首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Long-path averaging instruments measure the average velocity or concentration of a substance or substances over an averaging path. These measurements are then often used for calculation of the average concentration and mass flow rate of the substance. The purpose of this paper is to describe some of the limitations of these instruments and to suggest ways in which these limitations can be minimized. Two limitations were examined: measuring concentration in a single dimension (e.g., ignoring the variation in concentration over the width of the sample plane), and deriving an average concentration without considering velocity effects. The resultant errors will be application-specific. Estimates of the second source of error can be obtained from the covariance of concentration and velocity profiles over the path length. Unfortunately, suitable field data were not available, and to illustrate the method, estimates of the error were obtained for a range of possible concentration and velocity profiles. Errors of 50% or greater in the mass flow were incurred for the concentration and velocity profiles considered. This error was reduced to a negligible level by segmenting the averaging path length. It is recommended that velocity and concentration profiles be obtained for a broad range of applications to enable the importance of covariance errors to be better assessed.  相似文献   

2.
Long-term eddy covariance particle flux measurements for the size range starting from 10 nm were performed at a boreal forest site in Southern Finland. The large variability in turbulent flux estimates is inherent to the particle flux observations and thus long-term particle flux measurements enable to obtain statistically significant results by a suitable averaging. The particle flux random errors were estimated and a parameterisation for the integral time scale of turbulent flux was proposed. Application of flux errors for classification according to statistical significance of single flux values leads to systematically different deposition estimates on ensemble average basis. This must be avoided for determination of unbiased average deposition fluxes. The role of storage term in particle deposition evaluation was analysed. It was empirically determined that the method of storage term estimation discussed by [Finnigan, J., 2006. The storage term in eddy flux calculations. Agric. Forest Meteorol., 136, 108–113.] is not sensitive to the selection of the concentration averaging window in both ends of the flux averaging period. It is argued that the storage change in real atmospheric conditions results from boundary layer development as well as source–sink activity and therefore the filtering effect arising from averaging the concentration is of less importance. Diurnal, seasonal and annual variability of particle fluxes was analysed and it was observed that particle deposition rates are higher in winter. More detailed analysis of functional dependencies of particle deposition on environmental factors as well as dependence on size will be done in the second part of the paper.  相似文献   

3.
ABSTRACT

Researchers have applied open path optical sensing techniques to a variety of workplace and environmental monitoring problems. Usually these data are reported in terms of a path-average (or path-integrated) concentration. When assessing potential human exposures along a beam path, this path-average value is not always informative, since concentrations along the path can vary substantially from the beam average. The focus of this research is to arrive at a method for estimating the upper-bound in contaminant concentrations over a fixed open beam path. The approach taken here uses a statistical model to estimate an upper-bound concentration based on a combination of the path-average and a measure of the spatial variability computed from point samples along the beam path. Results of computer simulations and experimental testing in a controlled ventilation chamber indicate that the model produced conservative estimates for the maximum concentration along the beam path. This approach may have many applications for open path monitoring in workplaces or wherever maximum concentrations are a concern.  相似文献   

4.
Abstract

One of two topics explored is the limitations of the daily average in summarizing pollutant hourly profiles. The daily average of hourly measurements of air pollutant constituents provides continuity with previous studies using monitoring technology that only provided the daily average. However, other summary statistics are needed that make better use of all available information in 24-hr profiles. The daily average reflects the total daily dose, obscuring hourly resolution of the dose rate. Air pollutant exposures with comparable total daily doses may have very different effects when occurring at high levels over a few hours as opposed to low levels over a longer time. Alternative data-based choices for summary statistics are provided using principal component analysis to capture the exposure dose rate, while preserving ease of interpretation. This is demonstrated using the earliest hourly particle concentration data available for El Paso from archived records of particulate matter (PM)10. In this way, a significant association between evening PM10 exposures and nonaccidental daily mortality is found in El Paso from 1992 to 1995, otherwise missed using the daily average. Secondly, the nature and, hence, effects of particles in the ambient aerosol during El Paso sandstorms is believed different from that of particles present during stillair conditions resulting from atmospheric temperature inversions. To investigate this, wind speed (ws) is used as a surrogate variable to label PM10 exposures as Low-ws (primarily fine particles), High-ws (primarily coarse particles), or Mid-ws (a mixture of fine and coarse particles). A High-ws evening is significantly associated with a 10% lower risk of mortality on the succeeding third day, as compared with comparable exposures at Low- or Mid-ws. Although this analysis cannot be used to form firm conclusions because it uses a very small data set, it demonstrates the limitations of the daily average and suggests differential toxicity for different particle compositions.  相似文献   

