首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Municipal solid waste incinerator (MSWI) operators frequently have expressed the need for an indirect indication of the expected production of PCDD/F and associated abatement procedures through a possible correlation with other real-time data, through using marker pollutants (e.g., penta/hexachlorinated aromatics), or through other indications. Since real-time measurement of PCDD/F is impossible, a correlation of PCDD/F emissions with other operating parameters could help in achieving these goals. Literature data of large-scale MSWIs concerning these correlations are scarce and seldom conclusive. Extensive data of Flemish MSWIs are used to statistically assess possible correlations of PCDD/F and other operating parameters. The effect of temperature in the electrostatic precipitator (ESP) is of major importance. When converting values measured between 180 and 270 degrees C to a reference temperature of, for example, 230 degrees C, PCDD/F concentrations achieve nearly constant values, stressing that the major correlating parameter is the temperature of the ESP. High temperatures that enhance de novo synthesis should be avoided.  相似文献   

2.
The formation and emission of dioxins in large scale thermal processes   总被引:15,自引:0,他引:15  
Everaert K  Baeyens J 《Chemosphere》2002,46(3):439-448
The paper assesses extensive data of PCDD/F measurements on flue gas emissions from thermal processes, including, e.g. municipal solid waste incinerators (MSWIs), combustors of wood and industrial waste, coal fired powerplants and boilers, ferro and non-ferro processes. Numerous investigators have conducted laboratory experiments to assess the formation mechanisms of PCDD/F. The results, obtained from fixed-bed experiments, have been critically evaluated and indicate that de novo synthesis is the dominant mechanism in actual thermal processes where conditions that favour the precursor formation are not experienced. The analysis of PCDD/F profiles from the large scale thermal processes in general, and MSWIs in particular, supports the dominant role of the de novo synthesis, irrespective of the type of thermal process considered. The PCDF/PCDD ratio exceeds 1 and the degree of chlorination points towards the dominant presence of HpCDD and OCDD within the dioxin group, and of PeCDF, HxCDF and HpCDF within the furan group. Since real-time measurement of PCDD/F is impossible, the correlation of PCDD/F emissions with operating parameters and/or emission levels of other more easily measured pollutants could be a tool in predicting the PCDD/F formation levels. Data of Flemish MSWIs were used to statistically assess such correlations. From an evaluation of the data at a given operating temperature, misleading conclusions can be drawn. Only the effect of temperature is evident. After converting all data at a reference temperature of, e.g. 230 degrees C, PCDD/F concentrations achieve nearly constant values, irrespective of the values of other parameters, thus stressing that the major controlling parameter for the PCDD/F emission is the temperature of the ESP. The PCDD/F concentrations increase with temperature in the range up to 280 degrees C. The ESP temperature should be kept preferably between 180 degrees C and 200 degrees C, where de novo synthesis is reduced and where PCDD/Fs are increasingly adsorbed on the fly ash, in line with the standard temperature dependence of adsorption isotherms.  相似文献   

3.
Abstract

Fly ash from municipal solid waste incinerators (MSWIs) has been characterized in terms of polychlorinated dibenzyl-p-dioxin and polychlorinated dibenzofuran (PCDD/F) content. Increasing values of PCDD/Fs have been found to correlate with decreasing temperatures of sampling points in flue gas treatment lines of the plants, confirming other researchers’ findings about temperature as the major controlling parameter for the PCDD/F formation. Measured PCDD/F ratios show that de novo synthesis is the dominant formation mechanism. The increasing trends of particulate-bound PCDD/Fs can be explained not only through the dominant de novo synthesis process but also considering the adsorption of gaseous PCDD/Fs on fly ash deposits, even outside the typical de novo synthesis temperature ranges. The effective role of a post-combustor unit, imposed by Italian law to destroy PCDD/Fs, also needs to be carefully reconsidered.  相似文献   

4.
Abstract

The emission abatement of polychlorinated dioxins and furans (PCDD/F) issued from municipal solid waste incineration is growing in importance because of more stringent emission standards and general concern about their toxic characteristics. These substances cannot be separated by conventional gas cleanup processes but are successfully removed through adsorption onto carbonaceous materials. The simplest technique is the entrained-phase injection of pulverized adsorbents in the flue gas, followed by fabric filter separation. The various related techniques are briefly reviewed here. Operating conditions and results obtained from Flemish MSWIs are given. The results illustrate the excellent overall removal efficiency. Furans are adsorbed to a slightly higher extent than dioxins.

