首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulse-jet fabric filters (PJFFs) are widely used in U.S. industrial applications, and in both utility and industrial boilers abroad. Their smaller size and reduced cost relative to more conventional baghouses make PJFFs an attractive particulate control option for utility boilers. This article which is the third in a three-part series, compares the cost of PJFFs with electrostatic precipitators (ESPs) and reverse-gas baghouses (RGBs).

This article presents the capital, operating and maintenance (O&M), and level-ized costs for ESPs, RGBs and PJFFs. The particulate control equipment design and pricing are supplied by manufacturers of the control equipment. A comparison of costs for a base case 250-MW boiler indicates that the PJFF capital cost is 22 percent lower than the cost of an ESP with 400 SCA and 12-inch plate spacing; in addition the PJFF is 35 percent lower than the cost of an RGB. The levelized cost for a PJFF is about equal to the cost of the ESP but 14 percent lower than the cost of the RGB. Overall, the attractiveness of a PJFF versus an ESP depends on the coal type and the outlet emissions limit required. PJFF is favored when low-sulfur coal is fired due to the high-resistivity fly ash. Also, PJFF is favored as more stringent outlet emission rates are required.  相似文献   

2.
This is the sixth and last part in a series of papers discussing the experience of electric utilities in applying baghouse technology for the collection of particulate matter at coal-fired electric power generating plants. The series presents new data obtained in research sponsored by the Electric Power Research Institute (EPRI) on reverse-gas and shake/deflate cleaned baghouses, and specifically addresses a number of unresolved issues in the design and operation of these units. This paper discusses research, development and demonstration activities now underway or planned to further understand baghouse technology to ensure efficient, economic and reliable service in utility applications. In addition, it summarizes the major findings reported in Parts I through V.  相似文献   

3.
This is the third in a series of papers discussing the experience of electric utilities in applying baghouse technology for the collection of particulate matter at coal-fired electric power generating plants. The series presents new data obtained in research sponsored by the Electric Power Research Institute (EPRI) on reverse-gas and shake/deflate cleaned baghouses, and specifically addresses a number of unresolved issues in the design and operation of these units. This paper provides an overview of the design and operating characteristics of baghouses now in place in the utility industry. In addition, it discusses three key issues in design and operation: the relationships among dust cake weight and chemical composition, air-to-cloth ratio, and pressure drop; fabric selection; and bag life.  相似文献   

4.
This is the fifth in a series of papers discussing the experience of electric utilities in applying baghouse technology for the collection of particulate matter at coal-fired electric power generating plants. The series presents new data obtained in research sponsored by the Electric Power Research Institute (EPRI) on reverse-gas and shake/deflate cleaned baghouses, and specifically addresses a number of unresolved issues in the design and operation of these units. This paper describes research to improve reverse-gas cleaning technology, and to characterize reverse-gas sonic assisted and shake/deflate cleaning.  相似文献   

5.
In September 1973, PEDCo-Environmental Specialists was awarded a study by the U. S. Environmental Protection Agency to evaluate the cost of controlling sulfur dioxide and particulate emissions from selected utility boilers. Since that time, PEDCo has conducted additional studies for the U. S. EPA, state and local control agencies, and private industry on the costs of control technology and the reliability of sulfur dioxide control systems. Current work includes determining the feasibility and environmental impact of converting selected utility boilers to coal-firing to conserve the nation’s gas and oil supplies. This paper presents an overview of the status and costs of flue gas desulfurization (FGD) systems, and the factors relating to the variability in costs. It is based in part upon work performed in developing detailed FGD cost estimating manuals for EPA.  相似文献   

6.
Economic projections and the growing experience with more diverse baghouse applications indicate that fabric filtration will become an even more popular type of control technology. While the fabric filter market shows signs of great promise now, an especially significant upturn is predicted within the next half dozen years when dry scrubbing becomes the primary process for combined S02 and par-ticulate control. In the interim, with more and more utility and industrial boilers gaining experience with baghouses, this control method can be expected to develop as an even more acceptable technique, especially on low S coal burning units. Nevertheless, the users stress the need for conservative planning and designing, giving extra care to start-up and maintenance procedures.  相似文献   

