首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Atmospheric particulate matter (PM) samples from 12 sites in southern California, collected as part of the Southern California Children's Health Study (SCCHS), were analyzed using gas chromatography/mass spectrometry (GC/MS) techniques. Ninety-four organic compounds were quantified in these samples, including n-alkanes, fatty acids, polycyclic aromatic hydrocarbons (PAH), hopanes, steranes, aromatic diacids, aliphatic diacids, resin acids, methoxyphenols, and levoglucosan. Annual average concentrations of all detected compounds, as well as average concentrations for three seasonal periods, were determined at all 12 sites for the calendar year of 1995. These measurements provide important information about the seasonal and spatial distribution of particle-phase organic compounds in southern California. Also, co-located samples from one site were analyzed to assess precision of measurement. Excellent agreement was observed between annual average concentrations for the broad range of organic compounds measured in this study. Measured concentrations from the 12 sampling sites were used in a previously developed molecular-marker source apportionment model to quantify the primary source contributions to the PM10 organic carbon and mass concentrations at these 12 sites. Source contributions to atmospheric PM from six important air pollution sources were quantified: gasoline-powered motor vehicle exhaust, diesel vehicle exhaust, wood smoke, vegetative detritus, tire wear, and natural gas combustion. Important trends in the seasonal and spatial patterns of the impact of these six sources were observed. In addition, contributions from meat smoke were detected in selected samples.  相似文献   

2.
A receptor modeling study was carried out in Kuopio, Finland, between January and April 1994. Near the center of town, the daily mean concentrations were measured for PM10, sulphur dioxide, carbon monoxide and Black Smoke. Elemental concentrations of PM10 samples for 38 days were analyzed by ICP-MS. The main sources and their contributions to the measured concentrations of PM10 particles were solved by receptor modeling using a factor analysis-multiple linear regression (FA-MLR) model. Because a dust episode was very strong during two sampling days, the FA analysis was strongly influenced by this episode and did not give main factors. The factor analysis, when the two episode days were omitted, gave credible factors related to the sources in the study area. The four major sources and their estimated contributions to the average PM10 concentration of 27.2 μg m-3 were: soil and street dust 46–48%, heavy fuel oil burning 12–18%, traffic exhaust 10–14%, wood burning ca. 11% and unidentified sources 15–25%. However, during spring dust episode days, with maximum PM10 concentration of 150 μg m-3, the main source of PM10 was soil.  相似文献   

3.
On November 18, 1997, above-road particulate matter (PM) lidar (light detection and ranging) signals and heavy-duty (HD) and light-duty (LD) vehicle counts were simultaneously collected for 894 10-sec sampling periods at the Caldecott Tunnel in Orinda, CA, for the purpose of measuring the relative contributions of LD and HD vehicles to the PM lidar signal under real-world driving conditions. The relationship between the PM lidar signal and traffic activity (i.e., LD and HD traffic volumes) was examined using a time-series analysis technique, multilagged regression. The time-series model results indicate that the PM lidar signal in the current sampling period (PMt) depended on the level recorded in the previous three sampling periods (i.e., PMt-1, PMt-2, and PMt-3), the number of LD vehicles in the seventh past sampling period (LDt-7), and the number of HD vehicles measured 80 sec previous to the current sampling period (HDt-8). On a 10-sec period basis, the model results indicate that HD vehicles contributed, on average, 3 times more to above-road PM lidar signals than did LD vehicles. The observed lag in the relationship between vehicle types and the lidar signal 20 m above the road suggests that resuspended road dust, rather than tailpipe exhaust emissions, was the main source of the detected PM. Detection of road dust at such heights above the road suggests the need for investigating the processes governing the vertical transport and recycling of PM over the road as a function of vehicle dynamics under a range of meteorological conditions.  相似文献   