PCDD/F removal by carbonaceous adsorbents is thereafter modeled from first principles for the contribution of both entrained-phase (η1) and cake filtration (η2) to the overall efficiency (ηT). Application of the model equations and comparison of measured and predicted overall efficiencies for the Flemish municipal solid waste incinerators (MSWIs) demonstrate that the approach is meaningful and that the dominant parameters are the operating temperature, the dosage and activity of adsorbent, and the fraction of adsorbent in the filter cake. The model equations enable the MSWI operators to predict the adsorption efficiencies for any combination of operating parameters and to assess the sensitivity of the process to varying operating conditions.  相似文献   

5.
Liu HM  Lu SY  Buekens AG  Chen T  Li XD  Yan JH  Ma XJ  Cen KF 《Chemosphere》2012,86(3):300-307
In order to determine the baseline contamination by polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in different areas in China, prior to the construction of municipal solid waste incinerators (MSWIs), a total of 32 representative soil samples was collected near 16 incinerators and analyzed for their PCDD/F concentrations. The PCDD/F baseline concentrations in the soil samples ranged from 0.32 to 11.4 ng I-TEQ kg−1 (dry matter), with average and median value of 2.73 and 2.24 ng I-TEQ kg−1 (dry matter), respectively, and a span between maximum and minimum recorded value of 36. The PCDD homologues predominated in 26 out of 32 soil samples, with the ratio (PCDDs)/(PCDFs) ranging from 1.1 to 164; however in the other 6 samples, PCDF homologues were larger, with the same ratio varying from 0.04 to 0.8. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to examine PCDD/F amount and profile in these soil samples, and their possible associations with known emission sources: in this process 6 really distinct isomer fingerprints were identified. Background PCDD/F levels and profiles were comparable to those found in soils from China and other countries and indicate a rather low baseline PCDD/F contamination of soils. The present data provide the tools for future assessment of a possible impact of these MSWIs.  相似文献   

6.
A study was conducted to observe the changes in polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) levels and congener profiles in the flue gas of a hazardous waste incinerator during two start-up periods. Flue gas samplings were performed simultaneously through Air Pollution Control Devices (APCDs) (including boiler outlet, electrostatic precipitator (ESP) outlet, wet scrubbers (WS) outlet, and activated carbon (AC) filter outlet) in different combustion temperatures during a planned cold (long) start-up and an unplanned warm (short) start-up. The results showed that PCDD/F concentrations could be elevated during the start-up periods up to levels 3–4 times higher than those observed in the normal operation. Especially lower combustion temperatures in the short start-ups may cause high PCDD/F concentrations in the raw flue gas. Assessment of combustion temperatures and Furans/Dioxins values indicated that surface-catalyzed de novo synthesis was the dominant pathway in the formation of PCDD/Fs in the combustion units. PCDD/F removal efficiencies of Air Pollution Control Devices suggested that formation by de novo synthesis existed in ESP also when in operation, leading to increase of gaseous phase PCDD/Fs in ESP. Particle-bound PCDD/Fs were removed mainly by ESP and WS, while gaseous phase PCDD/Fs were removed by WS, and more efficiently by AC filter.

Implications: This paper evaluates PCDD/F emissions and removal performances of APCDs (ESP, wet scrubbers, and activated carbon) during two start-up periods in an incinerator. The main implications are the following: (1) start-up periods increase PCDD/F emissions up to 2–3 times in the incinerator; (2) low combustion temperatures in start-ups cause high PCDD/F emissions in raw gas; (3) formation of PCDD/Fs by de novo synthesis occurs in ESP; (4) AC is efficient in removing gaseous PCDD/Fs, but may increase particle-bound ones; and (5) scrubbers remove both gaseous and particle-bound PCDD/Fs efficiently.  相似文献   

7.
Fly ash from municipal solid waste incinerators (MSWIs) has been characterized in terms of polychlorinated dibenzyl-p-dioxin and polychlorinated dibenzofuran (PCDD/F) content. Increasing values of PCDD/Fs have been found to correlate with decreasing temperatures of sampling points in flue gas treatment lines of the plants, confirming other researchers' findings about temperature as the major controlling parameter for the PCDD/F formation. Measured PCDD/F ratios show that de novo synthesis is the dominant formation mechanism. The increasing trends of particulate-bound PCDD/Fs can be explained not only through the dominant de novo synthesis process but also considering the adsorption of gaseous PCDD/Fs on fly ash deposits, even outside the typical de novo synthesis temperature ranges. The effective role of a post-combustor unit, imposed by Italian law to destroy PCDD/ Fs, also needs to be carefully reconsidered.  相似文献   

