首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, gaseous benzene, toluene, ethylbenzene, and o-xylene (BTEX) were extracted by passive needle trap samplers (NTS) using divinylbenzene (DVB) particles (mesh sizes 60–80, 80–100, and 100–120, respectively) as packed sorbents. An aspirating pump measured sampling flow rates of NTS, and the relations between BTEX mass and sampling flow rates were sufficient to maintain the extraction performance of these self-designed DVB-NTS. Furthermore, this investigation compared the extraction efficiency of NTS with that of the 100-µm polydimethylsiloxane solid-phase microextration (PDMS SPME) fiber when applied to sample heating products from electric-vaporization anti-mosquito mats, and the experimental results indicated that NTS effectiveness increased with decreasing adsorbent particle diameter. Substantially less mass of gaseous BTEX was extracted using 100-µm PDMS SPME fiber than with NTS of 100–120 mesh DVB for 60-min TWA sampling of anti-mosquito mats. The 100–120 mesh DVB-NTS primarily adsorbed 4.2 ng acetone, 13.3 ng dichloromethane, and 4.5–25.3 ng C10–C12 alkanes.
Implications: The needle trap sampler (NTS) has been evaluated to be a device for sampling heating products from electric-vaporization anti-mosquito mats. Based on the experimental results, this investigation assessed NTS as suitable for occupational and environmental health applications.  相似文献   

2.
Abstract

A simple data analysis method called the Tracer-Aerosol Gradient Interpretive Technique (TAGIT) is used to attribute particulate S and SO2 at Big Bend National Park in Texas and nearby areas to local and regional sources. Particulate S at Big Bend is of concern because of its effects on atmospheric visibility. The analysis used particulate S, SO2 , and perfluorocarbon tracer data from six 6-hr sampling sites in and near Big Bend National Park. The data were collected in support of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study; the field portion was conducted from July through October 1999. Perfluorocarbon tracer was released continuously from a tower at Eagle Pass, TX, approximately 25 km northeast of two large coal-fired power plants (Carbon I and II) in Coahuila, Mexico, and approximately 270 km east-southeast of Big Bend National Park.

The perfluorocarbon tracer did not properly represent the location of the emissions from the Carbon power plants for individual 6-hr sampling periods and attributed only 3% of the particulate S and 27% of the SO2 at the 6-hr sites in and near Big Bend to sources represented by the tracer. An alternative approach using SO2 to tag “local” sources such as the Carbon plants attributed 10% of the particulate S and 75% of the SO2 at the 6-hr sites to local sources. Based on these two approaches, most of the regional (65–86%) and a small fraction (19–31%) of the local SO2 was converted to particulate S. The analysis implies that substantial reductions in particulate S at Big Bend National Park cannot be achieved by only reducing emissions from the Carbon power plants; reduction of emissions from many sources over a regional area would be necessary.  相似文献   

3.
ABSTRACT

An electronically controlled lift system carrying a realtime particle monitor has been developed for sampling air sequentially, at different heights within the breathing zone. Data are automatically logged at the different receptor levels, for the determination of average vertical concentration profiles of airborne particulate matter. The system is easy to operate, portable, and easily extended to different heights or modified for use with other types of monitors (e.g., a portable CO analyzer). For measuring airborne particle concentrations, a Grimm Dust Monitor 1.104/5 was used. The results of trial runs, which were carried out indoors and in a relatively open semi-rural area, are presented, and applications of the kinetic sequential sampling (KSS) system are discussed.  相似文献   

4.
Abstract

In recent years, the utility industry has turned to bag-houses as an alternative technology for particulate emission control from pulverized-coal–fired power plants. One of the more significant issues is to improve poor gas distribution that causes bag failures in baghouse operation. Bag failures during operation are almost impossible to prevent, but proper flow design can help in their prevention. This study investigated vertical velocity profiles below the bags in a baghouse (the hopper region) to determine whether flow could be improved with the installation of flow distributors in the hopper region. Three types of flow distributors were used to improve flow distribution and were compared with the original baghouse without flow distributors. Velocity profiles were measured by a hot-wire anemometer at an inlet velocity of 18 m/sec. Uniformity of flow distribution was calculated by the uniformity value U for the velocity profile of each flow distributor. Experimental results showed that the velocity profile of the empty configuration (without flow distributors) was poor because the uniformity value was 2.048. The uniformity values of type 1 (flow distributor with three vertical vanes), type 2 (flow distributor with one vertical and one inclined vane), and type 3 (flow distributor with two inclined vanes) configurations were reduced to 1.051, 0.617, and 0.526, respectively. These results indicate that the flow distributors designed in this study made significant improvements in the velocity profile of a baghouse, with the type 3 configuration having the best performance.  相似文献   