4.
Abstract

Atmospheric particulate matter (PM) samples from 12 sites in southern California, collected as part of the Southern California Children’s Health Study (SCCHS), were analyzed using gas chromatography/mass spectrometry (GC/MS) techniques. Ninety-four organic compounds were quantified in these samples, including n-alkanes, fatty acids, polycyclic aromatic hydrocarbons (PAH), ho-panes, steranes, aromatic diacids, aliphatic diacids, resin acids, methoxyphenols, and levoglucosan. Annual average concentrations of all detected compounds, as well as average concentrations for three seasonal periods, were determined at all 12 sites for the calendar year of 1995. These measurements provide important information about the seasonal and spatial distribution of particle-phase organic compounds in southern California. Also, co-located samples from one site were analyzed to assess precision of measurement. Excellent agreement was observed between annual average concentrations for the broad range of organic compounds measured in this study. Measured concentrations from the 12 sampling sites were used in a previously developed molecular-marker source apportionment model to quantify the primary source contributions to the PM10 organic carbon and mass concentrations at these 12 sites. Source contributions to atmospheric PM from six important air pollution sources were quantified: gasoline-powered motor vehicle exhaust, diesel vehicle exhaust, wood smoke, vegetative detritus, tire wear, and natural gas combustion. Important trends in the seasonal and spatial patterns of the impact of these six sources were observed. In addition, contributions from meat smoke were detected in selected samples.  相似文献   

5.
To investigate the chemical characteristics of fine particles in the Sihwa area, Korea, atmospheric aerosol samples were collected using a dichotomous PM10 sampler and two URG PM2.5 cyclone samplers during five intensive sampling periods between February 1998 and February 1999. The Inductively Coupled Plasma (ICP)-Atomic Emission Spectrometry (AES)/ICP-Mass Spectrometry (MS), ion chromatograph (IC), and thermal manganese dioxide oxidation (TMO) methods were used to analyze the trace elements, ionic species, and carbonaceous species, respectively. Backward trajectory analysis, factor analysis, and a chemical mass balance (CMB) model were used to estimate quantitatively source contributions to PM2.5 particles collected in the Sihwa area. The results of PM2.5 source apportionment using the CMB7 receptor model showed that (NH4)2SO4 was, on average, the major contributor to PM2.5 particles, followed by nontraffic organic carbon (OC) emission, NH4NO3, agricultural waste burning, motor vehicle emission, road dust, waste incineration, marine aerosol, and others. Here, the nontraffic OC sources include primary anthropogenic OC emitted from the industrial complex zone, secondary OC, and organic species from distant sources. The source impact of waste incineration emission became significant when the dominant wind directions were from southwest and west sectors during the sampling periods. It was found that PM2.5 particles in the Sihwa area were influenced mainly by both anthropogenic local sources and long-range transport and transformation of air pollutants.  相似文献   

6.
ABSTRACT

On November 18, 1997, above-road particulate matter (PM) lidar (light detection and ranging) signals and heavy-duty (HD) and light-duty (LD) vehicle counts were simultaneously collected for 894 10-sec sampling periods at the Caldecott Tunnel in Orinda, CA, for the purpose of measuring the relative contributions of LD and HD vehicles to the PM lidar signal under real-world driving conditions. The relationship between the PM lidar signal and traffic activity (i.e., LD and HD traffic volumes) was examined using a time-series analysis technique, multilagged regression. The time-series model results indicate that the PM lidar signal in the current sampling period (PMt) depended on the level recorded in the previous three sampling periods (i.e., PMt-1, PMt-2, and PMt-3), the number of LD vehicles in the seventh past sampling period (LDt-7), and the number of HD vehicles measured 80 sec previous to the current sampling period (HDt-8). On a 10-sec period basis, the model results indicate that HD vehicles contributed, on average, 3 times more to above-road PM li-dar signals than did LD vehicles. The observed lag in the relationship between vehicle types and the lidar signal 20 m above the road suggests that resuspended road dust, rather than tailpipe exhaust emissions, was the main source of the detected PM. Detection of road dust at such heights above the road suggests the need for investigating the processes governing the vertical transport and recycling of PM over the road as a function of vehicle dynamics under a range of meteorological conditions.  相似文献   

7.
Kim KH  Kim MY 《Chemosphere》2003,51(8):707-721
The concentrations of three different fractions of particulate matter (PM) including PM2.5, PM10, and TSP were determined concurrently during March-May 2001. Measurements of three PM fractions were made at hourly intervals from four different observatory sites located within the city boundary of Seoul. On the basis of this study, we attempted to describe relationships between the occurrences of the Asian Dust (AD) event and its influences on the PM distribution characteristics. The results of our study demonstrated distinct differences between concentrations of PM fractions at AD and non-AD (NAD) periods. The increase of PM observed during the AD episode appeared to be dominated by the coarse, rather than fine, fraction of PM. In addition, it was found that TSP/PM10 ratios were almost constant, while the coarse/fine or TSP/PM2.5 ratios changed noticeably between AD and NAD periods. In most cases, differences in environmental conditions between AD and NAD periods were prominent and proven to be statistically significant. Moreover, the regression relationships between PM and N-oxides indicate that the source processes governing PM levels between the AD and NAD period can be different. The overall results of our analysis were hence helpful enough to distinguish competing processes in AD and NAD periods, while suggesting indirectly the possible control of different source processes on PM fractionation.  相似文献   