8.
ABSTRACT

Emissions of polychlorinated dibenzo-p-dioxins and poly-chlorinated dibenzofurans (PCDDs/Fs) from incinerators and other stationary combustion sources are of environmental concern because of the toxicity of certain PCDD/F congeners. Measurement of trace levels of PCDDs/Fs in combustor emissions is not a trivial matter. Development of one or more simple, easy-to-measure, reliable indicators of stack PCDD/F concentrations not only would enable incinerator operators to economically optimize system performance with respect to PCDD/F emissions, but could also provide a potential technique for demonstrating compliance status on a more frequent basis. This paper focuses on one approach to empirically estimate PCDD/F emissions using easy-to-measure volatile organic C2 chlorinated alk-ene precursors coupled with flue gas cleaning parameters. Three data sets from pilot-scale incineration experiments were examined for correlations between C2 chlorinated alk-enes and PCDDs/Fs. Each data set contained one or more C2 chloroalkenes that were able to account for a statistically significant fraction of the variance in PCDD/F emissions. Variations in the vinyl chloride concentrations were able to account for the variations in the PCDD/F concentrations strongly in two of the three data sets and weakly in one of the data sets.  相似文献   

9.
Municipal solid waste incinerators (MSWIs) have long been the major contributors of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) to ambient air in Taiwan. After stringent MSWI emission standards were introduced in 2001, the long-term continuous monitoring of flue gas and ambient air quality became necessary to ensure the effectiveness of the related control strategies. Three MSWIs and the surrounding ambient air were investigated in the current study for PCDD/F characteristics during 2006 to 2011. The average concentrations in the flue gas ranged from 0.008?~?0.0488 ng I-TEQ/Nm3, which is much less than the emission standard in Taiwan (0.1 ng I-TEQ/Nm3) (I-TEQ is the abbreviation of International Toxic Equivalent). This led to extremely low levels in the ambient air, 0.0255 pg I-TEQ/Nm3, much less than the levels seen in most urban areas around the world. Additionally, the results obtained using the Industrial Source Complex Short-Term Dispersion Model (ISCST3) indicate that the PCDD/F contributions from the three MSWIs to the ambient air were only in the range from 0.164?~?0.723 %. Principal component analysis (PCA) showed that the PCDD/Fs in the air samples had very similar characteristics to those from mobile sources. The results thus show that stringent regulations have been an effective control strategy, especially for urban areas, such as Taipei City.  相似文献   

10.
The emission abatement of polychlorinated dioxins and furans (PCDD/F) Issued from municipal solid waste incineration is growing in importance because of more stringent emission standards and general concern about their toxic characteristics. These substances cannot be separated by conventional gas cleanup processes but are successfully removed through adsorption onto carbonaceous materials. The simplest technique is the entrained-phase injection of pulverized adsorbents in the flue gas, followed by fabric filter separation. The various related techniques are briefly reviewed here. Operating conditions and results obtained from Flemish MSWIs are given. The results illustrate the excellent overall removal efficiency. Furans are adsorbed to a slightly higher extent than dioxins. PCDD/F removal by carbonaceous adsorbents is thereafter modeled from first principles for the contribution of both entrained-phase (eta1) and cake filtration (eta2) to the overall efficiency (etaT). Application of the model equations and comparison of measured and predicted overall efficiencies for the Flemish municipal solid waste incinerators (MSWIs) demonstrate that the approach is meaningful and that the dominant parameters are the operating temperature, the dosage and activity of adsorbent, and the fraction of adsorbent in the filter cake. The model equations enable the MSWI operators to predict the adsorption efficiencies for any combination of operating parameters and to assess the sensitivity of the process to varying operating conditions.  相似文献   

11.
Over the past decades in China, the number of medical waste incinerators (MWIs) has been rising rapidly, causing emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). In this study, samples of fly ash, ash deposits, and bottom ash from typical MWIs were analyzed for PCDD/Fs and their distribution characteristics. Results showed international toxic equivalent (I-TEQ) values in the range of 6.9–67 ng I-TEQ/g in fly ash and ash deposits, whereas the concentration in bottom ash was extremely low (only 1.33 pg I-TEQ/g), yet the generation of PCDD/Fs was mostly de novo synthesis in fly ash and ash deposits according to the ratio of PCDFs to PCDDs; the major distribution differences of PCDD/Fs in fly ash was manifested by the content of toxic furan 2,3,7,8-TCDF, but other toxic PCDD/Fs showed similar distribution. Other findings are that 2,3,4,7,8-PeCDF had the most contribution to TEQ concentration, and that the most abundant toxic furan congener is 1,2,3,4,6,7,8-HpCDF. Correlation analysis showed that there was no significant correlation between PCDD/Fs concentration and several other physical and chemical parameters.

