共查询到20条相似文献,搜索用时 15 毫秒
1.
John D. Spengler George D. Thurston 《Journal of the Air & Waste Management Association (1995)》2013,63(12):1162-1171
Inhalable particulate matter (IP) samples have been collected in six U.S. cities in conjunction with an air pollution health study. The IP were collected using dichotomous virtual impactors in two size ranges: fine particles (FP) having aerodynamic diameter (da) <2.5 μm, and coarse particles (CP) with 2.5 μm < da < 15 μm. The mass measurements were determined by beta-gauge attenuation. The elemental composition of the FP and CP were determined by X-ray fluorescence. The means and distributions for FP and CP and selected elemental data highlight the similarities and differences that exist among these cities in the health study. Examining the temporal variations gives additional information on the meteorology and sources influencing the FP and CP fractions of Inhalable particle mass. Differences in the concentration (and ratios) of selected elements have indicated the varying presence of crustal, steel industry, automotive, oceanic and fuel combustion sources in these cities. The noted variation in the concentrations and character of ambient aerosols in these cities are pertinent to interpreting differences in population exposures. 相似文献
2.
3.
George M. Hidy Jeremy M. Hales Philip M. Roth Richard Scheffe 《Journal of the Air & Waste Management Association (1995)》2013,63(4):613-632
ABSTRACT This paper describes a background for the North American Research Strategy for Tropospheric Ozone (NARSTO) cooperative program integrating studies of O3 and PM2 5. It discusses several important aspects for rationalizing NARSTO's trinational investigative approach, including (1) an outlook on the state of knowledge about fine particles in the troposphere and their origins in Canada, Mexico, and the United States; (2) the need for enhancement and strengthening of key field measurements in relation to tropospheric chemistry and a health effects component; and (3) the use of a central theme for advancing air quality modeling using evolving techniques to integrate and guide key process-oriented field campaigns. The importance of organizing a scientific program to acquire “policy-relevant” information is stressed, noting cooperative research directions that address combined PM2.5 and O3 issues, illustrated through exploration of hypothetical pathways of PM2.5 response to choices of O3 and PM precursor emission reductions. The information needed for PM2.5 research is noted to intersect in many cases with those of O3, but diverge in other cases. Accounting for these distinctions is important for developing NARSTO's strategy over the next decade. 相似文献
4.
K. G. Anlauf H. A. Wiebe P. Fellin 《Journal of the Air & Waste Management Association (1995)》2013,63(6):715-723
Laboratory and field experiments were performed to evaluate integrative measurement methods for atmospheric nitrates, sulphate and sulphur dioxide. Denuder tubes and several filter media were tested under laboratory and field conditions. Effects of sampling variables such as temperature and relative humidity, flow rates, concentration, loading capacity and artifacts due to NO, NO2 and SO2 were also evaluated. The integrative filter sampling method and the ion chromatographic analytical procedure gave a measurement precision (relative standard deviation) of ±11.5 percent for particulate NO3 ? on Teflon and ±15.6 percent for gaseous HNO3 on nylon; for both these constituents, the detection limit was about 0.1 μ m?3. 相似文献
5.
Alfred Micallef Chris N. Deuchar Jeremy J. Colls 《Journal of the Air & Waste Management Association (1995)》2013,63(8):757-762
ABSTRACT An electronically controlled lift system carrying a realtime particle monitor has been developed for sampling air sequentially, at different heights within the breathing zone. Data are automatically logged at the different receptor levels, for the determination of average vertical concentration profiles of airborne particulate matter. The system is easy to operate, portable, and easily extended to different heights or modified for use with other types of monitors (e.g., a portable CO analyzer). For measuring airborne particle concentrations, a Grimm Dust Monitor 1.104/5 was used. The results of trial runs, which were carried out indoors and in a relatively open semi-rural area, are presented, and applications of the kinetic sequential sampling (KSS) system are discussed. 相似文献
6.