8.
The use of street sweepers to clean paved roads, particularly after high-wind events, has been proposed as a PM10 control method. Using an artificial tunnel, the emission rates for several street sweepers were quantified under actual operating conditions. The tunnel was a tent enclosure, 6.1 x 4.3 x 73 m, open on both ends. PM10 concentrations were measured at the inlet and outlet while a sweeper removed sand deposited along the length. Measurements were made using a specialized low-volume filter sampler and an integrating nephelometer. The volume of air passing through the tunnel was measured by releasing an inert tracer, sulfur hexafluoride, at the inlet and measuring its concentration at the outlet. A large difference in emission rates between vacuum-type sweepers was observed, with rates varying from 5 to 100 mg m-1 swept. For the cleanest sweepers, the background rates (collected by sweeping clean pavement) were about half of the total PM10 emission rate. These background emission rates likely were from diesel exhaust; background rates for the single gasoline-powered sweeper were below detection. Particle light scattering data confirmed the filter collection results. The artificial tunnel approach would be useful in measuring total emissions from other mobile and stationary sources.  相似文献   

9.
This paper addresses the problem of low-cost PM10 (particulate matter with aerodynamic diameter < 10 microm) street sweeping route. In order to do so, only a subset of the streets of the urban area to be swept is selected for sweeping, based on their PM10 emission factor values. Subsequently, a low-cost route that visits each street in the set is computed. Unlike related problems of waste collection where streets must be visited once (Chinese or Rural Postman Problem, respectively), in this case, the sweeping vehicle route must visit each selected street exactly as many times as its number of street sides, since the vehicle can sweep only one street side at a time. Additionally, the route must comply with traffic flow and turn constraints. A novel transformation of the original arc routing problem into a node routing problem is proposed in this paper. This is accomplished by building a graph that represents the area to sweep in such a way that the problem can be solved by applying any known solution to the Traveling Salesman Problem (TSP). As a way of illustration, the proposed method was applied to the northeast area of the Municipality of Santiago (Chile). Results show that the proposed methodology achieved up to 37% savings in kilometers traveled by the sweeping vehicle when compared to the solution obtained by solving the TSP problem with Geographic Information Systems (GIS)--aware tools.  相似文献   

10.
In this work, stationary and mobile point source tracer release techniques have been used to determine PM10 emission rates from four-lane commercial/residential paved roads under sanded and unsanded conditions, and from unpaved roads relative to site-specific vehicular and ambient parameters. Measured street (4 + lanes; ? 10,000 vehicles per day) emission factors for unsanded and sanded roads were 40 and 20% lower, respectively, than the EPA approved reference value. The sanded road emission factor was approximately 40% higher than that for the unsanded road. These results indicate a consistent relationship between PM10 and relative humidity under unsanded conditions. There is some evidence to suggest that street sweeping has a measurable effect on PM,, emission reduction during periods of low relative humidity (i.e. ? 30%). Within the constraints imposed by the variable experimental conditions, the emission factors determined for unpaved roads agreed reasonably well with the unpaved road empirical formula. Limited correlations were observed with ambient meteorological parameters. The capability of the “upwind-dowiawind” concentration modeling method to predict accurate emission was tested using a Gaussian dispersion model (SIMFLUX). Predictions agreed well with the experimentally determined emission factors.  相似文献   

11.
The emission of volatile pollutants from the volcanic eruption of the Puyehue-Cordón Caulle complex (North Patagonia Andean Range) that started in June 4th, 2011, was investigated by bioindication means with the epyphytic fruticose lichen Usnea sp. The elemental composition of pooled samples made up with 10 lichen thalli were analysed by Instrumental Neutron Activation Analysis. Eleven sampling sites were selected within the impacted region at different distance from the volcanic source. Five sites were selected as they were already sampled in a previous study prior to the eruption. Two other new sampling sites were selected from outside the impacted zone to provide non-impacted baseline sites.The elements associated with the lichen incorporation of particulate matter (PM) of geological origin were identified by linear correlation with a geochemical tracer (Sm concentrations). The elements associated with PM uptake were Ce, Eu, Fe, Hf, La, Lu, Na, Nd, Sb, Sc, Se, Ta, Tb, Th, U, and Yb. Arsenic and Cs concentrations showed contributions exceeding the PM fraction in sites near the volcanic centre, also higher than the baseline concentrations, which could be associated with permanent emissions from the geothermal system of the Puyehue-Cordón Caulle complex. The lichen concentrations of Ba, Ca, Co, Hg, K, Rb, Sr, and Zn were not associated with the PM, not showing higher concentrations in the sites nearby the volcanic source or respect to the baseline values either. Therefore, there is no indication of the emission of volatile forms of these elements in the lichen records. The lichen records only identified Br volatile emissions associated with the Puyehue-Cordón Caulle complex eruption in 2011.  相似文献   

