首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, long-term aerosol particle total number concentration measurements in five metropolitan areas across Europe are presented. The measurements have been carried out in Augsburg, Barcelona, Helsinki, Rome, and Stockholm using the same instrument, a condensation particle counter (TSI model 3022). The results show that in all of the studied cities, the winter concentrations are higher than the summer concentrations. In Helsinki and in Stockholm, winter concentrations are higher by a factor of two and in Augsburg almost by a factor of three compared with summer months. The winter maximum of the monthly average concentrations in these cities is between 10,000 cm(-3) and 20,000 cm(-3), whereas the summer min is approximately 5000-6000 cm(-3). In Rome and in Barcelona, the winters are more polluted compared with summers by as much as a factor of 4-10. The winter maximum in both Rome and Barcelona is close to 100,000 cm(-3), whereas the summer minimum is > 10,000 cm(-3). During the weekdays the maximum of the hourly average concentrations in all of the cities is detected during the morning hours between 7 and 10 a.m. The evening maxima were present in Barcelona, Rome, and Augsburg, but these were not as pronounced as the morning ones. The daily maxima in Helsinki and Stockholm are close or even lower than the daily minima in the more polluted cities. The concentrations between these two groups of cities are different with a factor of about five during the whole day. The study pointed out the influence of the selection of the measurement site and the configuration of the sampling line on the observed concentrations.  相似文献   

2.
Temporal variations of atmospheric aerosol in four European urban areas   总被引:1,自引:0,他引:1  

Purpose

The concentrations of PM10 mass, PM2.5 mass and particle number were continuously measured for 18 months in urban background locations across Europe to determine the spatial and temporal variability of particulate matter.

Methods

Daily PM10 and PM2.5 samples were continuously collected from October 2002 to April 2004 in background areas in Helsinki, Athens, Amsterdam and Birmingham. Particle mass was determined using analytical microbalances with precision of 1 ??g. Pre- and post-reflectance measurements were taken using smoke-stain reflectometers. One-minute measurements of particle number were obtained using condensation particle counters.

Results

The 18-month mean PM10 and PM2.5 mass concentrations ranged from 15.4 ??g/m3 in Helsinki to 56.7 ??g/m3 in Athens and from 9.0 ??g/m3 in Helsinki to 25.0 ??g/m3 in Athens, respectively. Particle number concentrations ranged from 10,091 part/cm3 in Helsinki to 24,180 part/cm3 in Athens with highest levels being measured in winter. Fine particles accounted for more than 60% of PM10 with the exception of Athens where PM2.5 comprised 43% of PM10. Higher PM mass and number concentrations were measured in winter as compared to summer in all urban areas at a significance level p?Conclusions Significant quantitative and qualitative differences for particle mass across the four urban areas in Europe were observed. These were due to strong local and regional characteristics of particulate pollution sources which contribute to the heterogeneity of health responses. In addition, these findings also bear on the ability of different countries to comply with existing directives and the effectiveness of mitigation policies.  相似文献   

3.
Potassium carbonate sulfation plates, monitored monthly for 11 years from 48 sites in 11 cities in Gansu Province, China, provide a crude estimate of cumulative SO2 dry depositions. Measured SO2 dry deposition rates were 1.6–472 mg m−2 day−1 and had seasonal variations with maxima in winter and minima mainly during summer as a result of higher winter and lower summer SO2 concentrations. The 11-year monthly average SO2 dry deposition rates are 23.2–248.97 and 11.7–175.6 mg m−2 day−1 in the eleven cities in winter and summer, respectively. A monthly average SO2 deposition velocity was also estimated from 0.06 to 9.72 cm s−2 in the 11 cities studied with a 11-year average maximum value of about 1.1–2.7 cm s−2 in April and July and a 11-year average minimum value of about 0.2–1.0 cm s−1 in January. The SO2 dry deposition velocity also exhibits an increasing with wind speed in basins of less than 500 mm annual precipitation. In contrast, due to influences of the relative humidity in valleys of more than 500 mm annual precipitation, it shows a decreasing trend with wind speed increasing.  相似文献   

