首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Although it has long been recognized that road and building construction activity constitutes an important source of particulate matter (PM) emissions throughout the United States, until recently only limited research has been directed to its characterization. This paper presents the results of PM10 and PM2.5 (particles ≤10 μm and ≤2.5 μm in aerodynamic diameter, respectively) emission factor development from the onsite testing of component operations at actual construction sites during the period 1998 –2001. Much of the testing effort was directed at earthmoving operations with scrapers, because earthmoving is the most important contributor of PM emissions across the construction industry. Other sources tested were truck loading and dumping of crushed rock and mud and dirt carryout from construction site access points onto adjacent public paved roads. Also tested were the effects of watering for control of scraper travel routes and the use of paved and graveled aprons at construction site access points for reducing mud and dirt carryout. The PM10 emissions from earthmoving were found to be up to an order of magnitude greater than predicted by AP-42 emission factors drawn from other industries. As expected, the observed PM2.5:PM10 emission factor ratios reflected the relative importance of the vehicle exhaust and the resuspended dust components of each type of construction activity. An unexpected finding was that PM2.5 emissions from mud and dirt carryout were much less than anticipated. Finally, the control efficiency of watering of scraper travel routes was found to closely follow a bilinear moisture model.  相似文献   

2.
The body of information presented in this paper is directed to researchers in stack testing methodology and to those concerned with reduction of emissions through equipment upgrading programs. Extensive testing was done using the U.S. Environmental Protection Agency’s Method 5 stack sampling train to obtain emission factors for existing apartment house boilers and incinerators in the City of New York. In addition to calculating emission factors, stack emission data were examined to compare results of simultaneous emission tests and to compare the dry particulate catch of the sampling train with the total particulate catch which included the impinger catch. Conclusions reached as a result of the testing were that published emission factors for boilers burning moderately high-sulfur residual oil are applicable to New York City boilers burning low-sulfur residual oil. In addition, it was found that the back half of the sampling train—the impinger section—collects a relatively constant amount of material when sampling oil-fired boilers. This may be due to absorption of S02 and S03 in the impingers and the subsequent formation of sulfuric acid. Comparison of simultaneous boiler tests indicated that the sampling train may be sensitive to variations in operating personnel, sampling conditions, and boiler operation. From tests of on-site incinerators, it was determined that previously published emission factors may be too high for well maintained and properly operated incinerators. The back half particulate catch was found to be relatively large which may have resulted from condensation of unburned organics from the burning waste material.  相似文献   

3.
Open sources are those stationary sources of air pollution too great in extent to be controlled through enclosure or ducting. Open sources of atmospheric particles include: wind erosion, tilling, and prescribed burning of agricultural cropland; surface mining and wind erosion of tailings piles; vehicular travel on both paved and unpaved roads; construction site activity; and forest fires. It is estimated that in 1976 the total open source emissions of particles in the U.S. amounted to over 580 × 106 ton. These estimates indicate that emissions from the two largest open source classes, travel on unpaved roads and agricultural wind erosion, accounted for 86% of this total. The open source emissions in ten states (AZ, CA, KS, MN, MT, NM, ND, OH, SD, TX) contributed 6 2% of the national emissions for 1976.  相似文献   

4.
Conventional types of municipal incinerators generate enormous quantities of stack gas because of high excess air and high temperatures. Under these conditions the size and cost of equipment to clean the flue gas to low dust contents are large. By burning the refuse in boiler furnaces at low excess air, and generating steam, the volume of flue gas to be cleaned is reduced to a minimum. Where high efficiency of flue-dust collection is required, steam generation from refuse firing permits a major saving on the cost of dust collection.  相似文献   

5.
6.
ABSTRACT

Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture.

IMPLICATIONS There has been an increased usage of stationary diesel engines, especially backup power generators to meet the growing energy demand. Biodiesel derived from waste cooking oil has received increasing attention as an alternative fuel. However, data are only sparsely available in the literature on particulate emissions from stationary engines, fueled with blends of diesel and biodiesel. This study provides insights into the influence of waste-cooking-oil-derived biodiesel on engine performance and the particulate emissions from a stationary engine. The results of the study form a scientific basis to evaluate the impact of biodiesel emissions on the environment and human health.  相似文献   

7.
This paper summarizes the methodology developed to analyze alternative oxidant control strategies of the 1979 Air Quality Plan for the San Francisco Bay Area. The analysis of alternative oxidant control strategies is a complex task, particularly when a grid-based photochemical model is the primary analysis tool. To handle quantitatively spatial and temporal variations in emissions under both existing and projected future conditions, as well as to simulate the effects of a wide variety of control strategies, a system of computer-based models was assembled. The models projected and distributed a number of variables in space and time: population, employment, housing, land use, transportation, emissions, and air quality. Given time and budget constraints, an approach to maximizing the information return from a limited number of model runs was developed. The system was applied in three sequences to determine (1) what future air quality would be if no further controls were implemented, (2) the degree of hydrocarbon and NOx emission control necessary to attain the oxidant standard, and (3) the effectiveness of alternative stationary source, mobile source, transportation and land use control strategies in contributing to attainment and maintenance of the oxidant standard.

