首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Inhalation transfer factors for air pollution health risk assessment   总被引:1,自引:0,他引:1  
To facilitate routine health risk assessments, we develop the concept of an inhalation transfer factor (ITF). The ITF is defined as the pollutant mass inhaled by an exposed individual per unit pollutant mass emitted from an air pollution source. A cumulative population inhalation transfer factor (PITF) is also defined to describe the total fraction of an emitted pollutant inhaled by all members of the exposed population. In this paper, ITFs and PITFs are calculated for outdoor releases from area, point, and line sources, indoor releases in single zone and multizone indoor environments, and releases within motor vehicles. Typical PITFs for an urban area from emissions outdoors are approximately 10(-6)-10(-3). PITFs associated with emissions in buildings or in moving vehicles are typically much higher, approximately 10(-3)-10(-1).  相似文献   

2.
ABSTRACT

The concentrations of contaminants in the supply air of mechanically ventilated buildings may be altered by pollutant emissions from and interactions with duct materials. We measured the emission rate of volatile organic compounds (VOCs) and aldehydes from materials typically found in ventilation ducts. The emission rate of VOCs per exposed surface area of materials was found to be low for some duct liners, but high for duct sealing caulk and a neo-prene gasket. For a typical duct, the contribution to VOC concentrations is predicted to be only a few percent of common indoor levels. We exposed selected materials to ~100-ppb ozone and measured VOC emissions. Exposure to ozone increased the emission rates of aldehydes from a duct liner, duct sealing caulk, and neoprene gasket. The emission of aldehydes from these materials could increase indoor air concentrations by amounts that are as much as 20% of odor thresholds. We also measured the rate of ozone uptake on duct liners and galvanized sheet metal to predict how much ozone might be removed by a typical duct in ventilation systems. For exposure to a constant ozone mol fraction of 37 ppb, a lined duct would initially remove ~9% of the ozone, but over a period of 10 days the ozone removal efficiency would diminish to less than 4%. In an unlined duct, in which only galvanized sheet metal is exposed to the air-stream, the removal efficiency would be much lower, ~0.02%. Therefore, ducts in ventilation systems are unlikely to be a major sink for ozone.  相似文献   

3.
Airborne carbonyls were characterized from emitted indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. Eleven of 19 types of samples (58%) demonstrated formaldehyde concentrations higher than the World Health Organization exposure limit (a 30-min average of 100 μg m?3). Different positive significant correlations between glyoxal/methylglyoxal and formaldehyde/acetaldehyde concentrations were observed, suggesting possible different characteristics in emissions between two pairs of carbonyl compounds. A sample in the highest inhalation risk shows 29.2 times higher risk than the lowest sample, suggesting different coal sampling locations could contribute to the variation of inhalation risk. Inhabitants in Xuanwei also tend to spend more time cooking and more days per year indoors than the national average. The calculated cancer risk ranged from 2.2–63 × 10?5, which shows 13 types of samples at high-risk level. Cumulative effect in combination with different carbonyls could have contributed to the additive actual inhalation cancer risk. There is a need to explicitly address the health effects of environmentally relevant doses, considering life-long exposure in indoor dwellings.  相似文献   

4.
In previous work, we showed that the intake fraction (iF) for nonreactive primary air pollutants was 20 times higher in central tendency for small-scale, urban-sited distributed electricity generation (DG) sources than for large-scale, central station (CS) power plants in California [Heath, G.A., Granvold, P.W., Hoats, A.S., Nazaroff, W.W., 2006. Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation. Atmospheric Environment 40, 7164–7177]. The present paper builds on that study, exploring pollutant- and technology-specific aspects of population inhalation exposure from electricity generation. We compare California's existing CS-based system to one that is more reliant on DG units sited in urban areas. We use Gaussian plume modeling and a GIS-based exposure analysis to assess 25 existing CSs and 11 DG sources hypothetically located in the downtowns of California's most populous cities. We consider population intake of three pollutants—PM2.5, NOx and formaldehyde—directly emitted by five DG technologies—natural gas (NG)-fired turbines, NG internal combustion engines (ICE), NG microturbines, diesel ICEs, and fuel cells with on-site NG reformers. We also consider intake of these pollutants from existing CS facilities, most of which use large NG turbines, as well as from hypothetical facilities located at these same sites but meeting California's best-available control technology standards. After systematically exploring the sensitivity of iF to pollutant decay rate, the iFs for each of the three pollutants for all DG and CS cases are estimated. To efficiently compare the pollutant- and technology-specific exposure potential on an appropriate common basis, a new metric is introduced and evaluated: the intake-to-delivered-energy ratio (IDER). The IDER expresses the mass of pollutant inhaled by an exposed population owing to emissions from an electricity generation unit per quantity of electric energy delivered to the place of use. We find that the central tendency of IDER is much greater for almost every DG technology evaluated than for existing CS facilities in California.  相似文献   