5.
ABSTRACT

This paper presents a new approach to quantify emissions from fugitive gaseous air pollution sources. The authors combine Computed Tomography (CT) with Path-Integrated Optical Remote Sensing (PI-ORS) concentration data in a new field beam geometry. Path-integrated concentrations are sampled in a vertical plane downwind from the source along several radial beam paths. An innovative CT technique, which applies the Smooth Basis Function Minimization method to the beam data in conjunction with measured wind data, is used to estimate the total flux from the fugitive source. The authors conducted a synthetic data study to evaluate the proposed methodology under different meteorological conditions, beam geometry configurations, and simulated measurement errors. The measurement errors were simulated based on data collected with an Open-Path Fourier Transform Infra-Red system. This approach was found to be robust for the simulated errors and for a wide range of fluctuating wind directions. In the very sparse beam geometry examined (eight beam paths), successful emission rates were retrieved over a 70° range of wind directions under extremely large measurement error conditions.  相似文献   

6.
Abstract

The goal of the Regional Haze Rule (RHR) is to return visibility in class I areas (CIAs) to natural levels, excluding weather-related events, by 2064. Whereas visibility, the seeing of scenic vistas, is a near instantaneous and sight-path-dependent phenomenon, reasonable progress toward the RHR goal is assessed by tracking the incremental changes in 5-yr average visibility. Visibility is assessed using a haze metric estimated from 24-hr average aerosol measurements that are made at one location representative of the CIA. It is assumed that, over the 5-yr average, the aerosol loadings and relative humidity along all of the site paths are the same and can be estimated from the 24-hr measurements. It is further assumed that any time a site path may be obscured by weather (e.g., clouds and precipitation), there are other site paths within the CIA that are not. Therefore, when calculating the haze metric, sampling days are not filtered for weather conditions. This assumption was tested by examining precipitation data from multiple monitors for four CIAs. It is shown that, in general, precipitation did not concurrently occur at all monitors for a CIA, and precipitation typically occurred 3-8 hr or less in a day. In a recent paper in this journal, Ryan asserts that the haze metric should include contributions from precipitation and conducted a quantitative assessment incorrectly based on the assumption that the Optec NGN-2 nephelometer measurements include the effects of precipitation. However, these instruments are programmed to shut down during rain events, and any data logged are in error. He further assumes that precipitation occurs as often on the haziest days as the clearest days and that precipitation light scattering (bprecip) is independent of geographic location and applied an average bprecip derived for Great Smoky Mountains to diverse locations including the Grand Canyon. Both of these assumptions are shown to be in error.  相似文献   

7.
Abstract

The objectives of this study were: (1) to quantify the errors associated with saturation air quality monitoring in estimating the long-term (i.e., annual and 5 yr) mean at a given site from four 2-week measurements, once per season; and (2) to develop a sampling strategy to guide the deployment of mobile air quality facilities for characterizing intraurban gradients of air pollutants, that is, to determine how often a given location should be visited to obtain relatively accurate estimates of the mean air pollutant concentrations. Computer simulations were conducted by randomly sampling ambient monitoring data collected in six Canadian cities at a variety of settings (e.g., population-based sites, near-roadway sites). The 5-yr (1998–2002) dataset consisted of hourly measurements of nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), sulfur dioxide (SO2), coarse particulate matter (PM10), fine particulate matter (PM2.5), and CO. The strategy of randomly selecting one 2-week measurement per season to determine the annual or long-term average concentration yields estimates within 30% of the true value 95% of the time for NO2, PM10 and NOx. Larger errors, up to 50%, are expected for NO, SO2, PM2.5, and CO. Combining concentrations from 85 random 1-hr visits per season provides annual and 5-yr average estimates within 30% of the true value with good confidence. Overall, the magnitude of error in the estimates was strongly correlated with the variability of the pollutant. A better estimation can be expected for pollutants known to be less temporally variable and/or over geographic areas where concentrations are less variable. By using multiple sites located in different settings, the relationships determined for estimation error versus number of measurement periods used to determine long-term average are expected to realistically portray the true distribution. Thus, the results should be a good indication of the potential errors one could expect in a variety of different cities, particularly in more northern latitudes.  相似文献   