4.
A previous study on PM2.5 carbonaceous aerosols measured with the thermal optical reflectance (TOR) method in fourteen Chinese cities is extended by subdividing total EC into char-EC and soot-EC. Average char-EC concentrations show great differences between the fourteen cities and between winter and summer periods, with concentrations of 8.67 and 2.41 μg m?3 in winter and summer, respectively. Meanwhile spatial and seasonal soot-EC variations are small, with average concentrations of 1.26 and 1.21 μg m?3 in winter and summer, respectively. Spatial and temporal distributions of char-EC, similar to EC, are mainly influenced by local fuel consumption, as well as the East Asian monsoon and some meteorological factors such as the mixing height and wet precipitation. The small spatial and seasonal variation of soot-EC is consistent with its regional-to-global dispersion, which may suggest that soot carbon is not local carbon, but regional carbon. Char-EC/soot-EC ratios show summer minimum and winter maximum in all cities, which is in good agreement with the difference in source contributions between the two periods. As OC/EC ratio is affected by the formation of the secondary organic aerosol (SOA), char-EC/soot-EC ratio is a more effective indicator for source identification of carbonaceous aerosol than previously used OC/EC ratio.  相似文献   

5.
Two in-field campaigns were performed in 2009 to elucidate the contents of illicit psychotropic substances in airborne particulates of Italian cities. Twenty-eight localities of eight Italian regions were investigated in winter, and further eleven sites in June (14 regions in total), thanks to contribution of Regional Environmental Agencies. Cocaine was found almost everywhere, although some sites were rural or suburban. The maximum was recorded in Milan in winter (~0.39 ng m?3), and “high” values (up to ~0.16 ng m?3) in other Northern cities and in Rome. Besides cocaine, three cannabinoids will be monitored, namely Δ9-tetrahydrocannabinol, cannabidiol and cannabinol. The three compounds often affected the air at lower extents than cocaine, and sometimes resulted absent. Cannabinol accounted for up to 90% of the total. The concentrations of illicit compounds were up to six times lower in June than in winter. This decrease was probably induced by the lowering of boundary layer height typical of winter, and by the oxidizing capacity of atmosphere, which is stronger in the warm season. Compared to n-alkanes, polynuclear aromatic compounds, nicotine, caffeine and airborne particulate, cocaine seemed to follow a peculiar behaviour; in fact, meaningful (≥0.80) Pearson (linear) regression coefficients were calculated from the corresponding concentrations only at local scale (e.g. Rome), and within just one season. Improvements of the method are needed to monitor illicit drug metabolites (e.g. benzoylecgonine, ecgonine methyl ester, 9-carboxy-11-nor-Δ9-tetrahydrocannabinol), heroin and semi-volatile amphetamines.  相似文献   

6.
Continuous measurements of aerosol size distributions (3 nm–2 μm) were carried out over a 26 month period (1 April 2001–31 May 2003; 650 days with valid data) in urban East St. Louis, IL, as a part of the US Environmental Protection Agency's Supersite program. This paper analyzes data for the 155 days on which “regional nucleation events” were observed during this study. Such events were observed during every month of the study except January 2003. We observed some differences, however, between events in the summer (defined here as April–September) and winter (December–February). Regional nucleation events were observed more frequently in summer months (36±13% of days) than in winter (8±7%), and nucleated particles grew faster in the summer (6.7±4.8 nm h−1) than in winter (1.8±1.9 nm h−1). The daily maximum in the number concentration of nanoparticles formed by nucleation (4.8±3.5×104 cm−3) was highly variable and showed no clear seasonal dependence. Particle formation increased particle concentrations by an average factor of 3.1±2.8. Maximum daily rates of 3 nm particle production (17±20 cm−3 s−1) were also highly variable and without a clear seasonal dependence. During these events, particle formation rates were typically near their maxima at 08:00–09:00 a.m., but particle production sometimes persisted at diminishing rates until late in the afternoon (15:00–16:00 p.m.).  相似文献   