Implications: This paper is of interest because it presents the emission performances of PCDD/Fs in ash from medical waste incineration in China. PCDD/F contents in fly ash and ash deposits vary between 6.9 and 67.3 ng I-TEQ/g. However, the concentration in bottom ash was extremely low (only 1.33?×?10?3 ng I-TEQ/g). The fingerprints of PCDD/Fs in fly ash are almost similar, except for 2,3,7,8-TCDF. There is no marked correlation between PCDD/Fs and other physicochemical properties.

Supplemental Materials: Supplemental materials are available for this paper. Go to the publisher's online edition of the Journal of the Air & Waste Management Association.  相似文献   

12.
Abstract

The effect of temperature on polyvinylchloride (PVC) combustion using a downstream tubular furnace was investigated for the formation of polycylcic aromatic hydrocarbons (PAHs) and chlorinated compounds. As the temperature increased, higher levels of PAHs were generated. Chlorinated compounds reached a peak at 600°C, with low emissions recorded at 300 and 900°C. There was a close correlation (R2 = 0.97) among polychlorinated bi-phenyls (PCBs), hexachlorobenzene, pentachloroben-zene, and polychlorinated dibenzo-p-dioxins and poly-chlorinated dibenzofurans (PCDD/Fs). PAHs at all temperatures were analyzed in the gas phase. PCDD/Fs and PCBs were emitted as a solid phase at 300 and 600°C and as a gas phase at 900°C. For some PAHs, chloroben-zenes, and PCDD/Fs, a mathematical equation between the gas and solid phase and the reciprocal temperature in semilog proportion was derived. The proposed equation, which is log (amount in gas phase/amount in solid phase) = ?A/T + B, where T is the temperature of the furnace and A and B are constants, for these species relating their gas/solid distributions showed a good relationship.  相似文献   

13.
Abstract

To understand the fate of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in a fly ash treatment plant that used the Waelz rotary kiln process (hereafter the Waelz process), the samples of input and output media were collected and analyzed. The most important PCDD/F source in input mass was electric arc furnace (EAF) fly ash, which had a mean PCDD/F content of 18.51 ng/g and contributed more than 99% of PCDD/F input mass, whereas the PCDD/F input mass fractions contributed by the coke, sand, and ambient air were only 0.04%, 0.02%, and 0.000002%, respectively. For the PCDD/F output mass in the Waelz process, the major total PCDD/F contents of 43.73 and 10.78 ng/g were in bag-filter and cyclone ashes, which accounted for approximately 69% and 17%, respectively, whereas those of stack flue gas and slag were 14% and 0.423%, respectively. The Waelz process has a dechlorination mechanism for higher chlorinated congeners, but it is difficult to decompose the aromatic rings of PCDD/Fs. Therefore, this resulted in the accumulation of lower chlorinated congeners. The output/input ratio of total PCDD/F mass and total PCDD/F international toxicity equivalence (I-TEQ) was 0.62 and 1.19, respectively. Thus, the Waelz process for the depletion effect of total PCDD/F mass was positive but minor, whereas the effect for total PCDD/F I-TEQ was adverse overall.  相似文献   

14.
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were monitored in stack gas and fly ash of various Korean incinerators and in air samples collected near the facilities. Concentrations of PCDD/Fs in emissions were investigated, and characteristic PCDD/F homologue patterns were classified using statistical analyses. The PCDD/F emission levels in stack gas and fly ash samples from small incinerators (SIs) were higher than those from municipal solid waste incinerators (MSWIs). The PCDD/F concentrations ranged between 0.38 and 1.16 pg I-TEQ/m3 (21.2-75.2 pg/m3) in ambient air samples. The lower-chlorinated furans were the dominant components in most of the stack gas and fly ash samples from SIs, although this was not the case for fly ash from MSWIs. This homologue pattern is consistent with other studies reporting a high fraction of lower-chlorinated furans in most environmental samples affected by incinerator emissions, and it can be used as an indicator to assess the impact of such facilities on the surrounding environment.  相似文献   