7.
This paper presents a detailed review and critical evaluation of current technologies as applied to fine particulate emissions from coal-fired utility boilers. Quantitative assessments of the capabilities of both conventional and novel air pollution control devices to meet three different performance standards—the present New Source Performance Standard (NSPS) of 0.03 Ib particulate/MBtu heat input, and standards of 0.05 and 0.1 Ib particulate/MBtu are included. Each of the three conventional devices (electrostatic precipitator, fabric filter baghouse, and wet scrubber) is compared and rated with respect to eight different performance categories. This information can be used to determine the relative effectiveness and attractiveness of these three control devices. Novel devices are compared and rated in the same manner, the conclusions from which may provide the research administrator with a guide for the selection of those novel devices which offer the best potential for commercialization.

The major conclusions of the investigation are: (1) The use of conventional scrubbers for fine particulate control on coal-fired utility boilers may no longer be feasible at the new NSPS of 0.03 Ib/MBtu. (2) At the old NSPS (0.1 Ib/MBtu) conventional electrostatic precipitators and baghouses were often competitive. For the new stricter standard, however, the baghouse generally is the more attractive alternative. (3) Novel devices appear to offer almost no hope for this particular application (at a commercial level) between now and 1985 and only little hope before 1990.  相似文献   

8.
Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at >150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/10(6) Btu.  相似文献   

9.
ABSTRACT

Pulse jet fabric filters (PJFFs) have become an attractive option of particulate collection utilities, because they can meet stringent particulate emission limits regardless of variation in operating conditions. Despite their wide applications, the present control algorithm for PJFFs can best be described as rudimentary. In this paper, a modeling and control strategy based on the local model network (LMN) is proposed. An extended self-organizing map (ESOM) network is developed to construct the LMN model of the filtration process using the filter's input-output data. Subsequently, these ESOM local models are incorporated into the design of local generalized predictive controllers (GPC), and the proposed controller design is obtained as the weighted sum of these local controllers. Simulation results show that the proposed controller design yields a better performance than both conventional GPC and proportional plus integral (PI) controllers yield.  相似文献   

10.
Pulse jet fabric filters (PJFFs) have become an attractive option of particulate collection utilities, because they can meet stringent particulate emission limits regardless of variation in operating conditions. Despite their wide applications, the present control algorithm for PJFFs can best be described as rudimentary. In this paper, a modeling and control strategy based on the local model network (LMN) is proposed. An extended self-organizing map (ESOM) network is developed to construct the LMN model of the filtration process using the filter's input-output data. Subsequently, these ESOM local models are incorporated into the design of local generalized predictive controllers (GPC), and the proposed controller design is obtained as the weighted sum of these local controllers. Simulation results show that the proposed controller design yields a better performance than both conventional GPC and proportional plus integral (PI) controllers yield.  相似文献   

11.
Abstract

Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at >150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/106 Btu.  相似文献   

12.
From March 23rd to 26th, 1987, the city of New Orleans hosted 350 attendees, including representatives from 15 foreign countries, at the 1987 Joint Symposium on Stationary Combustion NOx Control. Cosponsored by the Electric Power Research Institute (EPRI) and the U.S. Environmental Protection Agency (EPA), the symposium provided attendees the opportunity to hear 49 papers in nine sessions covering technological and regulatory developments on NOx control in the United States and abroad since the May 1985 symposium in Boston. Session topics included general environmental issues, low-NOx combustion equipment (i.e., low-NOx burners, reburning, etc.), flue gas treatment, fundamental combustion research, and special issues for cyclone coal-fueled boilers, oil- and gas-fired boilers, and industrial combustion applications.

Advances to the state-of-the-art presented at this symposium include: improved and/or newly applied combustion modifications for pulverized coal-fired boilers; further analyses of reburning, the leading combustion modification option for cyclone-equipped boilers; initial experiences with catalytic flue gas treatment in Europe; studies of NOx control retrofit options for oil- and gas-fired utility systems; and new technology developments for coal, oil, and gas fueled utility and industrial combustors.