Roger L. Tanner William J. Parkhurst 《Journal of the Air & Waste Management Association (1995)》2013,63(8):1299-1307
ABSTRACT Fine particles in the atmosphere have elicited new national ambient air quality standards (NAAQS) because of their potential role in health effects and visibility-reducing haze. Since April 1997, Tennessee Valley Authority (TVA) has measured fine particles (PM2.5) in the Tennessee Valley region using prototype Federal Reference Method (FRM) samplers, and results indicate that the new NAAQS annual standard will be difficult to meet in this region. The composition of many of these fine particle samples has been determined using analytical methods for elements, soluble ions, and organic and elemental carbon. The results indicate that about one-third of the measured mass is SO4 -2, one-third is organic aerosol, and the remainder is other materials. The fraction of SO4 -2 is highest at rural sites and during summer conditions, with greater proportions of organic aerosol in urban areas throughout the year. Additional measurements of fine particle mass and composition have been made to obtain the short-term variability of fine mass as it pertains to human exposure. Measurements to account for semi-volatile constituents of fine mass (nitrates, semi-volatile organics) indicate that the FRM may significantly under-measure organic constituents. The potentially controllable anthropogenic fraction of organic aerosols is still largely unknown. 相似文献
7.
Wallace B. Smith Jack R. McDonald 《Journal of the Air & Waste Management Association (1995)》2013,63(2):168-172
Theories of particle charging based on boundary value solutions to the diffysional equation may not be applicable to electrostatic precipitators where the ion density is rarely more than an order of magnitude greafer than the particle concentration. A new charging equation, based on kinetic theory, is presented which evaluates the charging rate in terms of the probability of collisions between the flust particles and ions. In the presence of an external electric field, the surface of the particle is divided into three charging regions, and separate charging rates are calculated for each region. The total charging rate is the sum of these three individual rates. For large particles and high electric fields, this theory predicts essentially the same charging rate as the classical field charging equation of Rohmann and Pauthenier. For low electric fields, the theory reduces to White’s diffusional charging equation. Agreement is within 25% of Hewitt’s experimental results over the entire range of variables where data are available. For practical charging times, agreement is within 15%. 相似文献
8.
《Journal of the Air & Waste Management Association (1995)》2013,63(4):553-561
Abstract A study using two stack-sampling methodologies for collecting particulate matter (PM) emissions was conducted using a hot filter followed by a cold impinger sampling train and a dilution sampler. Samples were collected from ferrous iron metal casting processes that included pouring molten iron into a sand mold containing an organic binder, metal cooling, removal of the sand from the cooled casting (shakeout), and postshakeout cooling. The shakeout process contributed more to PM emissions than the metal pouring and cooling processes. Particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) mass emissions for the entire casting cycle ranged from 3.4 to 4.7 lb/t of metal for the hot filter/impinger method and from 0.8 to 1.8 lb/t of metal for the dilution method. Most of the difference was due to PM captured by the impingers, much of which was probably dissolved gases rather than condensable vapors. Of the PM fraction captured by the impingers, 96–98% was organic in nature. The impinger PM fraction contributed 32–38% to the total suspended particle mass and caused a factor of 2–4 positive bias for PM2.5 emissions. For the pouring and cooling processes only, the factor increased to over seven times. 相似文献
9.
C. E. Tatsch W. M. Yeager G. L. Johnson 《Journal of the Air & Waste Management Association (1995)》2013,63(6):655-660
An interactive computer resource for analyzing, evaluating, and archiving particle size distributions as determined by cascade impactors for environmental measurement is decribed. The Particle Data Reduction (PADRE) computer program assists users in obtaining high quality size-mass distribution data for archival in the Fine Particle Emissions Information System (FPEIS). PADRE users interactively store, edit, reduce, and analyze observed impactor data from anywhere in the continential United States. Extensive data quality checks and computer- prompted, user-directed program operations assist users in obtaining meaningful information within minutes of entering impactor data. Design goals, program operation, sample sessions and plans for future system development are discussed. 相似文献
10.