5.
ABSTRACT

Routine air quality monitoring produces filter samples that, when analyzed, yield the total amount of the aerosol present in the volume of air drawn by the pump in the monitoring device during the given sampling period. From this we obtain an average concentration of the aerosol for the given duration. The samples are therefore really aggregate samples. A natural question then is “what is the effect of the duration of aggregation on the accuracy and precision of the estimate of the quantity of interest?” The answer depends on a number of factors, such as the quantity that is being estimated: a mean, or an extreme value, or some other quantity; the nature of the measurement error—additive versus multiplicative; the costs of laboratory analyses, and so on. In this paper, we investigate these issues when the interest is in estimating the mean concentration of a specified aerosol species over a fixed time period. In particular, we propose a method for determining a sampling duration that will yield the “best estimate” of the mean concentration for a given cost whenever appropriate statistical assumptions hold.  相似文献   

6.
An automated timed exposure diffusive sampler (TEDS) for sampling nitrogen dioxide (NO2) was developed for use in epidemiological studies. The TEDS sequentially exposes four passive sampling devices (PSD) by microprocessor controlled valves while a pump and air flow guide prevent sampler "starvation." Two TEDS units and two portable, real-time NO2 monitors were tested for accuracy, precision, sensitivity, and linearity of response. The accuracy of the TEDS was within 10 percent of the calibrated NO2 values, and precision was within 10 percent of the means of the measured values. The TEDS sensitivity was 20 to 30 ppb-hour for NO2. Co-location of the TEDS with a chemiluminescent NOX monitor (EPA reference method) showed similar responses to ambient NO2 (R2 = 0.9991). TEDS allows better time resolution than traditional diffusive samplers (i.e., Palmes tube) while sharing their ability to sample a variety of gases.  相似文献   

7.
ABSTRACT

On November 18, 1997, above-road particulate matter (PM) lidar (light detection and ranging) signals and heavy-duty (HD) and light-duty (LD) vehicle counts were simultaneously collected for 894 10-sec sampling periods at the Caldecott Tunnel in Orinda, CA, for the purpose of measuring the relative contributions of LD and HD vehicles to the PM lidar signal under real-world driving conditions. The relationship between the PM lidar signal and traffic activity (i.e., LD and HD traffic volumes) was examined using a time-series analysis technique, multilagged regression. The time-series model results indicate that the PM lidar signal in the current sampling period (PMt) depended on the level recorded in the previous three sampling periods (i.e., PMt-1, PMt-2, and PMt-3), the number of LD vehicles in the seventh past sampling period (LDt-7), and the number of HD vehicles measured 80 sec previous to the current sampling period (HDt-8). On a 10-sec period basis, the model results indicate that HD vehicles contributed, on average, 3 times more to above-road PM li-dar signals than did LD vehicles. The observed lag in the relationship between vehicle types and the lidar signal 20 m above the road suggests that resuspended road dust, rather than tailpipe exhaust emissions, was the main source of the detected PM. Detection of road dust at such heights above the road suggests the need for investigating the processes governing the vertical transport and recycling of PM over the road as a function of vehicle dynamics under a range of meteorological conditions.  相似文献   

8.
Abstract

During an 18‐month (1994–1995) survey of the surface water in an Atlantic Coastal Plain watershed, metolachlor was most frequently detected during storm flow events. Therefore, a sampling procedure, focused on storm flow, was implemented in June of 1996. During 1996, three tropical cyclones made landfall within 150 km of the watershed. These storms, as well as several summer thunderstorms, produced six distinct storm flow events within the watershed. Metolachlor was detected leaving the watershed during each event. In early September, Hurricane Fran produced the largest storm flow event and accounted for the majority of the metolachlor exports. During the storm event triggered by Hurricane Fran, the highest daily average flow (7.5 m2 s‐1) and highest concentration (5.1 μg L‐1) ever measured at the watershed outlet were recorded. Storm flow exports leaving the watershed represented 0.1 g ha‐1 or about 0.04% of active ingredient applied.  相似文献   