5.
Abstract

A fuel-based methodology for calculating motor vehicle emission inventories is presented. In the fuel-based method, emission factors are normalized to fuel consumption and expressed as grams of pollutant emitted per gallon of gasoline burned. Fleet-average emission factors are calculated from the measured on-road emissions of a large, random sample of vehicles. Gasoline use is known at the state level from sales tax data, and may be disaggregated to individual air basins. A fuel-based motor vehicle CO inventory was calculated for the South Coast Air Basin in California for summer 1991. Emission factors were calculated from remote sensing measurements of more than 70,000 in-use vehicles. Stabilized exhaust emissions of CO were estimated to be 4400 tons/day for cars and 1500 tons/day for light-duty and medium- duty trucks, with an estimated uncertainty of ±20% for cars and ±30% for trucks. Total motor vehicle CO emissions, including incremental start emissions and emissions from heavy-duty vehicles were estimated to be 7900 tons/day. Fuelbased inventory estimates were greater than those of California's MVEI 7F model by factors of 2.2 for cars and 2.6 for trucks. A draft version of California's MVEI 7G model, which includes increased contributions from high-emitting vehicles and off-cycle emissions, predicted CO emissions which closely matched the fuel-based inventory. An analysis of CO mass emissions as a function of vehicle age revealed that cars and trucks which were ten or more years old were responsible for 58% of stabilized exhaust CO emissions from all cars and trucks.  相似文献   

6.
ABSTRACT

This paper reports the first empirical estimate of particle emissions from unpaved shoulders along paved roads.1 Its objectives are to develop and demonstrate an emission rate measurement methodology that can be applied in different areas; identify the mechanisms that suspend dust from unpaved shoulders and the observables related to this suspension process; and quantify PM10 mass emissions in the form of an emission rate. To achieve these objectives, fast-response observations from nephelometers and a sonic anemometer were used to characterize shortlived dust plumes generated by passing vehicles. In addition, detailed soil surface measurements determined the mechanical properties of the shoulder surfaces.

Large traffic-induced turbulence events that led to significant dust entrainment were almost exclusively caused by “large” vehicles such as trucks, semis, and vehicles pulling trailers, all traveling 50-65 mph. PM10 emission rates for these large, fast-traveling vehicles were determined to be 8 ± 4 grams per vehicle kilometer traveled under dry conditions. Emissions due to smaller vehicles such as cars, vans, and sport utility vehicles were negligible for normal on-road driving. These results indicate that the majority of PM10 emissions from unpaved shoulders is caused by relatively few vehicles.  相似文献   

7.
ABSTRACT

The initial solid-phase concentration of volatile organic compounds (VOCs) is a key parameter influencing the emission characteristics of many indoor materials. Solid-phase measurements are typically made using solvent extraction or thermal headspace analysis. The high temperatures and chemical solvents associated with these methods can modify the physical structure of polymeric materials and, consequently, affect mass transfer characteristics.

To measure solid-phase concentrations under conditions resembling those in which the material would be installed in an indoor environment, a new technique was developed for measuring VOC concentrations in vinyl flooring (VF) and similar materials. A 0.09-m2 section of new VF was punched randomly to produce ~200 0.78-cm2 disks. The disks were milled to a powder at -140 °C to simultaneously homogenize the material and reduce the diffusion path length without loss of VOCs. VOCs were extracted from the VF particles at room temperature by fluidized-bed desorption (FBD) and by direct thermal desorption (DTD) at elevated temperatures. The VOCs in the extraction gas from FBD and DTD were collected on sorbent tubes and analyzed by gas chromatog-raphy/mass spectrometry (GC/MS). Seven VOCs emitted by VF were quantified. Concentration measurements by FBD ranged from 5.1 |ig/g VF for n-hexadecane to 130 |Jg/g VF for phenol. Concentrations measured by DTD were higher than concentrations measured by FBD. Differences between FBD and DTD results may be explained using free-volume and dual-mobility sorption theory, but further research is necessary to more completely characterize the complex nature of a diffusant in a polymer matrix.  相似文献   

