in-stack hot method was 0.454. The contents of water-soluble ions (Cl?, SO42-, NO3?) were significantly enriched in PM2.5 via gas-to-particle conversion in the dilution process. Results indicate that in-stack hot sampling would underestimate levels of these species in PM2.5.

Implications: PM2.5 samples from a municipal solid waste incinerator (MSWI) were collected simultaneously by a dilution sampling technique and a traditional in-stack method. PM2.5 emission factors and chemical speciation profiles were established. Dilution sampling provides more reliable data than in-stack hot sampling. The results can be applied to estimate the PM2.5 emission inventories of MSWI, and the source profile can be used for contribution estimate of chemical mass balance modeling.  相似文献   

13.
Particulate matter is an important air pollutant, especially in closed environments like underground subway stations. In this study, a total of 13 elements were determined from PM10 and PM2.5 samples collected at two subway stations (Imam Khomeini and Sadeghiye) in Tehran’s subway system. Sampling was conducted in April to August 2011 to measure PM concentrations in platform and adjacent outdoor air of the stations. In the Imam Khomeini station, the average concentrations of PM10 and PM2.5 were 94.4?±?26.3 and 52.3?±?16.5 μg m?3 in the platform and 81.8?±?22.2 and 35?±?17.6 μg m?3 in the outdoor air, respectively. In the Sadeghiye station, mean concentrations of PM10 and PM2.5 were 87.6?±?23 and 41.3?±?20.4 μg m?3 in the platform and 73.9?±?17.3 and 30?±?15 μg m?3, in the outdoor air, respectively. The relative contribution of elemental components in each particle fraction were accounted for 43 % (PM10) and 47.7 % (PM2.5) in platform of Imam Khomeini station and 15.9 % (PM10) and 18.5 % (PM2.5) in the outdoor air of this station. Also, at the Sadeghiye station, each fraction accounted for 31.6 % (PM10) and 39.8 % (PM2.5) in platform and was 11.7 % (PM10) and 14.3 % (PM2.5) in the outdoor. At the Imam Khomeini station, Fe was the predominant element to represent 32.4 and 36 % of the total mass of PM10 and PM2.5 in the platform and 11.5 and 13.3 % in the outdoor, respectively. At the Sadeghiye station, this element represented 22.7 and 29.8 % of total mass of PM10 and PM2.5 in the platform and 8.7 and 10.5 % in the outdoor air, respectively. Other major crustal elements were 5.8 % (PM10) and 5.3 % (PM2.5) in the Imam Khomeini station platform and 2.3 and 2.4 % in the outdoor air, respectively. The proportion of other minor elements was significantly lower, actually less than 7 % in total samples, and V was the minor concentration in total mass of PM10 and PM2.5 in both platform stations.  相似文献   

14.
In order to discuss the dry deposition fluxes of atmospheric fixed nitrogen species, observations of aerosol chemistry including nitrate (NO3?) and ammonium (NH4+) were conducted at two islands, Rishiri Island and Sado Island, over the Sea of Japan. Although the atmospheric concentrations of particulate NH4+–N showed higher values than those of particulate NO3?–N at both sites, the dry deposition fluxes of the particulate NO3?–N were estimated to be higher than those of the particulate NH4+–N. This was caused by the difference of particle sizes between the particulate NO3? and NH4+; NH4+ was almost totally contained in fine particles (d < 2.5 μm) with smaller deposition velocity, whereas NO3? was mainly contained in coarse particles (d > 2.5 μm) with greater deposition velocity. Fine mode NO3? was strongly associated with fine mode sea-salt and mineral particles, of which higher concentrations shifted the size of particulate NO3? toward the fine mode range. This size shift would decrease the dry deposition flux of the fixed nitrogen species on coastal waters and accelerate atmospheric transport of them to the remote oceanic areas.  相似文献   

15.
ABSTRACT

With the promulgation of a national PM2.5 ambient air quality standard, it is important that PM2.5 emissions inventories be developed as a tool for understanding the magnitude of potential PM2.5 violations. Current PM10 inventories include only emissions of primary particulate matter (1 ï PM), whereas, based on ambient measurements, both PM10 and PM2.5 emissions inventories will need to include sources of both 1ï PM and secondary particulate matter (2ï PM). Furthermore, the U. S. Environmental Protection Agency’s (EPA) current edition of AP-42 includes size distribution data for 1o PM that overestimate the PM2.5 fraction of fugitive dust sources by at least a factor of 2 based on recent studies.

This paper presents a PM2.5 emissions inventory developed for the South Coast Air Basin (SCAB) that for the first time includes both 1ï PM and 2ï PM. The former is calculated by multiplying PM10 emissions estimates by the PM2.5/PM10 ratios for different sources. The latter is calculated from estimated emission rates of gas-phase aerosol precursor and gas to aerosol conversion rates consistent with the measured chemical composition of ambient PM2.5 concentrations observed in the SCAB. The major finding of this PM2.5 emissions inventory is that the aerosol component is more than twice the aerosol component, which may result in widely different control strategies being required for fine PM and coarse PM.  相似文献   