9.
This study investigates the application of the Aerosol-to-Liquid Particle Extraction System (ALPXS), which uses wet electrostatic precipitation to collect airborne particles, for multi-element indoor stationary monitoring. Optimum conditions are determined for capturing airborne particles for metal determination by inductively coupled plasma–mass spectrometry (ICP-MS), for measuring field blanks, and for calculating limits of detection (LOD) and quantification (LOQ). Due to the relatively high flow rate (300 L min?1), a sampling duration of 1 hr to 2 hr was adequate to capture airborne particle-bound metals under the investigated experimental conditions. The performance of the ALPXS during a building renovation demonstrated signal-to-noise ratios appropriate for sampling airborne particles in environments with elevated metal concentrations, such as workplace settings. The ALPXS shows promise as a research tool for providing useful information on short-term variations (transient signals) and for trapping particles into aqueous solutions where needed for subsequent characterization. As the ALPXS does not provide size-specific samples, and its efficiency at different flow rates has yet to be quantified, the ALPXS would not replace standard filter-based protocols accepted for regulatory applications (e.g., exposure measurements), but rather would provide additional information if used in conjunction with filter based methods.
ImplicationsThis study investigates the capability of the Aerosol-to-Liquid Particle Extraction System (ALPXS) for stationary sampling of airborne metals in indoor workplace environments, with subsequent analysis by ICP-MS. The high flow rate (300 L/min) permits a short sampling duration (< 2 hr). Results indicated that the ALPXS was capable of monitoring short-term changes in metal emissions during a renovation activity. This portable instrument may prove to be advantageous in occupational settings as a qualitative indicator of elevated concentrations of airborne metals at short time scales.  相似文献   

10.
Particulate matter (PM) sources at four different monitoring sites in Alexandra, New Zealand, were investigated on an hourly timescale. Three of the sites were located on a horizontal transect, upwind, central, and downwind of the general katabatic flow pathway. The fourth monitoring site was located at the central site, but at a height of 26 m, using a knuckleboom, when wind conditions permitted. Average hourly PM10 (PM with an aerodynamic diameter <10 μm) concentrations in Alexandra showed slightly different diurnal profiles depending on the sampling site location. Each location did, however, feature a large evening peak and smaller morning peak in PM10 concentrations. The central site in Alexandra experienced the highest PM10 concentrations as a result of PM transport along a number of katabatic flow pathways. A significant difference in PM10 concentrations between the central and elevated sites indicated that a shallow inversion layer formed below the elevated site, limiting the vertical dispersion of pollutants. Four PM10 sources were identified at each of the sites: biomass combustion, vehicles, crustal matter, and marine aerosol. Biomass combustion was identified as the most significant source of PM10, contributing up to 91% of the measured PM10. Plots of the average hourly source contributions to each site revealed that biomass combustion was responsible for both the evening and morning peaks in PM10 concentrations observed at each of the sites, suggesting that Alexandra residents were relighting their fires when they rose in the morning. The identification of PM sources on an hourly timescale can have significant implications for air quality management.
Implications: Monitoring the sources of PM10 on an hourly timescale at multiple sites within an airshed provides extremely useful information for air quality management. Sources responsible for observed peaks in measured diurnal PM10 concentration profiles can be easily identified and targeted for reduction. Also, hourly PM10 sampling can provide crucial information on the role meteorology plays in the development of elevated PM10 concentrations.  相似文献   

11.
Abstract

This study investigated the relationships between meteorological data, pollution sources, and receptors over northern Taiwan. During the intensive sampling period in summer 1992, the weather was controlled predominantly by a Pacific subtropical high and by Typhoon Mark. During the other intensive sampling period in winter 1993, while a cold frontal system approached Taiwan, the northeasterly winds prevailed most of the time. The local circulation such as land-sea breeze only developed under weak synoptic environment. Particle concentrations and element composition in winter were higher than in summer. This can be attributed to the high convection of air mass, which leads to the vertical dispersion of pollutants in summer. In addition to the subtropical high pressure, typhoons are frequently accompanied with high-wind speeds and unstable weather conditions that also dilute and eliminate the pollutants. In winter, the prevailing northeasterlies might carry pollutants from Midland China. Furthermore, the anticyclone system develops a stagnant condition that easily leads to pollutant accumulation. In this case, the wind direction affected the source contribution of the receptor and the PM10 displays a higher correlation with coarse and fine particulate than meteorological parameters in summer. In addition, the mixing height shows a high correlation with PM10 in winter.  相似文献   

12.
ABSTRACT

Project MOHAVE was a major monitoring, modeling, and data analysis study whose objectives included the estimation of the contributions of the Mohave Power Project (MPP) and other sources to visibility impairment in the southwestern United States, in particular at Grand Canyon National Park. A major element of Project MOHAVE was the release of perfluorocarbon tracers at MPP and other locations during 50-day summer and 30-day winter intensive study periods. Tracer data (from about 30 locations) were sequestered until several source and receptor models were used to predict tracer concentrations. None of the models was successful in predicting the tracer concentrations; squared correlation coefficients between predicted and measured tracer were all less than 0.2, and most were less than 0.1.  相似文献   