8.
Abstract

Size-resolved particulate matter (PM) emitted from light-duty gasoline vehicles (LDGVs) was characterized using filter-based samplers, cascade impactors, and scanning mobility particle size measurements in the summer 2002. Thirty LDGVs, with different engine and emissions control technologies (model years 1965–2003; odometer readings 1264–207,104 mi), were tested on a chassis dynamometer using the federal test procedure (FTP), the unified cycle (UC), and the correction cycle (CC). LDGV PM emissions were strongly correlated with vehicle age and emissions control technology. The oldest models had average ultrafine PM0.1 (0.056- to 0.1-μm aerodynamic diameter) and fine PM1.8 (≤1.8-μm aerodynamic diame ter) emission rates of 9.6 mg/km and 213 mg/km, respectively. The newest vehicles had PM0.1 and PM1.8 emis sions of 51 μg/km and 371 μg/km, respectively. Light duty trucks and sport utility vehicles had PM0.1 and PM1.8 emissions nearly double the corresponding emission rates from passenger cars. Higher PM emissions were associated with cold starts and hard accelerations. The FTP driving cycle produced the lowest emissions, followed by the UC and the CC. PM mass distributions peaked between 0.1-and 0.18-μm particle diameter for all vehicles except those emitting visible smoke, which peaked between 0.18 and 0.32 μm. The majority of the PM was composed of carbonaceous material, with only trace amounts of water-soluble ions. Elemental carbon (EC) and organic matter (OM) had similar size distributions, but the EC/OM ratio in LDGV exhaust particles was a strong function of the adopted emissions control technology and of vehicle maintenance. Exhaust from LDGV classes with lower PM emissions generally had higher EC/OM ratios. LDGVs adopting newer technologies were characterized by the highest EC/OM ratios, whereas OM dominated PM emissions from older vehicles. Driving cycles with cold starts and hard accelerations produced higher EC/OM ratios in ultrafine particles.  相似文献   

9.
ABSTRACT

Conversion varnishes are two-component, acid-catalyzed varnishes that are commonly used to finish cabinets. They are valued for their water and stain resistance, as well as their appearance. They have been found, however, to contribute to indoor emissions of organic compounds. For this project, three commercially available conversion varnish systems were selected. A U.S. Environmental Protection Agency (EPA) Method 24 analysis was performed to determine total volatile content, and a sodium sulfite titration method was used to determine uncombined (free) formaldehyde content of the varnish components. The resin component was also analyzed by gas chromatography/mass spectroscopy (GC/MS) (EPA Method 311 with an MS detector) to identify individual organic compounds. Dynamic small chamber tests were then performed to identify and quantify emissions following application to coupons of typical kitchen cabinet wood substrates, during both curing and aging. Because conversion varnishes cure by chemical reaction, the compounds emitted during curing and aging are not necessarily the same as those in the formulation. Results of small chamber tests showed that the amount of formaldehyde emitted from these coatings was 2.3–8.1 times the amount of free formaldehyde applied in the coatings. A long-term test showed a formaldehyde emission rate of 0.17 mg/m2/hr after 115 days.  相似文献   