This paper summarizes those presentations that discussed significant changes since May 1985 in areas of potential interest to EPRI and its utility members. Where appropriate, they include our perspectives on the applicability of these newly disclosed findings to utility systems.  相似文献   

13.
The injection of dry alkaline compounds into the furnace or post-furnace regions of utility boilers to reduce SO2 is currently under development as a lower cost option to conventional flue gas desulfurization technology. Part I of this paper focused on the science and process development of the various dry sorbent technologies. Part II will address applications of these technologies, including SO2 removals in full-scale boilers, methodologies for designing sorbent injection systems, power plant impacts, process integration issues, and cost.

Because the dry technologies use the furnace and/or ducts as the chemical contactor, potential impacts on power plant operation and reliability are as critical in assessing the commercial applicability of each technology as SO2 removal and sorbent utilization. Consequently, the technical and economic feasibility of the various dry processes is highly site specific.  相似文献   

14.
Electric utilities have made significant progress in recent years in designing and operating baghouses for collection of coal fly ash. As a result, early concerns with high operating and maintenance requirements and short bag lives are no longer an issue. With increasingly stringent air emissions regulations and imminent revision of the Clean Air Act, baghouses have become an attractive particulate collection option for utilities.

In order to keep its member utilities apprised of the latest design and operation and maintenance experience with baghouses, the Electric Power Research Institute has been conducting surveys of utility baghouse user experience. This paper presents results from the latest survey, conducted in 1989. A previous survey was conducted in 1985. The 1989 survey was conducted using questionnaires mailed to the utilities, telephone inquiries, and plant visits. This paper discusses the general trends observed in baghouse design, performance, operation and maintenance.  相似文献   

15.
The pace and direction of electrostatic precipitator (ESP) technology evolution in the United States will be governed by two key forces. The first is new clean air legislation passed by the U.S. Congress and signed by President Bush on November 15,1990. This law requires electric utilities to further reduce SO2 and NOx emissions, which may impact particulate controls. In addition, very fine (< 10 micron) participates and potentially toxic trace emissions from utility power plants may be regulated. The second major factor is the expected upsurge in new plant construction beginning in the late 1990s. Together, these forces should define the performance requirements and market for new ESPs.

This paper identifies and briefly describes technologies that the Electric Power Research Institute (EPRI) is developing to help U.S. utilities meet these challenges cost-effectively. Among the technologies addressed are: advanced digital voltage controls, flue gas conditioning, intermittent energization, temperature-controlledprecharging (i.e., two-stage ESP), wide plate spacing, positive energization of corona electrodes for hot-side ESPs, and integration of conventional ESPs with pulse-jet baghouses.  相似文献   

16.
Baghouse performance at utility coal-fired power plants is determined by baghouse design, operating procedures, and the characteristics of the ash that is collected as a dustcake on the fabric filter. The Electric Power Research Institute has conducted laboratory research to identify the fundamental properties of dustcake ash that influence baghouse performance. A database was assembled including measured characteristics of dustcake ash and data describing operating parameters and performance of full-scale and pilot-scale baghouses. Semi-empirical models were developed that describe the effects of particle morphology, particle size, ash cohesivity and ash chemistry on filtering pressure drop and particulate emissions. Cohesivity was identified as the primary ash characteristic affecting baghouse performance. Predictions of performance can be based on physical or chemical characterizations of the ash to be filtered. Part II of this article will discuss the effects of ash and coal chemistry, and baghouse design and operation on performance.  相似文献   