7.
PM1 aerosol characterization on organic tracers for biomass burning (levoglucosan and its isomers and dehydroabietic acid) was conducted within the AERTRANS project. PM1 filters (N?=?90) were sampled from 2010 to 2012 in busy streets in the urban centre of Madrid and Barcelona (Spain) at ground-level and at roof sites. In both urban areas, biomass burning was not expected to be an important local emission source, but regional emissions from wildfires, residential heating or biomass removal may influence the air quality in the cities. Although both areas are under influence of high solar radiation, Madrid is situated in the centre of the Iberian Peninsula, while Barcelona is located at the Mediterranean Coast and under influence of marine atmospheres. Two extraction methods were applied, i.e. Soxhlet and ASE, which showed equivalent results after GC-MS analyses. The ambient air concentrations of the organic tracers for biomass burning increased by an order of magnitude at both sites during winter compared to summer. An exception was observed during a PM event in summer 2012, when the atmosphere in Barcelona was directly affected by regional wildfire smoke and levels were four times higher as those observed in winter. Overall, there was little variation between the street and roof sites in both cities, suggesting that regional biomass burning sources influence the urban areas after atmospheric transport. Despite the different atmospheric characteristics in terms of air relative humidity, Madrid and Barcelona exhibit very similar composition and concentrations of biomass burning organic tracers. Nevertheless, levoglucosan and its isomers seem to be more suitable for source apportionment purposes than dehydroabietic acid. In both urban areas, biomass burning contributions to PM were generally low (2 %) in summer, except on the day when wildfire smoke arrive to the urban area. In the colder periods the contribution increase to around 30 %, indicating that regional biomass burning has a substantial influence on the urban air quality.  相似文献   

8.

Introduction

This study collected long-term airborne lead concentrations in the Korean peninsula and analyzed their temporal, spatial, and cancer risk characterization.

Methods

Approximately, 12,000 airborne samples of total suspended particulate (TSP) were collected from 30 ambient air monitoring stations in inland (Daegu, Daejeon, Gwangju, and Seoul) cities and portal cities (Incheon, Busan, and Ulsan) over a period of 7?years (2004?C2010). High volume air samplers were employed to collect daily TSP samples during the second week of the consecutive months throughout the entire study period. The concentrations of Pb extracted from the TSP samples were analyzed using either inductively coupled plasma-atomic emission or flame atomic absorption spectrometry.

Results

The long-term high mean Pb concentrations were observed in the port cities including Incheon (88?±?18?ng/m3), Ulsan (61?±?7?ng/m3), and Busan (58?±?6?ng/m3). In the temporal analysis, seasonal mean Pb levels were relatively higher in winter and spring than those in summer and fall. In the spatial analysis, the mean Pb levels in spring, winter, and fall from Incheon, which showed the highest seasonal concentrations except summer, were 110?±?19, 101?±?18, and 76?±?23?ng/m3, respectively. In summer, the highest seasonal mean Pb level was observed in the largest industrial city and the second port city, Ulsan (78?±?15?ng/m3), followed by Incheon (65?±?13?ng/m3).

Conclusion

The estimated excess cancer risk analysis showed that inhalation of Pb could result in cancer for one or two persons per million of population in the Korean peninsula.  相似文献   