10.
The aerosol in a non-industrial town normally is dominated by emissions from vehicles. Whereas gasoline-powered cars normally only emit a small amount of particulates, the emission by diesel-powered cars is considerable. The aerosol particles produced by diesel engines consist of graphitic carbon (GC) with attached hydrocarbons (HCs) including also polyaromatic HCs. Therefore the diesel particles can be carcinogenic. Besides diesel vehicles, all other combustion processes are also a source for GC; thus source apportionment of diesel emissions to the GC in the town is difficult.A direct apportionment of diesel emissions has been made possible by marking all the diesel fuel used by the vehicles in Vienna by a normally not occurring and easily detectable substance. All emitted diesel particles thus were marked with the tracer and by analyzing the atmospheric samples for the marking substance we found that the mass concentrations of diesel particles in the atmosphere varied between 5 and 23 μg m−3. Busy streets and calm residential areas show less difference in mass concentration than expected. The deposition of diesel particles on the ground has been determined by collecting samples from the road surface. The concentration of the marking substance was below the detection limit before the marking period and a year after the period. During the period when marked diesel fuel was used, the concentrations of the diesel particles settling to the ground was 0.012–0.07 g g−1 of collected dust.A positive correlation between the diesel vehicle density and the sampled mass of diesel vehicles exists. In Vienna we have a background diesel particle concentration of 11 μg m−3. This value increases by 5.5 μg m−3 per 500 diesel vehicles h−1 passing near the sampling location.The mass fraction of diesel particles of the total aerosol mass varied between 12.2 and 33%; the higher values were found in more remote areas, since diesel particles apparently diffuse easily.Estimates of diesel particle concentration by emission inventory or by using lead concentrations as an indicator for vehicle emissions gave similar values to those obtained in this study.Using available cancer risk data and diesel particle concentration found in this study, 1–2.6 additional lung cancers per 100,000 persons yr−1 breathing diesel emissions in the measured concentration the whole lifetime can be expected.  相似文献   

11.
ABSTRACT

Alkyd paint continues to be used indoors for application to wood trim, cabinet surfaces, and some kitchen and bathroom walls. Alkyd paint may represent a significant source of volatile organic compounds (VOCs) indoors because of the frequency of use and amount of surface painted. The U.S. Environmental Protection Agency (EPA) is conducting research to characterize VOC emissions from paint and to develop source emission models that can be used for exposure assessment and risk management. The technical approach for this research involves both analysis of the liquid paint to identify and quantify the VOC contents and dynamic small chamber emissions tests to characterize the VOC emissions after application. The predominant constituents of the primer and two alkyd paints selected for testing were straight-chain alkanes (C9–C12); C8–C9 aromatics were minor constituents. Branched chain alkanes were the predominant VOCs in a third paint. A series of tests were performed to evaluate factors that may affect emissions following application of the coatings. The type of substrate (glass, wallboard, or pine board) did not have a substantial impact on the emissions with respect to peak concentrations, the emissions profile, or the amount of VOC mass emitted from the paint. Peak concentrations of total volatile organic compounds (TVOCs) as high as 10,000 mg/m3 were measured during small chamber emissions tests at 0.5 air exchanges per hour (ACH). Over 90% of the VOCs were emitted from the primer and paints during the first 10 hr following application. Emissions were similar from paint applied to bare pine board, a primed board, or a board previously painted with the same paint. The impact of other variables, including film thickness, air velocity at the surface, and air-exchange rate (AER) were consistent with theoretical predictions for gas-phase, mass transfer-controlled emissions. In addition to the alkanes and aromatics, aldehydes were detected in the emissions during paint drying. Hexanal, the predominant aldehyde in the emissions, was not detected in the liquid paint and was apparently an oxidation product formed during drying. This paper summarizes the results of the product analyses and a series of small chamber emissions tests. It also describes the use of a mass balance approach to evaluate the impact of test variables and to assess the quality of the emissions data.  相似文献   

12.
ABSTRACT

The issue of fine particle (PM25) exposures and their potential health effects is a focus of scientific research because of the recently promulgated National Ambient Air Quality Standard for PM2 5. Before final implementation, the health and exposure basis for the standard will be reviewed by the U.S. Environmental Protection Agency within the next five years. As part of this process, it is necessary to understand total particle exposure issues and to determine the relative importance of the origin of PM2 5 exposure in various micro-environments. The results presented in this study examine emissions of fine particles from a previously uncharacterized indoor source: the residential vacuum cleaner. Eleven standard vacuum cleaners were tested for the emission rate of fine particles by their individual motors and for their efficiency in collecting laboratory-generated fine particles. An aerosol generator was used to introduce fine potassium chloride (KC1) particles into the vacuum cleaner inlet for the collection efficiency tests. Measurements of the motor emissions, which include carbon, and the KCl aerosol were made using a continuous HIAC/Royco 5130A light-scattering particle detector. All tests were conducted in a metal chamber specifically designed to completely contain the vacuum cleaner and operate it in a stationary position. For the tested vacuum cleaners, fine particle motor emissions ranged from 9.6 x 104 to 3.34 x 108 particles/min, which were estimated to be 0.028 to 176 mg/min for mass emissions, respectively. The vast majority of particles released were in the range of 0.3-0.5 mm in diameter. The lowest particle emission rate was obtained for a vacuum cleaner that had a high efficiency (HEPA) filter placed after the vacuum cleaner bag and the motor within a sealed exhaust system. This vacuum cleaner removed the KC1particles that escaped the vacuum cleaner bag and the particles emitted by the motor. Results obtained for the KC1 collection efficiency tests show >99% of the fine particles were captured by the two vacuum cleaners that used a HEPA filter. A series of tests conducted on two vacuum cleaners found that the motors also emitted ultra-fine particles above 0.01 mm in diameter at rates of greater than 108 ultra-fine particles/CF of air. The model that had the best collection efficiency for fine particles also reduced the ultra-fine particle emissions by a factor of 1 x 103.  相似文献   

