首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

A new model for pulse jet fabric filtration is proposed. In contrast to the earlier model of Ravin and Humphries,1 which was formulated on the steady state assumption, the present study is aimed at developing a predictive capability for both transient and steady state operations, taking into account the compression effect of filter cakes. The model's relative simplicity allows frequent updating of the model parameter values, thus improving the accuracy of predictions. As a result, the model is particularly useful in developing control algorithms and designing controllers of pulse jet fabric filtration systems.  相似文献   

2.
The analysis of pressure loss characteristics for pulse jet filters suggests that the relationship between dust adhesion to the fabric and the opposing force generated by pulse jet action plays a major role in dust removal. Hence, fabric cleanability is examined in terms of the adhesion-cohesion forces bonding the dust to the fabric vs. the intensity and frequency of the dust dislodgement forces produced by the high energy air pulses. The effect of jet size and location, jet air volume, and the intensity (pressure) and duration of the jet pulses is related to operating pressure loss.

The mechanics of energy transfer from the jet pulse to the dustladen fabric are explored in terms of jet pressure, solenoid valve action, the ratio of delivered pulse air volume to bag (tube) volume, and the elastic and flex properties of the felt bags. Effective and actual fabric dust holdings before and after cleaning are discussed with respect to steady-state dust deposition and removal rates, and operating pressure losses. Finally, predictive equations are proposed for estimating pressure loss over a broad range of design and operating parameters.  相似文献   

3.
Foliar markings on vegetation have proven a highly sensitive criterion for the presence of many air pollutants; proper evaluation of such effects can serve as a valuable and inexpensive tool for delineating an air pollution condition. Injury symptoms from fluoridt, sulfur dioxide, photochemical oxidants and other pollutants have been described and can be recognized by experienced observers. Field studies provide a valuable technique for appraising an air pollution problem when diagnosis is not confused by other factors. Careful inspection can avert difficulties arising in diagnosis where similar symptoms are produced by agents other than air pollutants. Several factors must be considered in appraising injury. These include a knowledge of the relative sensitivity of plant species to various pollutants, the syndrome of injury on a number of plants and species, and distribution and geographic relation of affected plants to the suspected source. Background information on cultural, environmental, disease and insect conditions which might be responsible for, or modify, foliar markings or chronic effects in question must also be understood. For some pollutants a chemical analysis of foliage and air may prove helpful. When these factors are studied, the presence, distribution and magnitude of an air pollution situation can be evaluated, thus providing a sensitive criterion of air quality.  相似文献   

4.
Operation and maintenance and performing correct system monitoring of fabric filters is discussed. The anticipation of future problems at the time of start-up and the necessity of maintaining correct records on the system to assist in later troubleshooting is stressed. When all is going well, the fabric filter requires little but routine maintenance on moving parts, which is usually well identified in the service manuals. Problems usually appear as excessive emissions, high pressure drop, or inadequate bag life. In order to find the cause of these problems, one must have maintained sufficient Information on the system to identify what changed and when. With this information, there are logical paths to follow to the proper solutions.  相似文献   

5.
6.
A study was conducted to evaluate performance and cost comparisons of fabric filters and alternate fine particulate control techniques. In relating the removal of fine particulate to costs, due to the lack of fractional efficiency data, it was found necessary to treat a specific application in order to make the study manageable. The case chosen is that of the coal fired industrial boiler since Enviro-Systems has a pilot program in this application area.  相似文献   