15.
Lee SJ  Choi SD  Jin GZ  Oh JE  Chang YS  Shin SK 《Chemosphere》2007,68(5):856-863
Municipal solid waste incinerators (MSWIs) have been shown to be important sources of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). The emission of PCDD/Fs by MSWIs is a controversial subject in human health risk assessment. In this study the effect of a MSWI on a residential area was assessed before and after the installation of an additional treatment system for flue gas. This additional treatment system resulted in a dramatic decrease in PCDD/F concentrations in stack flue gas samples by 99.98%, while the concentrations in air decreased by approximately 50% (36,500 and 0.75 pg I-TEQ m(-3) for air in 1999; 3.5 and 0.38 pg I-TEQ m(-3) in 2002; 1.6 and 0.076 pg I-TEQ m(-3) in 2005 for stack gas and air, respectively). Considering the congener distributions of PCDD/Fs between stack flue gas and air samples, the study area seemed to have been contaminated by other urban sources as well as the MSWI. ISC3 model results support the conclusion that this incinerator became only a minor contributor to the study area after installation of the supplementary systems. This resulted from both proper MSWI operation using modern technology and additional sources of contaminants in this region. Finally, PCDD/F uptake by humans through inhalation of contaminated air was estimated. Assuming that inhalation exposure contributes 10% of total exposure, total exposure was lower than WHO guidelines. These results confirm that proper operation and maintenance of the incinerator led to a reduction in emissions and potential health impacts of PCDD/Fs.  相似文献   

16.
The distribution of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), in brief dioxins, has seldom been addressed systematically in fly ash from municipal solid waste incinerators (MSWIs). This study shows the amount and fingerprint of PCDD/Fs in fly ash from four different Chinese MSWIs, that is, three mechanical grate units and one circulating fluidized bed unit. In these fly ash samples, dioxins-related parameters (international toxic equivalent quantity, total amount of PCDD/Fs, individual isomer classes, and 17 toxic 2,3,7,8-substituted congeners) all tend to increase with decreasing particle size for mechanical grate incinerators, yet only for the finest fraction for fluidized bed units. Moreover, the fluidized bed incinerator seems superior to grate incineration in controlling dioxins, yet a comparison is hampered by internal differences in the sample, for example, the fluidized bed fly ash has much lower carbon and chlorine contents. In addition, the presence of sulfur from mixing coal as supplemental fuel to the MSW may poison the catalytic steps in dioxins formation and thus suppress the formation of dioxins. With more residual carbon and chlorine in the fly ash, it is easier to form dioxins during cooling. Nevertheless, there is no apparent relation between Fe, Cu, and Zn contents and that of dioxins in fly ash.

Implications This paper is of interest because it presents the amounts and distribution of PCDD/Fs in fly ash samples from some typical waste incineration plants in China, featuring distinct incinerator types, combustion conditions, fuel composition, or residual carbon, chloride, and heavy metal contents in fly ash.  相似文献   

17.
Duo W  Leclerc D 《Chemosphere》2007,67(9):S164-S176
Both organic chlorine (e.g. PVC) and inorganic chlorides (e.g. NaCl) can be significant chlorine sources for dioxin and furan (PCDD/F) formation in combustion processes. This paper presents a thermodynamic analysis of high temperature salt chemistry. Its influence on PCDD/F formation in power boilers burning salt-laden wood waste is examined through the relationships between Cl2, HCl, NaCl(g) and NaCl(c). These analyses show that while HCl is a product of combustion of PVC-laden municipal solid waste, NaCl can be converted to HCl in hog fuel boilers by reactions with SO2 or alumino-silicate materials. Cl2 is a strong chlorinating agent for PCDD/F formation. HCl can be oxidized to Cl2 by O2, and Cl2 can be reduced back to HCl by SO2. The presence of sulphur at low concentrations thus enhances PCDD/F formation by increasing HCl concentrations. At high concentrations, sulphur inhibits de novo formation of PCDD/Fs through Cl2 reduction by excess SO2. The effect of NH3, CO and NOx on PCDD/F formation is also discussed. A semi-empirical kinetic model is proposed. This model considers both precursor and de novo formation mechanisms. A simplified version is used as a stack emission model. The kinetic model indicates that stack dioxin emissions will increase linearly with decreasing electrostatic precipitator (ESP) efficiency and exponentially with increasing ESP temperature.  相似文献   