13.
Abstract

Waste distribution and compaction at the working face of municipal waste landfills releases mercury vapor (Hg0) to the atmosphere, as does the flaring of landfill gas. Waste storage and processing before its addition to the landfill also has the potential to release Hg0 to the air if it is initially present or formed by chemical reduction of HgII to Hg0 within collected waste. We measured the release of Hg vapor to the atmosphere during dumpster and transfer station activities and waste storage before landfilling at a municipal landfill operation in central Florida. We also quantified the potential contribution of specific Hg-bearing wastes, including mercury (Hg) thermometers and fluorescent bulbs, and searched for primary Hg sources in sorted wastes at three different landfills. Surprisingly large fluxes were estimated for Hg losses at transfer facilities (~100 mg/hr) and from dumpsters in the field (~30 mg/hr for 1,000 dumpsters), suggesting that Hg emissions occurring before landfilling may constitute a significant fraction of the total emission from the disposal/landfill cycle and a need for more measurements on these sources. Reducing conditions of landfill burial were obviously not needed to generate strong Hg0 signals, indicating that much of the Hg was already present in a metallic (Hg0) form. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg0, the entire waste mass acts as a source. Broken fluorescent bulbs and thermometers in dumpsters emitted Hg0 at 10 to >100 μg/hr and continued to act as near constant sources for several days.  相似文献   

14.
Abstract

A computational fluid dynamics technique was used to evaluate the effect of traffic pollution on indoor air quality of a naturally ventilated building for various ventilation control strategies. The transport of street-level nonreactive pollutants emitted from motor vehicles through the indoor environment was simulated using the large eddy simulation (LES) of the turbulent flows and the pollutant transport equations. The numerical model developed herein was verified by available wind-tunnel measurements. Good agreement with the measured velocity and concentration data was found. Twelve sets of numerical scenario simulations for various roof- and side-vent openness and outdoor wind speeds were carried out. The effects of the air change rate, the indoor airflow pattern, and the external pollutant dispersion on indoor air quality were investigated. The control strategies of ventilation rates and paths for reducing incoming vehicle pollutants and maintaining a desirable air change rate are proposed to reduce the impact of outdoor traffic pollution during traffic rush hours. It was concluded that the windward side vent is a significant factor contributing to air change rate and indoor air quality. Air intakes on the leeward side of the building can effectively reduce the peak and average indoor concentration of traffic pollutants, but the corresponding air change rate is relatively low. Using the leeward cross-flow ventilation with the windward roof vent can effectively lower incoming vehicle pollutants and maintain a desirable air change rate during traffic rush hours.  相似文献   

15.
Emission rates of ammonia, acid gases, inorganic aerosols, methane, and size fractionated particulate matter were measured from a commercial broiler facility. This paper discusses the statistically influential parameters on numerous pollutants’ emission from a broiler chicken facility and generates emission correlations to fill data gaps and develop averaged emission factors.Live mass of the birds was commonly a significant variable to each pollutant’s emission. Some variables significantly impacted the pollutants’ emissions, such as litter moisture content, but were measured discretely and cannot be used for filling in data gaps.House parameter correlations were, therefore, developed using parameters measured at the facility, such as indoor temperature, relative humidity, and the live mass of the birds, and relied on the mutual behaviour of discretely measured explanatory parameters and continuously monitored confounding variables. The live mass and the difference in the indoor temperature and the house set-point temperature were the most significant variables in each pollutant’s correlation.The correlations predicted each pollutants emission to within 20% (total mass basis) over most broiler production cycles. Their validation on independent datasets also successfully estimated the flocks’ emissions to within 3%.Emission factors (EFs) were developed for methane, ammonia, and size fractionated particulate matter using measured data and correlated emissions to fill in data gaps. PM10 (particulate matter ≤10 microns) EFs were estimated to be 4.6 and 5.9 g d?1 [Animal Unit, AU]?1 for five and six week production cycles, respectively. PM2.5 (PM ≤ 2.5 microns) EFs were 0.8 and 1.4 g d?1 AU?1 for five and six week cycles, respectively. Ammonia and methane emission factors were estimated at 120.8 and 197.0 g d?1 AU?1, respectively for a five week production cycle.  相似文献   