8.
Abstract

An improved portable odor sampling system (OSS) of the wind tunnel type was designed to determine odor emissions from areal sources. The aerodynamics of the odor emission hood was observed using a number of smoke tests and dry ice tests. The velocity profiles were also measured horizontally and vertically in the hood by an anemometer. Modifications in the form of an extension inlet duct, flat vanes, and a baffle were necessary to achieve repeatable, uniform, and steady velocity profiles inside the hood. The optimum velocity for use of the OSS was found to be 0.33 m/s, based upon the aerodynamic performance of the OSS and the sensitivity of the anemometer at a lower velocity.  相似文献   

9.
Abstract

Beam path average data from an Open Path Fourier Transform Infrared (OP-FTIR) spectrometer can be used to reconstruct two-dimensional concentration maps of the gas and vapor contaminants in workplaces and the environment using computed tomographic (CT) techniques. However, a practical limitation arises because in the past, multiple-source and detector units were required to produce a sufficient number of intersecting beam paths in order to reconstruct concentration maps. Such a system can be applied to actual field monitoring situations only with great expense and difficulty. A single monostatic OP-FTIR system capable of rapid beam movement can eliminate this deficiency. Instead of many source and detector units, a virtual source arrangement has been proposed using a number of flat mirrors and retroreflectors to obtain intersecting folded beam paths.

Three virtual source beam configurations generated for a single-beam steerable FTIR system were tested using 54 flat mirrors and four retroreflectors or 54 flat mirrors and 56 retroreflectors mounted along the perimeter walls of a typical 24- x 21-ft test room. The virtual source CT configurations were numerically evaluated using concentration maps created from tracer gas concentration distributions measured experimentally in a test chamber. Synthetic beam path integral data were calculated from the test maps and beam configurations. Computer simulations of different beam configurations were used to determine the effects of beam geometry. The effects of noise and peak-reducing artifacts were evaluated. The performance of the tomographic reconstruction strategy was tested as a function of concentration and concentration gradients.  相似文献   

10.
11.
Abstract

Particulate atmospheric pollution in urban areas is considered to have significant impact on human health. Therefore, the ability to make accurate predictions of particulate ambient concentrations is important to improve public awareness and air quality management. This study examines the possibility of using neural network methods as tools for daily average particulate matter with aerodynamic diameter <10 µm (PM10) concentration forecasting, providing an alternative to statistical models widely used up to this day. Based on a data inventory, in a fixed central site in Athens, Greece, ranging over a two-year period, and using mainly meteorological variables as inputs, neural network models and multiple linear regression models were developed and evaluated. Comparison statistics used indicate that the neural network approach has an edge over regression models, expressed both in terms of prediction error (root mean square error values lower by 8.2–9.4%) and of episodic prediction ability (false alarm rate values lower by 7–13%). The results demonstrate that artificial neural networks (ANNs), if properly trained and formed, can provide adequate solutions to particulate pollution prognostic demands.  相似文献   

12.
Abstract

Because the particulate organic carbon (OC) concentrations reported in U.S. Environment Protection Agency Speciation Trends Network (STN) data were not blank corrected, the OC blank concentrations were estimated using the intercept in particulate matter ≤2.5 µm in aerodynamic diameter (PM2.5) regression against OC concentrations. The estimated OC blank concentrations ranged from 1 to 2.4 μg/m3 showing higher values in urban areas for the 13 monitoring sites in the northeastern United States. In the STN data, several different samplers and analyzers are used, and various instruments show different method detection limit (MDL) values, as well as errors. A comprehensive set of error structures that would be used for numerous source apportionment studies of STN data was estimated by comparing a limited set of measured concentrations and their associated uncertainties. To examine the estimated error structures and investigate the appropriate MDL values, PM2.5 samples collected at a STN site in Burlington, VT, were analyzed through the application of the positive matrix factorization. A total of 323 samples that were collected between December 2000 and December 2003 and 49 species based on several variable selection criteria were used, and eight sources were successfully identi?ed in this study with the estimated error structures and min values among different MDL values from the ?ve instruments: secondary sulfate aerosol (41%), secondary nitrate aerosol (20%), airborne soil (15%), gasoline vehicle emissions (7%), diesel emissions (7%), aged sea salt (4%), copper smelting (3%), and ferrous smelting (2%). Time series plots of contributions from airborne soil indicate that the highly elevated impacts from this source were likely caused primarily by dust storms.  相似文献   