7.
ABSTRACT

Ozone reactivity scales play an important role in selecting which chemical compounds are used in products ranging from gasoline to pesticides to hairspray in California, across the United States and around the world. The California Statewide Air Pollution Research Center (SAPRC) box model that calculates ozone reactivity uses a representative urban atmosphere to predict how much additional ozone forms for each kilogram of compound emission. This representative urban atmosphere has remained constant since 1988, even though more than 25 years of emissions controls have greatly reduced ambient ozone concentrations across the United States during this time period. Here we explore the effects of updating the representative urban atmosphere used for ozone reactivity calculations from 1988 to 2010 conditions by updating the meteorology, emission rates, concentration of initial conditions, concentration of background species, and composition of volatile organic compound (VOC) profiles. Box model scenarios are explored for 39 cities across the United States to calculate the Maximum Incremental Reactivity (MIR) scale for 1,233 individual compounds and compound-mixtures. Median MIR values across the cities decreased by approximately 20.3% when model conditions were updated. The decrease is primarily due to changes in atmospheric composition ultimately attributable to emissions control programs between 1998 and 2010. Further effects were caused by changes in meteorological variables stemming from shifting seasons for peak ozone events (summer versus early fall). Lumped model species with the highest MIR values in 1988 experienced the greatest decrease in MIR values when conditions were updated to 2010. Despite the reduction in the absolute reactivity in the updated 2010 atmosphere, the relative ranking of the VOCs according to their reactivity did not change strongly compared to the original 1988 atmosphere. These findings indicate that past decisions about ozone control programs remain valid today, and the ozone reactivity scale continues to provide relevant guidance for future policy decisions even as new products are developed.

Implications: Updating the representative urban atmosphere used for the Maximum Incremental Reactivity (MIR) scale from 1988 to 2010 conditions caused the reactivity of 1223 individual compounds and combined mixtures to decrease by an average of 20.3% but the relative ranking of the VOCs was not strongly affected. This means that previous guidance about preferred chemical formulations to reduce ozone formation in cities across the United States remain valid today, and the MIR scale continues to provide relevant guidance for future policy decisions even as new products are developed.  相似文献   

8.
Compliance with particulate standards for utility boilers burning low sulfur western coal has resulted in the installation and proposed installation of several fabric filter collectors where cold or hot electrostatic precipitators would have traditionally been applied. Recently, SO3 conditioning has been used to improve cold precipitator performance resulting in considerable reduction in specific collection area (SCA). All this suggests that trade-offs exist indicating ranges of SCA, A/C ratio, and power plant size (Mw) where fabric filters become competitive with electrostatic precipitators. Conceptual cost models are presented which indicate total capital investment and annual costs for the control devices. Precipitator costs are correlated with collecting area, gas flow rate, and power input and are presented as functions of SCA and Mw. Fabric filter costs are keyed to gross filter area, pressure drop, and gas flow rate. Fabric filters become competitive when a cold precipitator requires SCAs in excess of 600 to 800 and competitive when a hot precipitator requires equivalent cold precipitator SCAs in excess of 600 to 1000 depending on A/C ratio, Mw, and hot precipitator SCA credit allowance. The S03 conditioned precipitator scenario is shown to be economically competitive with fabric filters.  相似文献   

9.
10.
Electric utilities have made significant progress in recent years in designing and operating baghouses for collection of coal fly ash. As a result, early concerns with high operating and maintenance requirements and short bag lives are no longer an issue. With increasingly stringent air emissions regulations and imminent revision of the Clean Air Act, baghouses have become an attractive particulate collection option for utilities.

In order to keep its member utilities apprised of the latest design and operation and maintenance experience with baghouses, the Electric Power Research Institute has been conducting surveys of utility baghouse user experience. This paper presents results from the latest survey, conducted in 1989. A previous survey was conducted in 1985. The 1989 survey was conducted using questionnaires mailed to the utilities, telephone inquiries, and plant visits. This paper discusses the general trends observed in baghouse design, performance, operation and maintenance.  相似文献   

11.
Abstract

A mathematical model based on simple cake filtration theory was coupled to a reviously developed two-stage mathematical model for mercury (Hg) removal using powdered activated carbon injection upstream of a bag-house filter. Values of the average permeability of the filter cake and the filter resistance extracted from the model were 4.4× 10?13 m2 and 2.5 ×10?4 m?1, respectively. The flow is redistributed during partial cleaning of the filter, with flows higher across the newly cleaned filter section. The calculated average Hg removal efficiency from the baghouse is lower because of the high mass flux of Hg exiting the filter in the newly cleaned section. The model shows that calculated average Hg removal is affected by permeability, filter resistance, fraction of the baghouse cleaned, and cleaning interval.  相似文献   