A number of significant modeling assumptions had to be developed in order properly to interpret the modeled results in the context of the oxidant standard. In particular, a Larsen-type analysis was used to relate modeled atmospheric conditions to “worst case” conditions, and a proportional assumption was made to compensate model results for an imperfect validation. The specification of initial and boundary conditions for future year simulations was found to be a problem in need of further research.  相似文献   

8.
9.
Abstract

Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions.  相似文献   

10.
Abstract

Emissions inventories of fine particulate matter (PM2.5) were compared with estimates of emissions based on data emerging from U.S. Environment Protection Agency Particulate Matter Supersites and other field programs. Six source categories for PM2.5 emissions were reviewed: on-road mobile sources, nonroad mobile sources, cooking, biomass combustion, fugitive dust, and stationary sources. Ammonia emissions from all of the source categories were also examined. Regional emissions inventories of PM in the exhaust from on-road and nonroad sources were generally consistent with ambient observations, though uncertainties in some emission factors were twice as large as the emission factors. In contrast, emissions inventories of road dust were up to an order of magnitude larger than ambient observations, and estimated brake wear and tire dust emissions were half as large as ambient observations in urban areas. Although comprehensive nationwide emissions inventories of PM2.5 from cooking sources and biomass burning are not yet available, observational data in urban areas suggest that cooking sources account for approximately 5–20% of total primary emissions (excluding dust), and biomass burning sources are highly dependent on region. Finally, relatively few observational data were available to assess the accuracy of emission estimates for stationary sources. Overall, the uncertainties in primary emissions for PM2.5 are substantial. Similar uncertainties exist for ammonia emissions. Because of these uncertainties, the design of PM2.5 control strategies should be based on inventories that have been refined by a combination of bottom-up and top-down methods.  相似文献   

11.
ABSTRACT

Recent awareness of suspected adverse health effects from ambient particulate matter (PM) emission has prompted publication of new standards for fine PM with aerodynamic diameter less than 2.5 μm (PM2.5). However, scientific data on fine PM emissions from various point sources and their characteristics are very limited. Source apportionment methods are applied to identify contributions of individual regional sources to tropospheric particulate concentrations. The existing industrial database developed using traditional source measurement techniques provides total emission rates only, with no details on chemical nature or size characteristics of particulates. This database is inadequate, in current form, to address source-receptor relationships.

A source dilution system was developed for sampling and characterization of total PM, PM2.5, and PM10 (i.e., PM with aerodynamic diameter less than 10 μm) from residual oil and coal combustion. This new system has automatic control capabilities for key parameters, such as relative humidity (RH), temperature, and sample dilution. During optimization of the prototype equipment, three North American coal blends were burned using a 0.7-megawatt thermal (MWt) pulverized coal-fired, pilot-scale boiler. Characteristic emission profiles, including PM2.5 and total PM soluble acids, and elemental and carbon concentrations for three coal blends are presented.  相似文献   

12.
Abstract

Although the fugitive dust associated with construction mud/dirt carryout can represent a substantial portion of the particulate matter (PM) emissions inventory in non-attainment areas, it has not been well characterized by direct sampling methods. In this paper, a research program is described that directly determined both PM10 and PM2.5 (particles ≤10 and 2.5 μm in classical aerodynamic diameter, respectively) emission factors for mud/dirt carryout from a major construction project located in metropolitan Kansas City, MO. The program also assessed the contribution of automotive emissions to the total PM2.5 burden and determined the baseline emissions from the test road. As part of the study, both time-integrated and continuous exposure-profiling methods were used to assess the PM emissions, including particle size and elemental composition. This research resulted in overall PM10 and PM2.5 emission factors of 6 and 0.2 g/vehicle, respectively. Although PM10 is within the range of prior U.S. Environmental Protection Agency (EPA) guidance, the PM2.5 emission factor is far lower than previous estimates published by EPA. In addition, based on both the particle size and chemical data obtained in the study, a major portion of the PM2.5 emissions appears to be attributable to automotive exhaust from light-duty, gasoline-powered vehicles and not to the fugitive dust associated with re-entrained mud/dirt carryout.  相似文献   

13.
ABSTRACT

This paper describes efforts to reduce particulate matter (PM) emissions from restaurant operations, including application of an existing control method to a new equipment type. Commercial charbroiling in the South Coast Air Basin results in emissions of approximately 10 tons/day of fine particulate matter (PM2.5) and 1.3 tons/day of volatile organic compounds (VOCs). Over a seven-year period, the South Coast Air Quality Management District worked with industry to develop test methods for measuring emissions from various cooking operations, evaluate control technologies, and develop a rule to reduce these emissions.