13.
Abstract

The digital opacity compliance system (DOCS) has been proposed as an alternative to the U.S. Environmental Protection Agency Reference Method 9 (Visual Determination of the Opacity of Emissions for Stationary Sources). The DOCS, which employs standard digital photography to estimate the opacity of visible emissions, was evaluated in a high mountain desert environment located in Weber County, UT. The DOCS recorded an average opacity deviation of 5.28% when applied to black smoke plumes having true opacities in the range of 0–100%, an error rate that was found to be significantly less than 7.5% (allowable error rate for attaining certification under Method 9). In contrast, results from estimating the opacity of white smoke plumes indicated that the accuracy of the DOCS was less than the Method 9 error rate only in the opacity range of 0–60%, over which the DOCS average opacity deviation was determined to be 6.7%. For the 0–40% opacity range, the DOCS recorded an average opacity deviation of 5.44% and 5.9% for black and white plumes, respectively.

Results from the present study suggest that the DOCS has the potential to quantify visible opacity with an error rate that is significantly less than the Method 9 permissible error rate. Although encouraging, it is unclear to what extent the DOCS is affected by climatic conditions other than those encountered in a dry desert environment. Future studies should focus on evaluating the performance of the DOCS under variable weather conditions.  相似文献   

14.
ABSTRACT

Experiments on different annular denuder system (ADS)arrangements for sampling nitrous acid (HNO2) and ni-tric acid (HNO3) gases were conducted in this study toevaluate their sampling artifacts. The evaluation basis isthe one that employed one sodium chloride denuder forsampling HNO3 gas and two sodium carbonate (Na2CO3)denuders for sampling HNO2 gas, which is a commonlyemployed ADS arrangement in many field applicationsin the United States. A field study was conducted inHsinchu, Taiwan, and the results indicated that this ADSarrangement may yield over 80% relative errors for HNO3gas. It also showed that the relative errors for HNO2 gascan be less than 10% as sampled with only one Na2CO3denuder. This is attributed to the fact that the ambientHNO3 concentration measured in this study was relativelylow while the HNO2 concentration was high, as comparedto typical concentrations of these two gases measured inthe United States.

The sampling error of HNO3 gas may be due to highconcentrations of N-containing interfering speciespresent in Taiwan’s atmosphere. Because the relative sam-pling errors of HNO3 and HNO2 gases depend mainly ontheir concentrations in the atmosphere as well as con-centrations caused by interfering species, the risk for higherror while measuring low HNO2 concentrations by onlyone Na2CO3 denuder is also possible. As a result, it is sug-gested that pretests are necessary to evaluate possiblesources and degrees of sampling errors before fieldsampling of HNO2 and HNO3 gases. The sampling errorsof these two gases can, therefore, be minimized with abetter arrangement of the ADS.  相似文献   

15.
Abstract

Continuous monitors were employed for 18 months in an occupied townhouse to measure ultrafine, fine, and coarse particles; air change rates; wind speed and direction; temperature; and relative humidity (RH). A main objective was to document short-term and long-term variation in indoor air concentrations of size-resolved particles (0.01-20 μm) caused by (1) diurnal and seasonal variation of outdoor air concentrations and meteorological variables, (2) indoor sources such as cooking and using candles, and (3) activities affecting air change rates such as opening windows and using fans. A second objective was to test and compare available instruments for their suitability in providing real-time estimates of particle levels and ancillary variables.

Despite different measuring principles, the instruments employed in this study agreed reasonably well for particles less than 10 μm in diameter. The three instruments measuring fine and coarse particles (aerodynamic diameter between 0.3 and 20 μm) agreed to within 30% in their overall estimates of total volume. Two of these instruments employed optical scattering, and the third used an aerodynamic acceleration principle. However, several lines of evidence indicated that the instrument employing aerodynamic acceleration overestimated concentrations for particle diameters greater than 10 μm. A fourth instrument measuring ultrafine and accumulation-mode particles (0.01-1 μm) was operated with two different inlets providing somewhat different particle size ranges. The two inlets agreed in the ultrafine region (<0.1 μm) but diverged increasingly for larger particles (up to 0.445 μm).