12.
Stringent particulate emissions limits and increasing awareness of stack opacity is leading the utility industry to use high efficiency particulate control systems. In response to this trend, the Electric Power Research Institute (EPRI) is conducting several research programs aimed at improving the operation, maintenance and performance of particulate control systems. One of these programs, RP-1401, “Reliability Assessment of Particulate Control Systems,” is developing operation, maintenance and design data bases for both electrostatic precipitators and fabric filters. This paper discusses some of the intermediate findings of the work done on fabric filters.  相似文献   

13.
There is an emerging need to develop understanding and predictive capability for the transport, diffusion, and deposition of pollutants on regional and extended spatial scales. Some recent developments in the numerical simulation of pollutant transport and diffusion are reviewed and summarized herein, including case studies of model validation whenever’available. The efforts reported include: (a) the development and verification of a Lagrangian large-cloud diffusion code for intermediate to extended scales; (b) a hybrid Lagrangian-Eulerian transport-diffusion code for simulating pollutant distributions in transient stratified shear flow; (c) a meteorological submodel for determining a mass-consistent wind field on a regional scale suitable as input to a regional air pollution model; and (d) the development and initial verification of a multi-box regional air pollution model for the San Francisco Bay Area utilizing a mass-consistent wind field submodel.  相似文献   

14.
This paper describes some technical and economic aspects of the nahcolite ore injection process for the simultaneous removal of fly ash and sulfur oxides from stack gases. The process is capable of removing greater than 99% of the particulate matter and greater than 70% of the sulfur oxides present in such gases. In the process, nahcolite ore, a naturally occurring material containing 70 to 90% sodium bicarbonate, is ground to 90% passing through —200 mesh screens. Approximately 20% of the ground ore is used to precoat the filter bags in a baghouse filter while the remainder of the material is fed into the flue gas Just ahead of the baghouse. The flue gas is drawn through the baghouse by induced draft fans and sent up the stack. Most of the SO2 and practically all of the fly ash in the flue gas can be removed as the gas passes through the filter bags. The spent nahcolite ore and fly ash are collected and conveyed to waste disposal as landfill, or alternatively processed for insolubilization by coprecipitation prior to landfilling. The technical feasibility of the process has been demonstrated in both bench scale and pilot scale engineering studies. Economic analyses performed for the cases of plants located in the midwest and southwest indicate lower capital costs for the nahcolite injection process when compared to wet scrubbing. On an annual cost basis, the nahcolite ore Injection process is comparable in cost to wet scrubbing for the case of the southwestern power plant, and somewhat more expensive for the case of the midwestern plant.  相似文献   

15.
Abstract

The purpose of this paper is to demonstrate how to develop an air pollution monitoring network to characterize small-area spatial contrasts in ambient air pollution concentrations. Using residential woodburning emissions as our case study, this paper reports on the first three stages of a four-stage protocol to measure, estimate, and validate ambient residential woodsmoke emissions in Vancouver, British Columbia. The first step is to develop an initial winter nighttime woodsmoke emissions surface using inverse-distance weighting of emissions information from consumer woodburning surveys and property assessment data. Second, fireplace density and a compound topo-graphic index based on hydrological flow regimes are used to enhance the emissions surface. Third, the spatial variation of the surface is used in a location-allocation algorithm to design a network of samplers for the woodsmoke tracer compound levoglucosan and fine particulate matter. Measurements at these network sites are then used in the fourth stage of the protocol (not presented here): a mobile sampling campaign aimed at developing a high-resolution surface of woodsmoke concentrations for exposure assignment in health effects studies. Overall the results show that relatively simple data inputs and spatial analysis can be effective in capturing the spatial variability of ambient air pollution emissions and concentrations.  相似文献   