12.
The Gulf Coast Aerosol Research and Characterization Study ([GC-ARCH], also known as the Houston Fine Particulate Matter [PM] Supersite) examined the spatial and temporal variability in fine PM source contributions and composition and the physical and chemical processes that govern PM formation and transformation in southeastern Texas. This was accomplished through the analysis of data collected in a 16-month field sampling program (August 2000 through November 2001). Three core sites and approximately 15 peripheral sites, jointly operated by the study team and the Texas Commission on Environmental Quality (TCEQ), were used. Key scientific findings related to spatial and temporal variability in fine PM concentrations, sizes and composition of the fine PM, the strength of primary emission sources and causes of secondary fine PM formation are reported.  相似文献   

13.
PM2.5 and PM10 were collected during 24-h sampling intervals from March 1st to 31st, 2006 during the MILAGRO campaign carried out in Mexico City's northern region, in order to determine their chemical composition, oxidative activity and the estimation of the source contributions during the sampling period by means of the chemical mass balance (CMB) receptor model. PM2.5 concentrations ranged from 32 to 70 μg m−3 while that of PM10 did so from 51 to 132 μg m−3. The most abundant chemical species for both PM fractions were: OC, EC, SO42−, NO3, NH4+, Si, Fe and Ca. The majority of the PM mass was comprised of carbon, up to about 52% and 30% of the PM2.5 and PM10, respectively. PM2.5 constituted more than 50% of PM10. The redox activity, assessed by the dithiothreitol (DTT) assay, was greater for PM2.5 than for PM10, and did not display significant differences during the sampling period. The PM2.5 source reconciliation showed that in average, vehicle exhaust emissions were its most important source in an urban site with a 42% contribution, followed by re-suspended dust with 26%, secondary inorganic aerosols with 11%, and industrial emissions and food cooking with 10% each. These results had a good agreement with the Emission Inventory. In average, the greater mass concentration occurred during O3S that corresponds to a wind shift initially with transport to the South but moving back to the North. Taken together these results show that PM chemical composition, oxidative potential, and source contribution is influenced by the meteorological conditions.  相似文献   

14.
The influence of sea-land breezes (SLBs) on the spatial distribution and temporal variation of particulate matter (PM) in the atmosphere was investigated over coastal Taiwan. PM was simultaneously sampled at inland and offshore locations during three intensive sampling periods. The intensive PM sampling protocol was continuously conducted over a 48-hr period. During this time, PM2.5 and PM(2.5-10) (PM with aerodynamic diameters < 2.5 microm and between 2.5 and 10 microm, respectively) were simultaneously measured with dichotomous samplers at four sites (two inland and two offshore sites) and PM10 (PM with aerodynamic diameters < or =10 microm) was measured with beta-ray monitors at these same 4 sites and at 10 sites of the Taiwan Air Quality Monitoring Network. PM sampling on a mobile air quality monitoring boat was further conducted along the coastline to collect offshore PM using a beta-ray monitor and a dichotomous sampler. Data obtained from the inland sites (n=12) and offshore sites (n=2) were applied to plot the PM10 concentration contour using Surfer software. This study also used a three-dimensional meteorological model (Pennsylvania State University/National Center for Atmospheric Research Meteorological Model 5) and the Comprehensive Air Quality Model with Extensions to simulate surface wind fields and spatial distribution of PM10 over the coastal region during the intensive sampling periods. Spatial distribution of PM10 concentration was further used in investigating the influence of SLBs on the transport of PM10 over the coastal region. Field measurement and model simulation results showed that PM10 was transported back and forth across the coastline. In particular, a high PM10 concentration was observed at the inland sites during the day because of sea breezes, whereas a high PM10 concentration was detected offshore at night because of land breezes. This study revealed that the accumulation of PM in the near-ocean region because of SLBs influenced the tempospatial distribution of PM10 over the coastal region.  相似文献   