R. A. Gussman A. M. Sacco N. M. McMahon 《Journal of the Air & Waste Management Association (1995)》2013,63(9):778-782
The purpose of this study was to develop an air sampling device capable of classifying large quantities of airborne particulate matter into discrete size fractions. Such frac-tionation will facilitate chemical analysis of the various particulate pollutants and thereby provide a more realistic assessment of the effects of particulate matter on human beings. A 30 cfm, 5 stage cascade impactor of the slit-type has been constructed and calibrated. The calibration aerosol consisted of six different sizes of monodispersed methylene blue produced with a spinning disc generator. The test aerosol sizes varied from 1.35 to 14 μm. The calibration was challenged with heterodispersed aerosols of methylene blue, Arizona road dust, and DOP. 相似文献
11.
Eugene Kim 《Journal of the Air & Waste Management Association (1995)》2013,63(10):1456-1463
Abstract The objectives of this study were to examine the use of carbon fractions to identify particulate matter (PM) sources, especially traffic‐related carbonaceous particle sources, and to estimate their contributions to the particle mass concentrations. In recent studies, positive matrix factorization (PMF) was applied to ambient fine PM (PM2.5) compositional data sets of 24‐hr integrated samples including eight individual carbon fractions collected at three monitoring sites in the eastern United States: Atlanta, GA, Washington, DC, and Brigantine, NJ. Particulate carbon was analyzed using the Interagency Monitoring of Protected Visual Environments/Thermal Optical Reflectance method that divides carbon into four organic carbons (OC): pyrolized OC and three elemental carbon (EC) fractions. In contrast to earlier PMF studies that included only the total OC and EC concentrations, gasoline emissions could be distinguished from diesel emissions based on the differences in the abundances of the carbon fractions between the two sources. The compositional profiles for these two major source types show similarities among the three sites. Temperature‐resolved carbon fractions also enhanced separations of carbon‐rich secondary sulfate aerosols. Potential source contribution function analyses show the potential source areas and pathways of sulfate‐rich secondary aerosols, especially the regional influences of the biogenic, as well as anthropogenic secondary aerosol. This study indicates that temperature‐resolved carbon fractions can be used to enhance the source apportionment of ambient PM2.5. 相似文献
12.
Luis A. Cifuentes Jeanette Vega Katherine Köpfer Lester B. Lave 《Journal of the Air & Waste Management Association (1995)》2013,63(8):1287-1298
ABSTRACT Daily counts of non-accidental deaths in Santiago, Chile, from 1988 to 1996 were regressed on six air pollutants— fine particles (PM2.5), coarse particles (PM10–2.5), CO, SO2, NO2, and O3. Controlling for seasonal and meteorological conditions was done using three different models— a generalized linear model, a generalized additive model, and a generalized additive model on previously filtered data. Single- and two-pollutant models were tested for lags of 1-5 days and the average of the previous 2-5 days. The increase in mortality associated with the mean levels of air pollution varied from 4 to 11%, depending on the pollutants and the way season of the year was considered. The results were not sensitive to the modeling approaches, but different effects for warmer and colder months were found. Fine particles were more important than coarse particles in the whole year and in winter, but not in summer. NO2 and CO were also significantly associated with daily mortality, as was O3 in the warmer months. No consistent effect was observed for SO2. Given particle composition in Santiago, these results suggest that combustion-generated pollutants, especially from motor vehicles, may be associated with increased mortality. Temperature was closely associated with mortality. High temperatures led to deaths on the same day, while low temperatures lead to deaths from 1 to 4 days later. 相似文献
13.