13.
Abstract

The vertical distribution of diazinon in air was measured for 35 days after a label‐prescribed crack and crevice application. Residue levels were higher at floor level than at chest and ceiling heights on day 0, but levels tended to equalize by 7 days. Concentrations were greater at chest and ceiling levels on days 14 and 21, but were equivalent on days 28 and 35. Residues in the adjacent, upper and lower rooms generally were equivalent at all sampling positions and maximum residues occurred in these rooms, and in three other rooms on the same floor level as the treated room, 3 days after application. Low but measurable residues were found in air samples 35 days after application, which indicates that low concentrations of relatively nonpersistent diazinon will remain within structures protected from direct sunlight and ventilation for several weeks.  相似文献   

14.

Nitrate is a worldwide pollutant in aquifers. Shallow aquifer nitrate concentrations generally display vertical stratification, with a maximum concentration immediately below the water level. The concentration then gradually decreases with depth. Different techniques can be used to highlight this stratification. The paper aims at comparing the advantages and limitations of three open hole multilevel sampling techniques (packer system, dialysis membrane samplers and bailer), chosen on the base of a literary review, to highlight a nitrate vertical stratification under the assumption of (sub)horizontal flow in the aquifer. The sampling systems were employed at three different times of the year in a shallow aquifer piezometer in northern Italy. The optimal purge time, equilibration time and water volume losses during the time in the piezometer were evaluated. Multilevel techniques highlighted a similar vertical nitrate stratification, present throughout the year. Indeed, nitrate concentrations generally decreased with depth downwards, but with significantly different levels in the sampling campaigns. Moreover, the sampling techniques produced different degrees of accuracy. More specifically, the dialysis membrane samplers provided the most accurate hydrochemical profile of the shallow aquifer and they appear to be necessary when the objective is to detect the discontinuities in the nitrate profile. Bailer and packer system showed the same nitrate profile with little differences of concentration. However, the bailer resulted much more easier to use.

  相似文献   

15.
ABSTRACT

A multi-system, high-volume, parallel plate diffusion dénuder Brigham Young University Organic Sampling System (BIG BOSS) was tested using collocated samplers at the Pico Rivera Monitoring Station of the South Coast Air Quality Management District, South Coast Air Basin, in September 1994. Six-hr daytime and 9-hr nighttime samples were collected with a flow of about 200 L/min through each of the three systems designed to collect particles smaller than 2.5, 0.8, and 0.4 mm in a diffusion denuder sampler. Efficiency for the removal of gas phase organic compounds by the diffusion denuder was evaluated using both theoretical predictions and field measurements. Both measured and calculated data indicate high denuder efficiency for the removal of gas phase aromatic and paraffinic compounds. The precision of the BIG BOSS was evaluated using collocated samplers. The precision of determination of total carbon and elemental carbon retained by a quartz filter or of semi-volatile carbonaceous material lost from particles during sampling averaged ±7%. The precision of determination of individual organic compounds averaged ±10%. An average of 42 and 62% of the particulate organic material was semi-volatile organic compounds (SVOCs) lost from particles during sampling for daytime and nighttime samples, respectively. This “negative” sampling artifact was an order of magnitude larger than the “positive” quartz filter artifact due to adsorption of gas phase organic material. Daytime concentrations of fine particulate elemental carbon and nonvolatile organic carbon were higher than nighttime concentrations, but nighttime fine particles contained more semi-volatile organic material than daytime.  相似文献   

16.
Volatile organic compounds can contribute to the failure of electronic equipment in both switching offices and data centers. They can also be useful indicators of ventilation needs. Only within the past decade have ambient concentrations of volatile organics been measured routinely. In standard sampling approach, a pump is used to pull a known volume of air through an adsorbent. This study examines a sampling procedure that does not use a pump, but instead depends on molecular diffusion for eventual contact between the vapor phase compounds and the charcoal sorbent (passive sampling). The technique is both simpler and less expensive than active sampling with a pump. This method has been validated for low-level sampling over extended time intervals. This study demonstrates that collected amounts vary linearly with airborne concentrations for sampling intervals in excess of four weeks: even after eight weeks of sampling at typical ambient concentrations, the amount of material collected does not approach the capacity of the sorbent. The method is applicable for concentrations spanning six orders of magnitude; reproducibility averages 13 percent of the mean value; and the sensitivity is excellent (0.06 μg/m3 or roughly 0.015 ppbv for a compound with a molecular weight of 100). The procedure has already been used successfully to monitor indoor air quality at almost a dozen telephone office and data center sites.  相似文献   