16.
Shin SH  Jo WK 《Chemosphere》2012,89(5):569-578
The present study investigated the indoor concentrations of selected volatile organic compounds (VOCs) and formaldehyde and their indoor emission characteristics in newly-built apartments at the pre-occupancy stage. In total, 107 apartments were surveyed for indoor and outdoor VOC concentrations in two metropolitan cities and one rural area in Korea. A mass balanced model was used to estimate surface area-specific emission rates of individual VOCs and formaldehyde. Seven (benzene, ethyl benzene, toluene, m,p-xylene, o-xylene, n-hexane, and n-heptane) of 40 target compounds were detectable in all indoor air samples, whereas the first five were detected in all outdoor air samples. Formaldehyde was also predominant in the indoor air samples, with a high detection frequency of 96%. The indoor concentrations were significantly higher than the outdoor concentrations for aromatics, alcohols, terpenes, and ketones. However, six halogenated VOCs exhibited similar concentrations for indoor and outdoor air samples, suggesting that they are not major components emitted from building materials. It was also suggested that a certain portion of the apartments surveyed were constructed by not following the Korean Ministry of Environment guidelines for formaldehyde emissions. Toluene exhibited the highest emission rate with a median value of 138 μg m−2 h−1. The target compounds with median emission rates greater than 20 μg m−2 h−1 were toluene, 1-propanol, formaldehyde, and 2-butanone. The wood panels/vinyl floor coverings were the largest indoor pollutant source, followed by floorings, wall coverings, adhesives, and paints. The wood panels/vinyl floor coverings contributed nearly three times more to indoor VOC concentrations than paints.  相似文献   

17.
The emissions from a Garrett-AiResearch (now Honeywell) Model GTCP85–98CK auxiliary power unit (APU) were determined as part of the National Aeronautics and Space Administration's (NASA's) Alternative Aviation Fuel Experiment (AAFEX) using both JP-8 and a coal-derived Fischer Tropsch fuel (FT-2). Measurements were conducted by multiple research organizations for sulfur dioxide (SO2), total hydrocarbons (THC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), speciated gas-phase emissions, particulate matter (PM) mass and number, black carbon, and speciated PM. In addition, particle size distribution (PSD), number-based geometric mean particle diameter (GMD), and smoke number were also determined from the data collected. The results of the research showed PM mass emission indices (EIs) in the range of 20 to 700 mg/kg fuel and PM number EIs ranging from 0.5?×?1015 to 5?×?1015 particles/kg fuel depending on engine load and fuel type. In addition, significant reductions in both the SO2 and PM EIs were observed for the use of the FT fuel. These reductions were on the order of ~90% for SO2 and particle mass EIs and ~60% for the particle number EI, with similar decreases observed for black carbon. Also, the size of the particles generated by JP-8 combustion are noticeably larger than those emitted by the APU burning the FT fuel with the geometric mean diameters ranging from 20 to 50 nm depending on engine load and fuel type. Finally, both particle-bound sulfate and organics were reduced during FT-2 combustion. The PM sulfate was reduced by nearly 100% due to lack of sulfur in the fuel, with the PM organics reduced by a factor of ~5 as compared with JP-8.