9.
A 12 month study of urban concentrations of total suspended particulates (TSP) and 20 polycyclic aromatic hydrocarbons (PAH) was carried out in Seoul (South Korea), Hong Kong, Bangkok (Thailand), Jakarta (Indonesia) and Melbourne (Australia). Concentrations of particulate matter in the atmosphere varied widely between the cities over the course of the study, ranging from a low of 24.1 μg m−3 in Melbourne during the winter to a high of 376.2 μg m−3 in Jakarta during the dry season. Seasonal variations in both TSP and PAH were observed in the tropical cities in the study with higher concentrations during the dry season and lower concentrations during the wet season. TSP and PAH concentrations are correlated with each other in these cities, suggesting that they have related sources and sinks for these cities. In the temperate cities of Melbourne and Seoul, PAH concentrations were higher during the cold winter season and lower during the warm summer. However, TSP was quite variable over the years in these latter cities and no clear seasonal trend was observed. A number of factors have been investigated which could be contributing to seasonal variations in pollutant levels. In the temperate climates, increased emissions due to the use of fossil fuels for heating in the winter is evident. However, an interrogation of the database with respect to the other factors such as (1) increased photolytic degradation during the summer, (2) transport of pollutants from other sources, (3) removal of PAH via wet deposition and in-cloud scavenging mechanisms and (4) volatilisation of lower molecular weight species during periods of high temperature indicates the importance of multiple processes. Even though there are clearly much lower levels of both particulates and PAH in the wet season of the tropical climates, no statistically significant correlations have been observed between rainfall levels and pollutant concentrations.  相似文献   

10.
The water-soluble ions in fine (PM<2.5) and coarse (PM2.5−10) atmospheric aerosols collected in Christchurch during winter 2001, spring 2000 and summer 2001, and in Auckland during winter 2001 have been studied in terms of coarse–fine and day–night differences. Although the chemical characteristics of the coarse particles were similar in both cities, those of the fine particles collected in the Christchurch winter were significantly different, as manifested by higher concentrations of nss-K+, nss-Cl, nss-Ca2+, nss-SO42−, NO3 and NH4+. It was found that nighttime PM10 and nss-K+ concentrations were much higher than their daytime concentrations in the Christchurch winter but a clear day–night difference was not apparent in the Auckland winter. Moreover, in the winter, sea-salt ions did not show a day–night difference; however, nss-SO42− had opposite day–night variation in the two cities. An ion balance calculation has shown that in most samples, coarse particles can be neutral or alkaline, however, fine particles can be neutral or acidic. The possibility of ammonium salts existing in the fine particles collected in the Christchurch winter is discussed and it is concluded that a variety of ammonium salts were present. Equivalent ratios suggest that the fine particles may be significantly aged in the Christchurch winter.The evidence from our soluble ion study strongly suggests that wood and coal burning and secondary aerosols make a significant contribution to fine particulate mass in the Christchurch atmosphere. Thus, home-heating, a sheltered geographic location and relatively calm atmospheric condition are thought to be the major causes for the serious atmospheric particulate pollution in the Christchurch winter.  相似文献   

11.
During January and February 1984, a field project was conducted near North Bay, Ontario, Canada. The principal objective was to characterize the chemical and microphysical properties of the air masses, clouds and precipitation in this region of NE North America during the winter season. Two extensively instrumented aircraft with some newly designed cloudwater and snow collectors were used, as well as a surface station continuously monitoring pollutant concentrations and a precipitation event sampling network. Pollutant concentrations at the surface were found to vary with the airmass back trajectory with the highest concentrations observed for trajectories from the S and SW and the lowest from the N. Vertical profiles of aerosol particle (0.2−2 μm diameter) and NOx concentrations show similar trends with maxima of 1200 cm−3 and 7 ppb, respectively near ground level with air mass trajectories from the S, in comparison to values of 250 cm−3 and 1 ppb obtained with trajectories from the N. Cloudwater, aircraft precipitation and ground precipitation samples had a daily median pH of 3.6,4.6 and 4.2, respectively with the cloudwater having the highest sulphate and nitrate concentrations. The nitrate/sulphate equivalent concentration ratios in the cloudwater, aircraft precipitation and ground precipitation samples were 0.7,0.6 and 1.4, respectively. The data suggest that precipitation scavenging of nitric acid below cloud base is an important process during the winter season.  相似文献   