17.
Vertical profiling with point samplers is an accepted method for quantifying the fluxes of PM10 from non-point fugitive dust sources, but is limited by uncertainty in estimates of the actual height of the dust plume, especially for plumes that exceed the highest sampling height. Agricultural land preparation operations in the San Joaquin Valley were monitored using upwind–downwind vertical PM10 profiles and data collected during the first successful experiment to include light detection and ranging (lidar), in 1998, were analyzed to provide modeling criteria for the 1996 and 1997 data. A series of six comprehensive PM10 tests with concurrent lidar data was examined to: (a) develop a framework for analyzing upwind–downwind point PM10 concentration profiles of land preparation operations (disking, listing, root cutting, and ripping) and (b) identify conditions under which the field sampling strategies affect the reproducibility of PM10 concentration measurements. Lidar data were used to verify that the plume heights and shapes extrapolated from the point sampler vertical profiles adequately described the plumes. The shortcomings of the vertical profiling technique and lidar methods are discussed in the light of developing efficient robust methods for accurate PM10 emissions quantification from complex non-point sources.  相似文献   

18.
Abstract

An approach for measuring point-source emissions of volatile organic compounds (VOCs), acidic vapors, and other species is presented. The amount emitted is determined by directly measuring the actual weight gain of an adsorbent bed over a period of time, which is a cumulative rather than a grabbed sample. As a result, wide fluctuations of concentration and erratic flow behavior during sampling are accommodated with no apparent effect on the accuracy of the measured emission rate. The emission rate is determined by a mass balance including the mass change of the sorbent, as well as the influent and effluent humidities.

Validation tests used a known mass flow rate of vapor in a carrier gas, which was compared with the amount measured. The vapor was a single VOC, a mixture of VOCs, or a mixture of a VOC with water. Conditions studied were the compound or mixture of compounds, concentration, carrier gas, flow rate, and adsorbent. In some tests the VOC was admitted intermittently. The VOCs included n-hexane, acetone, toluene, vinyl acetate, and 1,1,1 trichloroethane. For 105 tests, the average absolute discrepancy of the delivered and measured emission rates was 6.8% and the standard deviation was 3.4%.  相似文献   

19.
Abstract

Screening of poultry flocks for foodborne pathogen Salmonella contamination is critical for Salmonella control in preharvest stages of poultry production. In this study, two sampling methods (litter and air filter) were compared for detection of S. typhimurium from experimentally infected chicks some of which had received either a probiotic competitive exclusion culture or transfer of cecal contents from salmonellae‐free adult birds. At 4, 9, and 11 days after inoculation, S. typhimurium samples were enumerated by selective plating. For both types of sampling, the control birds yielded the greatest levels of environmental contamination followed by the samples from the probiotic inoculated birds with the birds receiving the cecal transfer culture having the lowest levels of contamination. Although the two sampling methods responded in a similar fashion, detection sensitivity needs to be increased for air filter sampling.  相似文献   

20.
ABSTRACT

Step tracer tests were carried out on lab-scale biofilters to determine the residence time distributions (RTDs) of gases passing through two types of biofilters: a standard biofilter with vertical gas flow and a modified biofilter with horizontal gas flow. Results were used to define the flow patterns in the reactors. “Non-ideal flow” indicates that the flow reactors did not behave like either type of ideal reactor: the perfectly stirred reactor [often called a "continuously stirred tank reactor" (CSTR)] or the plug-flow reactor.

The horizontal biofilter with back-mixing was able to accommodate a shorter residence time without the usual requirement of greater biofilter surface area for increased biofiltration efficiency. Experimental results indicated that the first bed of the modified biofilter behaved like two CSTRs in series, while the second bed may be represented by two or three CSTRs in series. Because of the flow baffles used in the horizontal biofilter system, its performance was more similar to completely mixed systems, and hence, it could not be modeled as a plug-flow reactor. For the standard biofilter, the number of CSTRs was found to be between 2 and 9 depending on the airflow rate. In terms of NH3 removal efficiency and elimination capacity, the standard biofilter was not as good as the modified system; moreover, the second bed of the modified biofilter exhibited greater removal efficiency than the first bed. The elimination rate increased as biofilter load increased. An opposite trend was exhibited with respect to removal efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号