Implications: The results of this research show that APUs can be, depending on the level of fuel usage, an important source of air pollutant emissions at major airports in urban areas. Substantial decreases in emissions can also be achieved through the use of Fischer Tropsch (FT) fuel. Based on these results, the use of FT fuel could be a viable future control strategy for both gas- and particle-phase air pollutants.  相似文献   

18.
Emission factors of large PAHs with 6–8 aromatic rings with molecular weights (MW) of 300–374 were measured from 16 light-duty gasoline-powered vehicles (LDGV) and one heavy-duty diesel-powered vehicle (HDDV) operated under realistic driving conditions. LDGVs emitted PAH isomers of MW 302, 326, 350, and 374, while the HDDV did not emit these compounds. This suggests that large PAHs may be useful tracers for the source apportionment of gasoline-powered motor vehicle exhaust in the atmosphere. Emission rates of MW 302, 326, and 350 isomers from LDGVs equipped with three-way catalysts (TWCs) ranged from 2 to 10 (μg L−1 fuel burned), while emissions from LDGVs classified as low emission vehicles (LEVs) were almost a factor of 10 lower. MW 374 PAH isomers were not quantified due to the lack of a quantification-grade standard. The reduced emissions associated with the LEVs are likely attributable to improved vapor recovery during the “cold-start” phase of the Federal Test Procedure (FTP) driving cycle before the catalyst reaches operating temperature. Approximately 2 (μg g−1 PM) of MW 326 and 350 PAH isomer groups were found in the National Institute of Standards and Technology standard reference material (SRM)#1649 (Urban Dust). The pattern of the MW 302, 326, and 350 isomers detected in SRM#1649 qualitatively matched the ratio of these compounds detected in the exhaust of TWC LDGVs suggesting that each gram of Urban Dust SRM contained 5–10 mg of PM originally emitted from gasoline-powered motor vehicles.Large PAHs made up 24% of the total LEV PAH emissions and 39% of the TWC PAH emissions released from gasoline-powered motor vehicles. Recent studies have shown certain large PAH isomers have greater toxicity than benzo[a]pyrene. Even though the specific toxicity measurements on PAHs with MW >302 have yet to be performed, the detection of significant amounts of MW 326 and 350 PAHs in motor vehicle exhaust in the current study suggests that these compounds may pose a significant public health risk.  相似文献   

19.
Aerosol emissions from toy cars with electric motors were characterized. Particle emission rates from the toy cars, as high as 7.47 × 107 particles/s, were measured. This emission rate is lower than other indoor sources such as smoking and cooking. The particles emitted from toy cars are generated from spark discharges inside the electric motors that power the toy cars. Size distribution measurements indicated that most particles were below 100 nm in diameter. Copper was the dominant inorganic species in these particles. By deploying aerosol mass spectrometers, high concentrations of particulate organic matter were also detected and characterized in detail. Several organic compounds were identified using a thermal desorption aerosol gas chromatography. The mass size distribution of particulate organic matter was bimodal. The formation mechanism of particulate organic matter from toy cars was elucidated.

Implications:?A possible new source of indoor air pollution, particles from electric motors in toy cars, was identified. This study characterized aerosol emissions from toy cars in detail. Most of these particles have a diameter less than 100 nm. Copper and some organics are the major components of these particles. Conditions that minimize these emissions were determined.  相似文献   

20.
An updated assessment of fine particle emissions from light- and heavy-duty vehicles is needed due to recent changes to the composition of gasoline and diesel fuel, more stringent emission standards applying to new vehicles sold in the 1990s, and the adoption of a new ambient air quality standard for fine particulate matter (PM2.5) in the United States. This paper reports the measurement of emissions from vehicles in a northern California roadway tunnel during summer 1997. Separate measurements were made of uphill traffic in two tunnel bores: one bore carried both light-duty vehicles and heavy-duty diesel trucks, and the second bore was reserved for light-duty vehicles. Ninety-eight percent of the light-duty vehicles were gasoline-powered. In the tunnel, heavy-duty diesel trucks emitted 24, 37, and 21 times more fine particle, black carbon, and sulfate mass per unit mass of fuel burned than light-duty vehicles. Heavy-duty diesel trucks also emitted 15–20 times the number of particles per unit mass of fuel burned compared to light-duty vehicles. Fine particle emissions from both vehicle classes were composed mostly of carbon; diesel-derived particulate matter contained more black carbon (51±11% of PM2.5 mass) than did light-duty fine particle emissions (33±4%). Sulfate comprised only 2% of total fine particle emissions for both vehicle classes. Sulfate emissions measured in this study for heavy-duty diesel trucks are significantly lower than values reported in earlier studies conducted before the introduction of low-sulfur diesel fuel. This study suggests that heavy-duty diesel vehicles in California are responsible for nearly half of oxides of nitrogen emissions and greater than three-quarters of exhaust fine particle emissions from on-road motor vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号