15.
Ambient suspended particulate concentrations were measured at Tzu Yun Yen temple (120 degrees, 34('), 10(") E; 24 degrees, 16('), 12(") N) in this study. This is representative of incense burning and semi-open sampling sites. The Universal-sampler collected fine and coarse particle material was used to measure suspended particulate concentrations, and sampling periods were from 16/08/2001 to 2/1/2002 at Tzu Yun Yen temple. In addition, metallic element concentrations, compositions of PM(2.5) and PM(2.5-10) for incense burning at Tzu Yun Yen temple were also analyzed in this study. The PM(2.5)/PM(10) ratios ranged between 31% and 87% and averaged 70+/-11% during incense the burning period, respectively. The median metallic element concentration order for these elements is Fe>Zn>Cr>Cd>Pb>Mn>Ni>Cu in fine particles (PM(2.5)) at the Tzu Yun Yen temple sampling site. The median metallic element concentration order for these elements is Fe>Zn>Cr>Pb>Cd>Ni>Mn>Cu in coarse particle (PM(2.5-10)) at the Tzu Yun Yen temple sampling site. Fine particulates (PM(2.5)) are the main portion of PM(10) at Tzu Yun Yen temple in this study. From the point of view of PM(10), these data reflect that the elements Fe, Zn, and Cr were the major elements distributed at Tzu Yun Yen temple in this study.  相似文献   

16.
The ambient PM10 and PM2.5 data collected during the fall and winter portions of the 1995 Integrated Monitoring Study (IMS95) were used to conduct Chemical Mass Balance (CMB) Modeling to determine source contribution estimates. Data from the core and saturation monitoring sites provided an extensive database for evaluating the spatial and temporal variations of contributing sources. Geological sources dominated fall samples, while secondary ammonium nitrate and carbonaceous sources were the largest contributors for winter samples. Secondary ammonium nitrate concentrations were uniform across all sites during both the fall and winter. Site-to-site variability was primarily due to differences in geological contributions in the fall, and carbonaceous source contributions in the winter. During the winter, diurnal profiles of particulate matter (PM) were driven by variations in carbonaceous sources at urban sites, and by variations in secondary ammonium nitrate at rural sites. Although records of day-specific PM activities were recorded during the study, no correlation was observed between 24-h CMB results and specific activities. The ambient data collected during IMS95 was also used to evaluate the adequacy of the emissions inventory. Comparison of ambient and emissions based ratios of NMHC/NOx, PM/NOx, CO/NOx, and SOx/NOx suggested that emissions of NMHC and CO in some locations may be underestimated, while emissions for PM and SOx may be overestimated. Comparison of fractional primary CMB source contribution estimates to corresponding fractional emissions estimates indicated that geological sources were overemphasized in the inventory, while carbonaceous sources were underrepresented.  相似文献   

17.
Approximately 750 total suspended particulates (TSPs) and coarse particulate matter (PM10) filter samples from six urban sites and a background site and >210 source samples were collected in Jiaozuo City during January 2002 to April 2003. They were analyzed for mass and abundances of 25 chemical components. Seven contributive sources were identified, and their contributions to ambient TSP/PM10 levels at the seven sites in three seasons (spring, summer, and winter days) and a "whole" year were estimated by a chemical mass balance (CMB) receptor model. The spatial TSP average was high in spring and winter days at a level of approximately 530 microg/m(3) and low in summer days at 456 microg/m(3); however, the spatial PMo0 average exhibited little variation at a level of approximately 325 microg/m(3), and PM10-to-TSP ratios ranged from 0.58 to 0.81, which suggested heavy particulate matter pollution existing in the urban areas. Apportionment results indicated that geological material was the largest contributor to ambient TSP/PM10 concentrations, followed by dust emissions from construction activities, coal combustion, secondary aerosols, vehicle movement, and other industrial sources. In addition, paved road dust and re-entrained dust were also apportioned to the seven source types and found soil, coal combustion, and construction dust to be the major contributors.  相似文献   