Bok Haeng Baek 《Journal of the Air & Waste Management Association (1995)》2013,63(5):623-633
Abstract An annular denuder system, which consisted of a cyclone separator; two diffusion denuders coated with sodium carbonate and citric acid, respectively; and a filter pack consisting of Teflon and nylon filters in series, was used to measure acid gases, ammonia (NH3), and fine particles in the atmosphere from April 1998 to March 1999 in eastern North Carolina (i.e., an NH3?rich environment). The sodium carbonate denuders yielded average acid gas concentrations of 0.23 μg/m3 hydrochloric acid (standard deviation [SD] ± 0.2 μg/m3); 1.14 μg/m3 nitric acid (SD ± 0.81 μg/m3), and 1.61 μg/m3 sulfuric acid (SD ± 1.58 μg/m3). The citric acid denuders yielded an average concentration of 17.89 μg/m3 NH3 (SD ± 15.03 μg/m3). The filters yielded average fine aerosol concentrations of 1.64 μg/m3 ammonium (NH4 +;SD ± 1.26 μg/m3); 0.26 μg/m3 chloride (SD ± 0.69 μg/m3), 1.92 μg/m3 nitrate (SD ± 1.09 μg/m3), and 3.18 μg/m3 sulfate (SO4 2?; SD ± 3.12 μg/m3). From seasonal variation, the measured particulates (NH4 +,SO4 2?, and nitrate) showed larger peak concentrations during summer, suggesting that the gas-to-particle conversion was efficient during summer. The aerosol fraction in this study area indicated the domination of ammonium sulfate particles because of the local abundance of NH3, and the long-range transport of SO4 2? based on back trajectory analysis. Relative humidity effects on gas-to-particle conversion processes were analyzed by particulate NH4 + concentration originally formed from the neutralization processes with the secondary pollutants in the atmosphere. 相似文献
14.
G. B. Morgan C. Golden E. C. Tabor 《Journal of the Air & Waste Management Association (1995)》2013,63(5):300-304
The NASN sampler for the collection of gaseous pollutants has been modified to increase its versatility and efficiency. Oxides of nitrogen are collected in bubblers employing a 70-100 μ frit with a collection efficiency of approximately 50% depending upon the frit porosity. Included in the sampler is a bubbler for the collection of aldehydes in which the aldehyde-MBTH complex is stable at least two weeks. This inert bubbler, which is constructed of polypropylene and Teflon, makes it possible for samples to be collected over the network and analyzed at a central laboratory. In addition, gaseous ammonia is collected in 0.1N H2SO4. This collecting system has an efficiency of greater than 85%. Low-level samples are analyzed automatically employing Nesslerization, whereas high-level samples from source emissions may be collected in indicating boric acid and titrated with 0.02N H2SO4. The sampler will accommodate either 50 or 100 ml polypropylene collecting tubes. 相似文献
15.
Nolan F. Mangelson Laura Lewis Jyothi M. Joseph Wenxuan Cui James Machir Delbert J. Eatough 《Journal of the Air & Waste Management Association (1995)》2013,63(2):167-175
Abstract Air pollutants were collected in Logan, Cache County, UT, in February 1993 during two periods of atmospheric inversion accompanied by fog. The following atmospheric species were determined: (1) gaseous SO2, NO2 (semi-quantitatively),HNO3, NH3, and HF; (2) fine particulate SO4 =, NO3 -, NH4 +, F–, H+, C, Si, S, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Pb, Se, Br, and Sr, and; (3) fine particulate mass, which was calculated. The major components of fine particulate matter were carbonaceous material, ammonium nitrate, and ammonium sulfate, while the soil component was small. Calculated, fine particulate mass averaged 80 μg/m3 and reached concentrations as high as 120 μg/m3. SO2/Sox and NO2/NOy mole ratios generally varied between 0.2 and 0.1 during inversions. These ratios also showed moderate but consistent diurnal patterns. The emission inventory for Cache County indicates sources of SO2 and NOx but not significant amounts of primary sulfate and nitrate. The observations reported here indicate there is significant conversion of SO2 and NOx in the presence of excess oxidants to sulfuric and nitric acid that are neutralized by excess ammonia. 相似文献
16.