12.
Aerosol concentrations of methanesulphonic acid (MSA), dimethyl sulphoxide (DMSO) and dimethyl sulphone (DMSO2) have been measured from landbased stations at Plymouth (Devon, U.K.), Galway (EIRE), and from various shipboard stations in the North Sea and the North Atlantic Ocean. MSA, DMSO and DMSO2 all show seasonal cycles with spring/summer maxima and winter minima. The summer concentrations of MSA are approximately an order of magnitude higher than in winter. The general levels of MSA (July 1985 mean = 9.27 × 10−9 mol m−3, December 1986 mean = 1.14 × 10−9 mol m−3) are comparable to those reported from Cape Grim, Tasmania. Modelling indicates that neither MSA nor DMSO2 are present in sufficient quantity to represent major oxidation pathways for dimethyl sulphide (DMS). Rate constant ratios for both the reactions of DMS and DMSO with OH and IO have been estimated. Hydroxyl radical does not appear to be reactive enough for it to be the major sink of atmospheric DMS. It is also shown that the rate constants for the destruction of DMSO (the main reaction product of the DMS/IO system) with either IO or OH are likely to be slow. Thus low tropospheric concentrations of DMSO tend to indicate that it also is not a major product of DMS oxidation.  相似文献   

13.
Li X  Li Y  Zhang Q  Wang P  Yang H  Jiang G  Wei F 《Chemosphere》2011,84(7):957-963
The concern about emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) from steel industrial parks has increased in the past decades. In this study, polyurethane foam (PUF)-disk based passive air samples were collected in and around a big steel industrial park of Anshan, Northeast China from June 2008 to March 2009. The levels, seasonal variations and potential sources of PCDD/Fs, PCBs and PBDEs in the atmosphere around the steel industrial complex were investigated, and potential contribution of these three groups of persistent organic pollutants (POPs) from iron and steel production was also assessed. The air concentrations of ∑17PCDD/Fs (summer: 0.02-2.77 pg m−3; winter: 0.20-9.79 pg m−3), ∑19PCBs (summer: 23.5-155.8 pg m−3; winter: 14.6-81.3 pg m−3) and ∑13PBDEs (summer: 2.91-10.7 pg m−3; winter: 1.10-3.89 pg m−3) in this targeted industrial park were relatively low in comparison to other studies, which implied that the industrial activities of iron and steel had not resulted in serious contamination to the ambient air in this area. On the whole, the air concentrations of PCDD/Fs in winter were higher than those of summer, whereas the concentrations of PCBs and PBDEs showed opposite trends. The result from principal component analysis indicated that coal combustion might be the main contributor of PCDD/F sources in this area.  相似文献   

14.
Multi-year hourly measurements of PM2.5 elemental carbon (EC) and organic carbon (OC) from a site in the South Bronx, New York were used to examine diurnal, day of week and seasonal patterns. The hourly carbon measurements also provided temporally resolved information on sporadic EC spikes observed predominantly in winter. Furthermore, hourly EC and OC data were used to provide information on secondary organic aerosol formation. Average monthly EC concentrations ranged from 0.5 to 1.4 μg m?3 with peak hourly values of several μg m?3 typically observed from November to March. Mean EC concentrations were lower on weekends (approximately 27% lower on Saturday and 38% lower on Sunday) than on weekdays (Monday to Friday). The weekday/weekend difference was more pronounced during summer months and less noticeable during winter. Throughout the year EC exhibited a similar diurnal pattern to NOx showing a pronounced peak during the morning commute period (7–10 AM EST). These patterns suggest that EC was impacted by local mobile emissions and in addition by emissions from space heating sources during winter months. Although EC was highly correlated with black carbon (BC) there was a pronounced seasonal BC/EC gradient with summer BC concentrations approximately a factor of 2 higher than EC. Average monthly OC concentrations ranged from 1.0 to 4.1 μg m?3 with maximum hourly concentrations of 7–11 μg m?3 predominantly in summer or winter months. OC concentrations generally correlated with PM2.5 total mass and aerosol sulfate and with NOx during winter months. OC showed no particular day of week pattern. The OC diurnal pattern was typically different than EC except in winter when OC tracked EC and NOx indicating local primary emissions contributed significantly to OC during winter at the urban location. On average secondary organic aerosol was estimated to account for 40–50% of OC during winter and up to 63–73% during summer months.  相似文献   