Of the two basic types of charbroilers—chain-driven and underfired—underfired produce four times the emissions when equivalent amounts of product are cooked. Cost-effective control technology is currently available only for chain-driven charbroilers. The application of flameless catalytic oxidizers to chain-driven charbroilers was found to effectively reduce emissions by at least 83% and is cost-effective. The catalysts have been used worldwide at restaurants for several years. Research efforts are underway to identify control options for underfired charbroilers.

Implementation of Rule 1138, Control of Emissions from Restaurant Operations, adopted November 14, 1997, will result in reductions of 0.5 tons/day of PM2.5 and 0.2 tons/day of VOCs. Future rules will result in reductions from underfired charbroilers and possibly other restaurant equipment when cost-effective solutions are available.  相似文献   

14.
A linear relationship has been found between oxygen usage and particulate mass emission rate for a basic open hearth furnace. Particulate emissions were found to pass through a minimum at 50% hot metal addition to the furnace which also corresponded to minimum oxygen consumption. Number 2 dealer scrap and hot metal addition were found to have a secondary effect on the particulate emissions. Variation of number 2 dealer scrap from 0 to 15% of the charge and hot metal from 10 to 70% resulted in a maximum 44% increase in particulate emissions. Aerodynamic particle size distributions for all heats and within heats were relatively invariant with an average mass median diameter of 1.4µ  相似文献   

15.
Abstract

This paper presents an experimental study of calcium bisulfite oxidation, a key step in the wet limestone-gypsum flue gas desulfurization (FGD) process, in the presence of catalysts (e.g., cobalt ions and a mixture of ferrous and cobalt ions). A fundamental approach is followed, by reproducing a simplified synthetic FGD liquor in which both catalyst ions, alone or mixed together, are present. A laboratory-scale apparatus is used, in which sulfurous solution is contacted with a gas phase at a fixed oxygen partial pressure (21.3 kPa) and at different temperature levels (25, 45, and 55 °C). The experimental results are analyzed using the theory of gas-liquid mass transfer with chemical reaction, showing that the slow reaction regime is explored and the transition from the kinetic to the diffusional subregime is identified. The experimental results are compared with those obtained in the presence of other catalytic species (manganese and ferrous ions), showing that cobalt is effective in catalyzing the oxidation of calcium bisulfite to sulfate, but to a minor extent with respect to iron and manganese.  相似文献   

16.
Abstract

Waste distribution and compaction at the working face of municipal waste landfills releases mercury vapor (Hg0) to the atmosphere, as does the flaring of landfill gas. Waste storage and processing before its addition to the landfill also has the potential to release Hg0 to the air if it is initially present or formed by chemical reduction of HgII to Hg0 within collected waste. We measured the release of Hg vapor to the atmosphere during dumpster and transfer station activities and waste storage before landfilling at a municipal landfill operation in central Florida. We also quantified the potential contribution of specific Hg-bearing wastes, including mercury (Hg) thermometers and fluorescent bulbs, and searched for primary Hg sources in sorted wastes at three different landfills. Surprisingly large fluxes were estimated for Hg losses at transfer facilities (~100 mg/hr) and from dumpsters in the field (~30 mg/hr for 1,000 dumpsters), suggesting that Hg emissions occurring before landfilling may constitute a significant fraction of the total emission from the disposal/landfill cycle and a need for more measurements on these sources. Reducing conditions of landfill burial were obviously not needed to generate strong Hg0 signals, indicating that much of the Hg was already present in a metallic (Hg0) form. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg0, the entire waste mass acts as a source. Broken fluorescent bulbs and thermometers in dumpsters emitted Hg0 at 10 to >100 μg/hr and continued to act as near constant sources for several days.  相似文献   

17.
Abstract

In this study, experiments were performed with a bench-scale tube-type wet electrostatic precipitator (wESPs) to investigate its effectiveness for the removal of mass- and number-based diesel particulate matter (DPM), hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) from diesel exhaust emissions. The concentration of ozone (O3) present in the exhaust that underwent a nonthermal plasma treatment process inside the wESP was also measured. A nonroad diesel generator operating at varying load conditions was used as a stationary diesel emission source. The DPM mass analysis was conducted by means of isokinetic sampling and the DPM mass concentration was determined by a gravimetric method. An electrical low-pressure impactor (ELPI) was used to quantify the DPM number concentration. The HC compounds, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs) were collected on a moisture-free quartz filter together with a PUF/XAD/PUF cartridge and extracted in dichloromethane with sonication. Gas chromatography (GC)/mass spectroscopy (MS) was used to determine HC concentrations in the extracted solution. A calibrated gas combustion analyzer (Testo 350) and an O3 analyzer were used for quantifying the inlet and outlet concentrations of CO and NOx (nitric oxide [NO] + nitrogen dioxide [NO2]), and O3 in the diesel exhaust stream. The wESP was capable of removing approximately 67–86% of mass- and number-based DPM at a 100% exhaust volumetric flow rate generated from 0- to 75-kW engine loads. At 75-kW engine load, increasing gas residence time from approximately 0.1 to 0.4 sec led to a significant increase of DPM removal efficiency from approximately 67 to more than 90%. The removal of n-alkanes, 16 PAHs, and CO in the wESP ranged from 31 to 57% and 5 to 38%, respectively. The use of the wESP did not significantly affect NOx concentration in diesel exhaust. The O3 concentration in diesel exhaust was measured to be less than 1 ppm. The main mechanisms responsible for the removal of these pollutants from diesel exhaust are discussed.  相似文献   