16.
Daily and seasonal variations in dry and wet atmospheric nitrogen fluxes have been studied during four campaigns between 2004 and 2006 at a coastal site of the Southern North Sea at De Haan (Belgium) located at coordinates of 51.1723° N and 3.0369° E. Concentrations of inorganic N-compounds were determined in the gaseous phase, size-segregated aerosol (coarse, medium, and fine), and rainwater samples. Dissolved organic nitrogen (DON) was quantified in rainwater. The daily variations in N-fluxes of compounds were evaluated with air-mass backward trajectories, classified into the main air-masses arriving at the sampling site (i.e., continental, North Sea, and Atlantic/UK/Channel).The three, non-episodic campaigns showed broadly consistent fluxes, but during the late summer campaign exceptionally high episodic N-deposition was observed. The average dry and wet fluxes for non-episodic campaigns amounted to 2.6 and 4.0 mg N m?2 d?1, respectively, whereas during the episodic late summer period these fluxes were as high as 5.2 and 6.2 mg N m?2 d?1, respectively.Non-episodic seasons/campaigns experienced average aerosol fluxes of 0.9–1.4 mg N m?2 d?1. Generally, the contribution of aerosol NH4+ was more significant in the medium and fine particulate fractions than that of aerosol NO3?, whereas the latter contributed more in the coarse fraction, especially in continental air-masses. During the dry mid-summer campaign, the DON contributed considerably (~15%) to the total N-budget.Exceptionally high episodic aerosol-N inputs have been observed for the late summer campaign, with especially high deposition rates of 3.6 and 2.9 mg N m?2 d?1 for Atlantic/UK/Channel and North Sea-continental (mixed) air-masses, respectively. During this pollution episode, the flux of NH4+ was dominating in each aerosol fraction/air-mass, except for coarse continental aerosols. High deposition of gaseous-N was also observed in this campaign with an average total N-flux of 2–2.5-times higher than in other campaigns.  相似文献   

17.
This paper is Part II in a pair of papers that examines the results of the Community Multiscale Air Quality (CMAQ) model version 4.5 (v4.5) and discusses the potential explanations for the model performance characteristics seen. The focus of this paper is on fine particulate matter (PM2.5) and its chemical composition. Improvements made to the dry deposition velocity and cloud treatment in CMAQ v4.5 addressing compensating errors in 36-km simulations improved particulate sulfate (SO42−) predictions. Large overpredictions of particulate nitrate (NO3) and ammonium (NH4+) in the fall are likely due to a gross overestimation of seasonal ammonia (NH3) emissions. Carbonaceous aerosol concentrations are substantially underpredicted during the late spring and summer months, most likely due, in part, to a lack of some secondary organic aerosol (SOA) formation pathways in the model. Comparisons of CMAQ PM2.5 predictions with observed PM2.5 mass show mixed seasonal performance. Spring and summer show the best overall performance, while performance in the winter and fall is relatively poor, with significant overpredictions of total PM2.5 mass in those seasons. The model biases in PM2.5 mass cannot be explained by summing the model biases for the major inorganic ions plus carbon. Errors in the prediction of other unspeciated PM2.5 (PMOther) are largely to blame for the errors in total PM2.5 mass predictions, and efforts are underway to identify the cause of these errors.  相似文献   

18.
Abstract

Chemical tracer methods for determining contributions to primary organic aerosol (POA) are fairly well established, whereas similar techniques for secondary organic aerosol (SOA), inherently complicated by time-dependent atmospheric processes, are only beginning to be studied. Laboratory chamber experiments provide insights into the precursors of SOA, but field data must be used to test the approaches. This study investigates primary and secondary sources of organic carbon (OC) and determines their mass contribution to particulate matter 2.5 µm or less in aerodynamic diameter (PM2.5) in Southeastern Aerosol Research and Characterization (SEARCH) network samples. Filter samples were taken during 20 24-hr periods between May and August 2005 at SEARCH sites in Atlanta, GA (JST); Birmingham, AL (BHM); Centerville, AL (CTR); and Pensacola, FL (PNS) and analyzed for organic tracers by gas chromatography-mass spectrometry. Contribution to primary OC was made using a chemical mass balance method and to secondary OC using a mass fraction method. Aerosol masses were reconstructed from the contributions of POA, SOA, elemental carbon, inorganic ions (sulfate [SO4 2?], nitrate [NO3 ?], ammonium [NH4 +]), metals, and metal oxides and compared with the measured PM2.5. From the analysis, OC contributions from seven primary sources and four secondary sources were determined. The major primary sources of carbon were from wood combustion, diesel and gasoline exhaust, and meat cooking; major secondary sources were from isoprene and monoterpenes with minor contributions from toluene and β-caryophyllene SOA. Mass concentrations at the four sites were determined using source-specific organic mass (OM)-to-OC ratios and gave values in the range of 12–42 µg m?3. Reconstructed masses at three of the sites (JST, CTR, PNS) ranged from 87 to 91% of the measured PM2.5 mass. The reconstructed mass at the BHM site exceeded the measured mass by approximately 25%. The difference between the reconstructed and measured PM2.5 mass for nonindustrial areas is consistent with not including aerosol liquid water or other sources of organic aerosol.  相似文献   

19.
Atmospheric water-soluble organic nitrogen (WSON) was determined on size-segregated aerosol particles collected during a two years period (2005–2006) in a remote marine location in the Eastern Mediterranean (Finokalia, Crete island). Average concentration of WSON was 5.5 ± 3.9 nmol m?3 and 11.6 ± 14.0 nmol m?3 for coarse (PM1.3-10) and fine (PM1.3) mode respectively, corresponding to 13% of Total Dissolved Nitrogen (TDN) in both modes. Air masses origin and correlation with tracers of natural and anthropogenic sources indicate that combustion process (biomass burning and fossil fuel) and African dust play an important role in regulating levels of WSON in both coarse and fine aerosol fractions. Chemical speciation of organic nitrogen pool was attempted by analyzing 47 fine aerosol samples (PM1) for 17 free amino acids (N-FAA), dimethylamine (DMA) and trimethylamine (TMA). The average concentration of N-FAA was 0.5 ± 0.5 nmol m?3, while the average concentration of DMA was 0.2 ± 0.8 nmol m?3, TMA was below detection limit. The percentage contribution of N-FAA and DMA to WSON was 2.1 ± 2.3% and 0.9 ± 3.4%, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号