Indoor sources affecting ultrafine particle concentrations were observed 22% of the time, and sources affecting fine and coarse particle concentrations were observed 12 and 15% of the time, respectively. When an indoor source was operating, particle concentrations for different sizes ranged from 2 to 20 times the average concentrations when no indoor source was apparent. Indoor sources, such as cooking with natural gas, and simple physical activities, such as walking, accounted for a majority (50-90%) of the ultrafine and coarse particle concentrations, whereas outdoor sources were more important for accumulation-mode particles between 0.1 and 1 um in diameter. Averaged for the entire year and including no periods when indoor sources were apparent, the number distribution was bimodal, with a peak at ~10 nm (possibly smaller), a shallow minimum at ~14 nm, and a second broad peak at ~68 nm. The volume distribution was also bimodal, with a broad peak at ~200 nm, a minimum at ~1.2 μm, and then an upward slope again through the remaining size fractions.

A database was created on a 5-min averaging time basis. It contains more than 90,000 measurements by two of the instruments and approximately 30,000 by the two optical scattering instruments. About 4500 hour-long average air change rates were also calculated throughout the year using a dedicated gas chromatograph with electron capture detection (GC/ECD). At high air change rates [>0.8 air changes per hour (hr?1)], particle concentrations were either elevated (when no source was present) or depressed (when an indoor source was operating) by factors of up to 2 compared with low air change rates.  相似文献   

16.
Abstract

The current lack of empirical data on outdoor tobacco smoke (OTS) levels impedes OTS exposure and risk assessments. We sought to measure peak and time-averaged OTS concentrations in common outdoor settings near smokers and to explore the determinants of time-varying OTS levels, including the effects of source proximity and wind. Using five types of real-time airborne particle monitoring devices, we obtained more than 8000 min worth of continuous monitoring data, during which there were measurable OTS levels. Measurement intervals ranged from 2 sec to 1 min for the different instruments. We monitored OTS levels during 15 on-site visits to 10 outdoor public places where active cigar and cigarette smokers were present, including parks, sidewalk cafés, and restaurant and pub patios. For three of the visits and during 4 additional days of monitoring outdoors and indoors at a private residence, we controlled smoking activity at precise distances from monitored positions. The overall average OTS respirable particle concentration for the surveys of public places during smoking was approximately 30 μg m?3. OTS exhibited sharp spikes in particle mass concentration during smoking that sometimes exceeded 1000 μg m?3 at distances within 0.5 m of the source. Some average concentrations over the duration of a cigarette and within 0.5 m exceeded 200 μg m?3, with some average downwind levels exceeding 500 μg m?3. OTS levels in a constant upwind direction from an active cigarette source were nearly zero. OTS levels also approached zero at distances greater than approximately 2 m from a single cigarette. During periods of active smoking, peak and average OTS levels near smokers rivaled indoor tobacco smoke concentrations. However, OTS levels dropped almost instantly after smoking activity ceased. Based on our results, it is possible for OTS to present a nuisance or hazard under certain conditions of wind and smoker proximity.  相似文献   

17.
Abstract

A wide range of new and exciting highly time-resolved instruments were deployed during the U.S. Environmental Protection Agency (EPA) Supersite program and related studies that occurred during the same time period. These measurements elucidated the temporal variation of a suite of gas-phase species, particle physical properties, and size-resolved particulate chemical composition. Because the temporal resolution was so high, concentration and size distribution changes as short as 1 min or less were discerned. Often data from multiple instruments were correlated with each other and with meteorological measurements, and these correlations enabled conclusions to be drawn about the photochemical activity of the atmosphere, the location of point sources, and even the emissions characteristics of these sources. For instance, rapid changes in particulate matter (PM) concentration were due to meteorological conditions, emissions, and plume excursions that led to increases in nitrate, sulfate, and organic carbon concentrations. This paper summarizes the conclusions that have been reached, to date, using these new, highly time-resolved instruments, and demonstrates their promise for future studies.  相似文献   