18.
ABSTRACT

Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from municipal waste incineration have been widely studied because of their extensive toxicity, and many efforts have been made to restrict their emissions. Although a number of chemical compounds have been shown in laboratory-scale tests to inhibit the formation of PCDD/Fs, few have been tested in pilot- or full-scale plants. This work evaluates the effect of urea as a PCDD/F inhibitor in a pilot-scale incinerator that uses refuse-derived fuel (RDF). The decomposition of urea under the test conditions was also studied using detailed kinetic modeling. An aqueous solution of urea was injected into the flue gas stream after the furnace at ~730 °C, with varied urea concentrations and flue gas residence times used between the furnace and the sampling point. The results demonstrate that urea can successfully inhibit PCDD/F formation in waste incineration if concentrations and injection points are properly adjusted. The kinetic model showed that urea can be rapidly decomposed under appropriate flue gas conditions, indicating that in addition to the urea molecule itself, decomposition products of urea can also be responsible for the reduction of PCDD/F production during incineration.  相似文献   

19.
Abstract

This study investigates the characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the ambient air of two municipal solid waste incinerators (MSWIs: GS and RW) and a coal-fired power plant (PW) in the Kaohsiung County (KC) area in Taiwan. The results show that the toxic equivalency (TEQ) concentration in the flue gas of GS and RW averaged 0.090 and 0.044 ng international toxic equivalents (I-TEQ)/N·m3, respectively. The TEQ concentration in the flue gas of PW averaged 0.050 ng I-TEQ/N·m3. All PCDD/Fs concentrations from the stack flue gas are lower than the Taiwan Environmental Protection Administration emission standard. Furthermore, the mean I-TEQ concentration in the ambient atmosphere ranged from approximately 0.019 to 0.165 pg I-TEQ/N·m3, much lower than the environmental quality standards for dioxins in Japan (0.6 pg TEQ/N·m3). This work classified all sampling sites into three clusters according to k-means cluster analysis. The result shows a probable direct correlation between the GS incinerator and site C. Although the concentration from the PW plant did not exceed the emission standard, it was much higher than that in Fernández-Martínez’s study. For proper environmental management of dioxins, establishing a complete emission inventory of PCDD/Fs is necessary. The government of Taiwan should particularly pay more attention to power plants to address the information shortage.  相似文献   

20.
Chang MB  Chi KH  Chang SH  Yeh JW 《Chemosphere》2007,66(6):1114-1122
Partitioning of PCDD/F congeners between vapor/solid phases and removal and destruction efficiencies achieved with selective catalytic reduction (SCR) system for PCDD/Fs at an existing municipal waste incinerator (MWI) and metal smelting plant (MSP) in Taiwan are evaluated via stack sampling and analysis. The MWI investigated is equipped with electrostatic precipitators (EP, operating temperature: 230 degrees C), wet scrubbers (WS, operating temperature: 70 degrees C) and SCR (operating temperature: 220 degrees C) as major air pollution control devices (APCDs). PCDD/F concentration measured at stack gas of the MWI investigated is 0.728 ng-TEQ/Nm(3). The removal efficiency of WS+SCR system for PCDD/Fs reaches 93% in the MWI investigated. The MSP investigated is equipped with EP (operating temperature: 240 degrees C) and SCR (operating temperature: 290 degrees C) as APCDs. The flue gas sampling results also indicate that PCDD/F concentration treated with SCR is 1.35 ng-TEQ/Nm(3). The SCR system adopted in MSP can remove 52.3% PCDD/Fs from flue gases (SCR operating temperature: 290 degrees C, Gas flow rate: 660 kN m(3)/h). In addition, the distributions of PCDD/F congeners observed in the flue gases of the MWI and MSP investigated are significantly different. This study also indicates that the PCDD/F congeners measured in the flue gases of those two facilities are mostly distributed in vapor phase prior to the SCR system and shift to solid phase (vapor-phase PCDD/Fs are effectively decomposed) after being treated with catalyst. Besides, the results also indicate that with SCR highly chlorinated PCDD/F congeners can be transformed to lowly chlorinated PCDD/F congeners probably by dechlorination, while the removal efficiencies of vapor-phase PCDD/Fs increase with increasing chlorination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号