18.
A comprehensive air quality modeling project was carried out to simulate regional source contributions to secondary and total (=primary + secondary) airborne particle concentrations in California's Central Valley. A three-week stagnation episode lasting from December 15, 2000 to January 7, 2001, was chosen for study using the air quality and meteorological data collected during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS). The UCD/CIT mechanistic air quality model was used with explicit decomposition of the gas phase reaction chemistry to track source contributions to secondary PM. Inert artificial tracers were used with an internal mixture representation to track source contributions to primary PM. Both primary and secondary source apportionment calculations were performed for 15 size fractions ranging from 0.01 to 10 μm particle diameters. Primary and secondary source contributions were resolved for fugitive dust, road dust, diesel engines, catalyst equipped gasoline engines, non-catalyst equipped gasoline engines, wood burning, food cooking, high sulfur fuel combustion, and other anthropogenic sources.Diesel engines were identified as the largest source of secondary nitrate in central California during the study episode, accounting for approximately 40% of the total PM2.5 nitrate. Catalyst equipped gasoline engines were also significant, contributing approximately 20% of the total secondary PM2.5 nitrate. Agricultural sources were the dominant source of secondary ammonium ion. Sharp gradients of PM concentrations were predicted around major urban areas. The relative source contributions to PM2.5 from each source category in urban areas differ from those in rural areas, due to the dominance of primary OC in urban locations and secondary nitrate in the rural areas. The source contributions to ultra-fine particle mass PM0.1 also show clear urban/rural differences. Wood smoke was found to be the major source of PM0.1 in urban areas while motor vehicle sources were the major contributor of PM0.1 in rural areas, reflecting the influence from two major highways that transect the Valley.  相似文献   

19.
We developed and tested a methodology to extract both the size-segregated source apportionment of atmospheric aerosol and the size distribution of each detected element. The experiment is based on the parallel use of a standard low-volume sampler to collect Particulate Matter (PM) and an Optical Particle Counter (OPC). The approach is complementary to size-segregated PM sampling, and it was tested versus a 12-stage cascade impactor. Samples were collected inside the urban area of Genoa (Italy) and their elemental composition was measured by Energy Dispersive-X Ray Fluorescence (ED-XRF). Positive Matrix Factorization (PMF) was applied to time series of elemental concentrations to identify major PM sources, and both PM mass concentration and size-segregated particle number concentration were apportioned. Source profiles and temporal trends extracted by PMF were analyzed together with the OPC data to obtain the size distribution for several elements. The new methodology proved to be reliable for the PM apportionment as well as in providing the elemental concentrations in PM10, PM2.5, and PM1 (PM with aerodynamic diameter, Dae < 10, 2.5, and 1 μm, respectively). The elemental size distributions are in good agreement with those obtained by the cascade impactor for several elements but some discrepancies, in particular for traffic emissions, are stressed and discussed in the text. The new methodology has two main advantages: it only requires standard semi-automatic sampling equipment and compositional analysis and it provides size-segregated information averaged over quite long periods (typically several months). This is particularly important since campaigns with cascade impactors are generally laborious and thus limited to short periods.  相似文献   

20.
Seasonal elemental carbon (EC) and organic carbon (OC) concentration levels in PM2.5 samples collected in Milan (Italy) are presented and discussed, enriching the world-wide database of carbonaceous species in fine particulate matter (PM). High-volume PM2.5 sampling campaigns were performed from August 2002 through December 2003 in downtown Milan at an urban background site. Compared to worldwide average concentrations, in Milan warm-season OC and both warm- and cold-season EC are relatively low; conversely, cold-season OC concentrations are rather high. Consequently, high values for the OC/EC ratio are observed, especially in the winter period. The relation between OC/EC ratio values and wind direction is investigated, pointing out that the highest ratios are associated to winds blowing from those nearby areas where wood consumption for domestic heating is larger. Information on the OC partitioning between its primary and secondary fraction are derived by means of the EC-tracer method and principal component analysis. In the warm-season, OC is mainly of secondary origin, secondary organic aerosol (SOA) accounting for about 84% of the particulate organic matter and 25–28% of the PM2.5 mass. For the cold season the full application of the EC-tracer method was not possible and the primary organic aerosol deriving from traffic could only be estimated. However, principal component analysis (PCA) suggest a prevailing primary origin for OC, thus raising the attention on space heating emissions, and on wood combustion in particular, for air quality control. The role of traffic emissions on PM2.5 concentration levels, as a primary source, are also assessed: EC and primary organic matter from traffic account for a warm-season 30% and a cold-season 7% of the total carbon in PM2.5, that is for about 10% and 6% of PM2.5 mass, respectively. This latter small primary contribution estimated for the cold-season points out that stationary sources, which were not thought to play a significant role on PM concentration levels, may conversely be as much responsible for ambient particulate pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号