18.
ABSTRACT

Increases in large wildfire frequency and intensity and a longer fire season in the western United States are resulting in a significant increase in air pollution, including concentrations of PM2.5 (particulate matter <2.5 µm in aerodynamic diameter) that pose significant health risks to nearby communities. During wildfires, government agencies monitor PM2.5 mass concentrations providing information and actions needed to protect affected communities; this requires continuously measuring instruments. This study assessed the performance of seven candidate instruments: (1) Met One Environmental beta attenuation monitor (EBAM), (2) Met One ES model 642 (ES642), (3) Grimm Environmental Dust Monitor 164 (EDM), (4) Thermo ADR 1500 (ADR), (5) TSI DRX model 8543 (DRX), (6) Dylos 1700 (Dylos), and (7) Purple Air II (PA-II) in comparison with a BAM 1020 (BAM) reference instrument. With the exception of the EBAM, all candidates use light scattering to determine PM2.5 mass concentrations. Our comparison study included environmental chamber and field components, with two of each candidate instrument operating next to the reference instrument. The chamber component involved 6 days of comparisons for biomass combustion emissions. The field component involved operating all instruments in an air monitoring station for 39.5 days with hourly average relative humidity (RH) ranging from 19% to 98%. Goals were to assess instrument precision and accuracy and effects of RH, elemental carbon (EC), and organic carbon (OC) concentrations. All replicate candidate instruments showed high hourly correlations (R2 ≥ 0.80) and higher daily average correlations (R2 ≥ 0.90), where all instruments correlated well (R2 ≥ 0.80) with the reference. The DRX and Purple Air overestimated PM2.5 mass concentrations by a factor of ~two. Differences between candidates and reference were more pronounced at higher PM2.5 concentrations. All optical instruments were affected by high RH and by the EC/OC ratio. Equations to convert candidate instruments data to FEM BAM type data are provided to enhance the usability of data from candidate instruments.

Implications: This study tested the performance of seven candidate PM2.5 mass concentration measuring instruments in two settings - environmental chamber and field. The instruments were tested to determine their suitability for use during biomass combustion events and the effects of RH, PM mass concentrations, and concentrations of EC and OC on their performance. The accuracy and precision of each monitor and effect of RH, PM concentration, EC and OC concentrations are varied. The data show that most of these candidate instruments are suitable for measuring PM2.5 concentration during biomass combustions with a proper correction factor for each instrument type.  相似文献   

19.
ABSTRACT

An electronically controlled lift system carrying a realtime particle monitor has been developed for sampling air sequentially, at different heights within the breathing zone. Data are automatically logged at the different receptor levels, for the determination of average vertical concentration profiles of airborne particulate matter. The system is easy to operate, portable, and easily extended to different heights or modified for use with other types of monitors (e.g., a portable CO analyzer). For measuring airborne particle concentrations, a Grimm Dust Monitor 1.104/5 was used. The results of trial runs, which were carried out indoors and in a relatively open semi-rural area, are presented, and applications of the kinetic sequential sampling (KSS) system are discussed.  相似文献   

20.
The measurement of hydrochloric acid (HCl) on a continuous basis in coal-fired plants is expected to become more important if HCl standards become implemented as part of the Federal Mercury and Air Toxics Standards (MATS) standards that are under consideration. For this study, the operational performance of three methods/instruments, including tunable diode laser absorption spectroscopy (TDLAS), cavity ring down spectroscopy (CRDS), and Fourier transform infrared (FTIR) spectroscopy, were evaluated over a range of real-world operating environments. Evaluations were done over an HCl concentration range of 0–25 ppmv and temperatures of 25, 100, and 185 °C. The average differences with respect to temperature were 3.0% for the TDL for values over 2.0 ppmv and 6.9% of all concentrations, 3.3% for the CRDS, and 4.5% for the FTIR. Interference tests for H2O, SO2, and CO, CO2, and NO for a range of concentrations typical of flue gases from coal-fired power plants did not show any strong interferences. The possible exception was an interference from H2O with the FTIR. The instrument average precision over the entire range was 4.4% for the TDL with better precision seen for concentrations levels of 2.0 ppmv and above, 2.5% for the CRDS, and 3.5% for the FTIR. The minimum detection limits were all on the order of 0.25 ppmv, or less, utilizing the TDL values with a 5-m path. Zero drift was found to be 1.48% for the TDL, 0.88% for the CRDS, and 1.28% for the FTIR.

Implications: This study provides an evaluation of the operational performance of three methods/instruments, including TDL absorption spectroscopy (TDLAS), cavity ring down spectroscopy (CRDS), and FTIR spectroscopy, for the measurement of hydrochloric acid (HCl) over a range of real-world operating environments. The results showed good instrument accuracy as a function of temperature and no strong interferences for flue gases typical to coal-fired power plants. The results show that these instruments would be viable for the measurement of HCl in coal-fired plants if HCl standards become implemented as part of the Federal Mercury and Air Toxics Standards (MATS) standards that are under consideration.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号