17.
In recent years, the utility industry has turned to baghouses as an alternative technology for particulate emission control from pulverized-coal-fired power plants. One of the more significant issues is to improve poor gas distribution that causes bag failures in baghouse operation. Bag failures during operation are almost impossible to prevent, but proper flow design can help in their prevention. This study investigated vertical velocity profiles below the bags in a baghouse (the hopper region) to determine whether flow could be improved with the installation of flow distributors in the hopper region. Three types of flow distributors were used to improve flow distribution and were compared with the original baghouse without flow distributors. Velocity profiles were measured by a hot-wire anemometer at an inlet velocity of 18 m/sec. Uniformity of flow distribution was calculated by the uniformity value U for the velocity profile of each flow distributor. Experimental results showed that the velocity profile of the empty configuration (without flow distributors) was poor because the uniformity value was 2.048. The uniformity values of type 1 (flow distributor with three vertical vanes), type 2 (flow distributor with one vertical and one inclined vane), and type 3 (flow distributor with two inclined vanes) configurations were reduced to 1.051, 0.617, and 0.526, respectively. These results indicate that the flow distributors designed in this study made significant improvements in the velocity profile of a baghouse, with the type 3 configuration having the best performance.  相似文献   

18.
Federal new source performance standards to control air emissions of sulfur dioxide from new industrial boilers were proposed by EPA on June 19, 1986. These standards would require boiler owners to reduce SO2 emissions by 90 percent and meet an emission limit of 1.2 lb/MM Btu of heat input for coal-fired boilers and 0.8 lb/MM Btu for oil-fired boilers. In developing these standards, several regulatory options were considered, from standards that could be met by firing low sulfur fuels to standards that would necessitate flue gas treatment. The environmental, economic, and cost impacts of each option were analyzed. National impacts were estimated by a computer model that projects the population of new boilers over the 5-year period following proposal, predicts the compliance strategy that will be used to comply with the particular option (always assuming that the lowest cost method of compliance will be selected), and estimates the resulting emission reductions and costs. Impacts on specific industries and on model boilers were also analyzed. This paper focuses on these analyses and their results. The Agency's conclusions from these analyses, which led to the decision to establish percent reduction standards, are provided, and the proposed SO2 standards are summarized. The proposed standards also include an emission limit for particulate matter from oil-fired boilers (0.1 lb/MM Btu). However, this article focuses only on the SO2 standards.  相似文献   

19.
In advanced electrostatic stimulation of fabric filtration (AESFF), a high voltage electrode is placed coaxially inside a filter bag to establish an electric field between the electrode and the bag surface. The electric field alters the dust deposition pattern within the bag, yielding a much lower pressure drop than that found in a conventional bag. Pilot plant results show that AESFF bags can operate with a rate of pressure loss that is 70 percent below that for conventional bags. The presence of the electric field also affects the aging characteristics of the AESFF bags. On the average, the AESFF bags had residual drags that were 10 percent below those of conventional bags. The results show that AESFF baghouses can yield the same pressure drop performance as conventional baghouses while operating at much higher air-to-cloth ratios. An economic analysis evaluated the capital, operating, and maintenance costs for electric utility plants ranging from 200 to 1,000 MW. For AESFF baghouses the capital cost was found to be 25 to 48 percent below that of a conventional baghouse. A lifetime cost analysis predicts a net present value for an AESFF baghouse that is 10 to 30 percent below that of a conventional baghouse.  相似文献   

20.
The IAPCS model, developed by U.S. EPA’s Air and Energy Engineering Research Laboratory and made available to the public through the National Technical Information Service, can be used by utility companies, architectural and engineering companies, and regulatory agencies at all levels of government to evaluate commercially available technologies for control of SO2, NOx, and particulate matter emissions from coal-fired utility boilers with respect to performance and cost. The model is considered to be a useful tool to compare alternative control strategies to be used by utilities to comply with the requirements of the CAA, and to evaluate the sensitivity of control costs with respect to many of the significant variables affecting costs.

To illustrate the use of the model for site-specific studies, the authors used the model to estimate control costs for SO2 and NOx control at Detroit Edison’s Monroe plant and two hypothetical plants under consideration and at three plants operated by New York State Electric and Gas Corporation. The economic and technical assumptions used to drive the model were those proposed by the utilities if cited, and if not cited, the model default values were used. The economic format and methodologies for costs cited in the Electric Power Research Institute’s Technical Assessment Guide are used in the IAPCS model. Depending on the specific conditions and assumptions for the cases evaluated, SO2 control costs ranged from $417 to $3,159 per ton of SO2 removed, and NOx control costs ranged from $461 to $3,537 per ton of NOx removed or reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号