15.
Atmospheric levels of formaldehyde and acetaldehyde as well as their diurnal and seasonal variations were investigated from 1994 to 1997 in downtown Rome during sunny and wind calm days. Hourly concentrations of formaldehyde ranged from 8 to 28 ppbV in summer and 7 to 17 ppbv in winter; acetaldehyde concentrations varied correspondingly within the 3–18 and 2–7 ppbv intervals. Percentages of both aldehydes photochemically produced were estimated through a simple relationship based upon the comparison of individual ratios of formaldehyde and acetaldehyde to toluene in ambient air and automobile emission. Photochemical production was found to weigh upon atmospheric levels for 80–90% in summer days. It dropped below 35% in the winter period, when direct emission from traffic largely predominated. Photochemical summer source was more efficient for acetaldehyde than for formaldehyde, especially in the early morning. The importance of formaldehyde as the major source of hydroxyl radicals in Rome was also assessed.  相似文献   

16.
An on-line supercritical fluid extraction–liquid chromatography–gas chromatography–mass spectrometry (SFE–LC–GC–MS) method was developed for the analysis of the particulate polycyclic aromatic hydrocarbons (PAHs). The limits of detection of the system for the quantification standards were in the range of 0.25–0.57 ng, while the limits of determinations for filter samples varied from 0.02 to 0.04 ng m−3 (24 h sampling). The linearity was excellent from 5 to 300 ng (R2>0.967). The analysis could be carried out in a closed system without tedious manual sample pretreatment and with no risk of errors by contamination or loss of the analytes. The results of the SFE–LC–GC–MS method were comparable with those for Soxhlet and shake-flask extractions with GC–MS. The new method was applied to the analysis of PAHs collected by high-volume filter in the Helsinki area to study the seasonal trend of the concentrations. The individual PAH concentrations varied from 0.015 to more than 1 ng m−3, while total PAH concentrations varied from 0.81 to 5.68 ng m−3. The concentrations were generally higher in winter than in summer. The mass percentage of the total PAHs in total suspended particulates ranged from 2.85×10−3% in July to 15.0×10−3% in December. Increased emissions in winter, meteorological conditions, and more serious artefacts during the sampling in summer season may explain the concentration profiles.  相似文献   

17.
The distribution of dimethylsuphide (DMS) and its precursor dimethylsulphoniopropionate, in both particulate (DMSPp) and dissolved fractions (DMSPd) was surveyed along estuarine water profiles of Canal de Mira (Ria de Aveiro, Portugal), on 45 occasions during one year. The field campaigns revealed pronounced gradients, which were to some extent interpreted with reference to supporting hydrographic parameters like salinity, temperature and chlorophyll a. Surface water concentrations showed a clear seasonal variation with peak values during the warmer months. Mean summer concentrations for DMS, DMSPp and DMSPd, were, respectively, a factor of 1.8, 1.9 and 2.9 times higher than winter concentrations. Surface water concentration was the main factor controlling DMS emissions into the atmosphere, which were estimated to be, as a mean, 5.4 and 27.3 nmol m-2 h-1 for winter and summer, respectively. In addition, DMS fluxes from two intertidal mud flat sites in Canal de Mira were examined monthly over a year. Average emission rates were a factor of 2–5 times higher than those estimated for estuarine waters and revealed strong seasonal variations, with summer peaks apparently related to ambient temperature. The relative contribution of estuarine waters and mud flats for local DMS budget is discussed in terms of tidal cycles and exposed surface area.  相似文献   