16.
Abstract

Biofilter, dynamic modeling software characterizing contaminant removal via biofiltration, was used in the preliminary design of a biofilter to treat odorous hydrogen sulfide (H2S). Steady-state model simulations were run to generate performance plots for various influent concentrations, loadings, residence times, media sizes, and temperatures. Although elimination capacity and removal efficiency frequently are used to characterize biofilter performance, effluent concentration can be used to characterize performance when treating to a target effluent concentration. Model simulations illustrate that, at a given temperature, a biofilter cannot reduce H2S emissions below a minimum value, no matter how large the biofilter or how long the residence time. However, a higher biofilter temperature results in lower effluent H2S concentrations. Because dynamic model simulations show that shock loading can significantly increase the effluent concentration above values predicted by the steady-state model simulations, it is recommended that, to consistently meet treatment objectives, dynamic feed conditions should be considered. This study illustrates that modeling can serve as a valuable tool in the design and performance optimization of biofilters.  相似文献   

17.
ABSTRACT

The paper provides a summary of accomplished and ongoing activities in the field of motor vehicle emission modeling in Europe. These activities have led to the development of a system of methods and conesponding computer models that address all the issues related to motor vehicle emissions that are of interest to policy-makers, institutions, and the automotive and oil industries. The Coordination of Information on Air Emissions/Computer Program to Calculate Emissions from Road Traffic (CORLNAIR/COPERT) methodology for the estimation of emissions from road vehicles is presented and compared with other models. A COPERT-based approach for microscale traffic emission estimation, with direct application in regional and urban emission inventories, is outlined, and relevant case studies are briefly discussed. The FOREMOVE model, developed for forecasts of motor vehicle emissions, is presented, together with some results from its application in the European Auto/Oil program. Particular attention is given to modeling the deterioration of in-use vehicles. Finally, the major areas of further research in the field of vehicle emissions in Europe are indicated.  相似文献   

18.
Past studies indicate a nationwide potential low-sulfur coal supply deficit in 1975 arising from extremely low-sulfur State Implementation Plan requirements which cannot ail be met in time by available coal and gas cleaning technology. One means to alleviate this net deficit would be to grant variances where at least primary air quality standards would be maintained.

An extensive modeling analysis was conducted by EPA and Walden Research on a large number of power plants in 51 AQCRs located in 20 states to determine if compliance extensions at these plants could significantly reduce the projected deficit of lowsulfur coal. Using simulation modeling, air quality impact at each plant for projected 1975 operations was determined with application of SIP regulatory requirements and with a full variance from SIP requirements for coal-fired boilers. The results from this investigation indicate that the attainment of primary SO2 air quality standards for the coal-fired plants would probably not be jeopardized by the application of full variance status to 34% of the plants and limited variance status to an additional 22% of the plants. No variance is appropriate for the remaining plants. The projected annual reduction In low-sulfur coal demand (less than 1.0% sulfur) is approximately 137 million tons. The projected shift in the average coal sulfur distribution is from 1.2% under SIP status to 2.1% under the applicable variance status. The power plant variance strategy appears, then, to offer a potentially feasible approach toward alleviating the low-sulfur coal deficit problem without jeopardizing attainment of primary air quality standards. It should be emphasized that compliance extensions are not the only way, or the most desirable way, of dealing with this problem. The final selection of a strategy for a given state or AQCR and the implementation of that strategy involve many questions and policy matters beyond the scope of this study.  相似文献   

19.
Data are reported on a number of controlled and uncontrolled sources from various metal decorating operations. Emission levels are related to process variables such as ink coverage, coater speed, sheet size, and applied coating film weight. Results are presented depicting variation of organic emission levels from a coating process line with elapsed process time. For controlled sources employing either catalytic or thermal incineration, conversion efficiencies are reported as a function of temperature. Operational curves are presented for each control system studied indicating the dependence of carbon dioxide, NOx, and organic output on incineration temperatures.  相似文献   

20.
A simple but effective sampling and analytical procedure is described for determining total organics, carbon dioxide, carbon monoxide, and methane emitted from web offset printing presses. Data are reported on a number of controlled and uncontrolled sources and emission levels are related to process variables such as press speed, ink coverage and dryer type. For controlled sources employing either catalytic or thermal incineration units, conversion efficiencies are reported as a function of temperature. Operational curves are presented for each control system studied indicating the dependency of carbon dioxide, NOxt and organic output to incineration temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号