18.
Abstract

The gaseous and nonvolatile particulate matter (PM) emissions of two T56-A-15 turboprop engines of a C-130H aircraft stationed at the 123rd Airlift Wing in the Kentucky Air National Guard were characterized. The emissions campaign supports the Strategic Environmental Research and Development Program (SERDP) project WP-1401 to determine emissions factors from military aircraft. The purpose of the project is to develop a comprehensive emissions measurement program using both conventional and advanced techniques to determine emissions factors of pollutants, and to investigate the spatial and temporal evolutions of the exhaust plumes from fixed and rotating wing military aircraft. Standard practices for the measurement of gaseous emissions from aircraft have been well established; however, there is no certified methodology for the measurement of aircraft PM emissions. In this study, several conventional instruments were used to physically characterize and quantify the PM emissions from the two turboprop engines. Emissions samples were extracted from the engine exit plane and transported to the analytical instrumentation via heated lines. Multiple sampling probes were used to assess the spatial variation and obtain a representative average of the engine emissions. Particle concentrations, size distributions, and mass emissions were measured using commercially available aerosol instruments. Engine smoke numbers were determined using established Society of Automotive Engineers (SAE) practices, and gaseous species were quantified via a Fourier-transform infrared-based gas analyzer. The engines were tested at five power settings, from idle to take-off power, to cover a wide range of operating conditions. Average corrected particle numbers (PNs) of (6.4–14.3) × 107 particles per cm3 and PN emission indices (EI) from 3.5 × 1015 to 10.0 × 1015 particles per kg-fuel were observed. The highest PN EI were observed for the idle power conditions. The mean particle diameter varied between 50 nm at idle to 70 nm at maximum engine power. PM mass EI ranged from 1.6 to 3.5 g/kg-fuel for the conditions tested, which are in agreement with previous T56 engine measurements using other techniques. Additional PM data, smoke numbers, and gaseous emissions will be presented and discussed.  相似文献   

19.
Studies were made over a 3 year period to evaluate the EPA Method 5 manual particulate sampling procedure in the forest products industry through laboratory and field studies. Results of the study showed that several modifications could be made to improve the performance and suitability of the method for routine source particulate measurements. Physical system changes included the use of a Teflon-lined umbilical cord to the collection system. Procedure changes included changing the isokinetic sampling rate variations to ±20% for emission sources where the particles were smaller than three micrometers in aerodynamic diameter, purging the impinger solutions with an inert gas immediately following collection, and separate evaporation of impinger organics and inorganics at 25 °C and 105°C, respectively. Calculation changes included inclusion of impinger-caught particulate and separate consideration of inorganic and organic particulates.  相似文献   

20.
Abstract

In response to community concerns, the air quality impact of imploding a 22-story building in east Baltimore, MD, was studied. Time- and space-resolved concentrations of indoor and outdoor particulate matter (PM) (nominally 0.5–10 µm) were measured using a portable nephelometer at seven and four locations, respectively. PM10 levels varied in time and space; there was no measurable effect observed upwind of the implosion. The downwind peak PM10 levels varied with distance (54,000–589 µg/m3) exceeding pre-implosion levels for sites 100 and 1130 m 3000- and 20-fold, respectively. Estimated outdoor 24-hr integrated mass concentrations varied from 15 to 72 µg/m3. The implosion did not result in the U.S. Environmental Protection Agency (EPA) National Ambient Air Quality Standard (NAAQS) for PM10 being exceeded. X-ray fluorescence analysis indicated that the elemental composition was dominated by crustal elements: calcium (57%), silicon (23%), aluminum (7.6%), and iron (6.1%). Lead was above background but at a low level (0.17 µg/m3). Peak PM10 concentrations were short-lived; most sites returned to background within 15 min. No increase in indoor PM10 was observed even at the most proximate 250 m location. These results demonstrate that a building implosion can have a severe but short-lived impact on community air quality. Effective protection is offered by being indoors or upwind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号