18.
A Micro-Orifice Uniform Deposition Impactor (MOUDI) and a Nano-MOUDI were employed to determine the size-segregated mass distributions of ambient particulate matter (PM) and water-soluble ionic species for particulate constituents. In addition, gas precursors, including HCl, HONO, HNO3, SO2, and NH3 gases, were analyzed by an annular denuder system. PM size mass distribution, mass concentration, and ionic species concentration were measured during the day and at night during episode and non-episode periods in winter and summer. Average total suspended particle (TSP) concentrations during episode days in winter were as high as 153?±?33 μg/m3, and PM mass concentrations in summer were as low as one-third of that in winter. Generally, PM concentration at night was higher than that in the daytime in southern Taiwan during the sampling periods. In winter during the episode periods, the size-segregated mass distribution of PM mass concentration was mostly in the 0.32–3.2-μm range, and the PM concentration increased significantly in the range of 0.32–3.2 μm at night. Ammonium, nitrate, and sulfate were the dominant water-soluble ionic species in PM, contributing 34–48 % of TSP mass. High concentrations of ammonia (12.9–49 μg/m3) and SO2 (2.6–27 μg/m3) were observed in the gas precursors. The conversion ratio was high in the PM size range of 0.18–3.2 μm both during the day and at night in winter, and the conversion ratio of episode days was 20 % higher than that of non-episode days. The conversion factor was high for both nitrogen and sulfur species at nighttime, especially on episode days.  相似文献   

19.
Air quality monitoring data for cadmium (Cd) collected in 13 cities in Korea over a 14-year period (1991–2004) have been analyzed. In the course of this study, variation of Cd was examined over time and with location to learn about its sources, transport, and removal processes and to help improve air quality control. The results of this study indicate that the spatial distribution of Cd is clearly distinguishable between different cities and that such a pattern is sensitively reflected by such a factor as the level of industrialization. Comparison of the Cd data sets between different cities indicated that its concentration levels observed in highly industrialized cities approached or exceeded 10 ng m−3, while those of urban background cities were found to lie in a narrow range of 1–3 ng m−3. As such, Cd values determined from the polluted areas were notably higher than the relatively clean ones, at least by several times. The Cd data collected from all study sites were also evaluated with respect to temporal behavior. Inspection of seasonal patterns generally showed the occurrences of the highest Cd value during spring (and winter) and the lowest one during summer. When the long-term pattern of Cd was assessed across all study years, the results differed greatly between different cities in relation to their pollution status. Although Cd concentrations tended to decrease rather abruptly in highly industrialized cities, its patterns for most cities were too variable to project a definitive trend. The results of this analysis thus suggest that Cd concentration levels in most urban areas of Korea are fairly comparable with those commonly seen in the urban background areas of western countries. Considering that most urban areas are affected by various pollution sources and that Cd concentrations have been reduced significantly through the years, more deliberate efforts are needed to further control Cd concentrations in the atmosphere.  相似文献   

20.
The aim of the current study was to measure polycyclic aromatic hydrocarbons (PAHs) in eight indoor (In both kitchen and living room) air sampling locations using a passive sampling method for collection. Passive outdoor air samples were also collected from 3 of the same sampling locations as the indoor air sampling sites. Sampling was conducted in three seasons. The summer season, when windows are generally open, was between 18th July and 01st September, 2014; the autumn and winter seasons, when windows are mostly closed, was between 18th October and 01st December, 2014, and 01st December, 2014, and 18th January, 2015, respectively.

Average PAH concentrations in summer were 22 ± 21 ng/m3 and 17 ± 12 ng/m3 in the living room and kitchen, respectively, whereas living room and kitchen average PAH concentrations were 23 ± 16 ng/m3 and 20 ± 9 ng/m3, respectively, in autumn and 23 ± 13 ng/m3 and 23 ± 24 ng/m3, respectively, in winter. Outdoor air PAH concentrations in summer, autumn and winter were 7 ± 0.4 ng/m3, 22 ± 13 ng/m3 and 209 ± 33 ng/m3, respectively. An increase in outdoor PAH concentrations was measured in winter compared to the concentrations in summer and autumn, which paralleled the lower outdoor air temperature. However, PAH concentrations in the indoor environment vary according to the household characteristics and personal habits.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号