Robert M. Burton James N. Howard Robert L. Penley Peggy A. Ramsay Thomas A. Clark 《Journal of the Air & Waste Management Association (1995)》2013,63(4):277-281
The purpose of this paper is to describe instrumentation to aerodynamically size suspended particulates found in ambient air and to summarize results of field testing utilizing the new technique. A four-stage, multiorifice high-volume fractionating impactor with backup filter, which can be operated as a component of the standard high-volume sampler, collects particulate matter in five separate aerodynamic size ranges: 7 micrometer (μm) or larger, 3.3 to 7 μm, 2.0 to 3.3 μm, 1.1 to 2.0 μm, and 0.01 to 1.1 μm. Comparative field tests utilizing duplicate sampling techniques were conducted to determine the feasibility of using the size fractionator on a routine basis in field operations. Verification of the actual particle size separation was not undertaken; however, earlier tests utilizing laboratory-generated aerosols have been performed with satisfactory results. The results of field tests indicate that the fractionator can be used to determine the aerodynamic size distribution of particulate matter. A glass fiber surface with a pH of 11.0 was found to adsorb atmospheric acid gases during sampling and thus gave erroneous mass concentration results when compared to the standard high-volume sampler. Glass fiber filters with a pH of 6.5 eliminated the acid gas adsorption. 相似文献
17.
18.
G. DeJong D. Watts L. Spiller R. Patterson 《Journal of the Air & Waste Management Association (1995)》2013,63(4):373-376
The University of Arizona and the Pima County Air Pollution Control District conducted a comparison study of the following aerosol samplers: a standard high-volume sampler, a high-volume sampler fitted with a size selective inlet, and a dichotomous virtual impactor. Over sixty samples were collected with the colocated samplers during the first six months of 1981. The concentration (μg/m3) of suspended particulate matter and of sulfate was determined for all the samples, while the concentration of four lithophilic elements (Ca, Fe, Mg, and K) was determined on one third of the samples. Well-defined linear relationships for suspended particulate matter and sulfate were found to exist between each of the three sample collection methods over the concentrafion range encountered in this study. For these samples, there were significant differences in the particulate mass and large particle lithophilic element concentrations collected by each device. However, sulfate values obtained from the three samplers were in excellent agreement with each other. This suggests that the inlet collection efficiency for large particles differs significantly for these three sampling devices. Since the size selective inlet and the dichotomous virtual impactor samplers are each designed for collection of inhalable particles (particles of 15 μm aerodynamic diameter and smaller), they would have been expected to measure approximately equivalent particle mass concentrations. Thus, these differences are important to those interested in selecting a method for measuring airborne particle mass concentrations. 相似文献
19.
20.
Dennis R. Fitz Nehzat Motallebi 《Journal of the Air & Waste Management Association (1995)》2013,63(6):981-992
ABSTRACT A new style of diffusion denuder has been evaluated specifically for sampling HNO3. A coated fabric is used as the denuder substrate, which can be loaded directly into a standard filter holder. This approach allows direct denuder sampling with no additional capital costs over filter sampling and simplifies the coating and extraction process. Potential denuder materials and coatings were evaluated in the laboratory to test the removal efficiency. NaCl coatings were used to assess more than 20 materials for HNO3 collection efficiency. Particle retention, which would cause a denuder to have a positive bias for gas concentration measurements, was evaluated by ambient air sampling using particulate sulfate as the reference aerosol. Particle retention varied from 0 to 15%, depending on the denuder material tested. The best performing material showed an average particle retention of less than 3%. Denuder efficiency of four fabric materials was tested under ambient conditions to determine removal efficiency. The fabric denuder method was compared with a long path-length Fourier transform infrared (FTIR) spectrometer, a tunable diode laser absorption spectrometer (TDLAS), and a denuder difference sampler to independently measure HNO3. HNO3 collection efficiency was typically 90% for the denuders, whether coated with NaCl or not. For 10-L/min sampling rates with the fabric denuder, the square of the correlation coefficient with the FTIR spectrometer was 0.73, compared to 0.24 with the TDLAS. 相似文献