首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A computer model called the Ozone Risk Assessment Model (ORAM) was developed to evaluate the health effects caused by ground-level ozone (O3) exposure. ORAM was coupled with the U.S. Environmental Protection Agency’s (EPA) Third-Generation Community Multiscale Air Quality model (Models-3/CMAQ), the state-of-the-art air quality model that predicts O3 concentration and allows the examination of various scenarios in which emission rates of O3 precursors (basically, oxides of nitrogen [NOx] and volatile organic compounds) are varied. The principal analyses in ORAM are exposure model performance evaluation, health-effects calculations (expected number of respiratory hospital admissions), economic valuation, and sensitivity and uncertainty analysis through a Monte Carlo simulation. As a demonstration of the system, ORAM was applied to the eastern Tennessee region, and the entire O3 season was simulated for a base case (typical emissions) and three different emission scenarios. The results indicated that a synergism occurs when reductions in NOx emissions from mobile and point sources were applied simultaneously. A 12.9% reduction in asthma hospital admissions is expected when both mobile and point source NOx emissions are reduced (50 and 70%, respectively) versus a 5.8% reduction caused by mobile source and a 3.5% reduction caused by point sources when these emission sources are reduced individually.  相似文献   

2.
3.
环境纠纷ADR模式探讨   总被引:4,自引:0,他引:4  
环境纠纷ADR模式因其简便、快捷、花费少、专业性强等明显优于诉讼的特点,于20世纪60年代在美国应运而生。文中对ADR作了概述,并对ADR模式在美国、日本及台湾地区的运用作了介绍,阐述了该模式的主要方法,进而对我国在解决环境纠纷中运用ADR模式的前景作了分析,并提出有关建议。  相似文献   

4.
An emission study was conducted on a 1987 Ford Crown Victoria flexible-fuel vehicle, an early prototype which had been driven about 25,000 miles. The vehicle was run on both gasoline and a blend of 85 percent methanol and 15 percent gasoline. Emission rates of regulated pollutants (hydrocarbons, carbon monoxide, nitrogen oxides, formaldehyde, and methanol) and nonregulated pollutants (speciated organic materials) were determined for both exhaust and evaporative emissions. Tests were run varying the driving cycle, ambient temperature and catalytic converter. In general, hydrocarbon composition of exhaust emissions was significantly affected by catalyst replacement and cold starts, slightly affected by driving schedule, and unaffected by ambient temperature and test fuel. Hydrocarbon composition of evaporative emissions was only sensitive to the type of evaporative test being performed: diurnal tests typically had larger fractions of lower molecular weight paraffins than hot soak tests.  相似文献   

5.
Abstract

A neural fuzzy system was used to investigate the influence of environmental variables (time, aeration, moisture, and particle size) on composting parameters (pH, organic matter [OM], nitrogen [N], ammonium nitrogen [NH4 +-N] and nitrate nitrogen [NO3 --N]). This was to determine the best composting conditions to ensure the maximum quality on the composts obtained with the minimum ammonium losses. A central composite experimental design was used to obtain the neural fuzzy model for each dependent variable. These models, consisting of the four independent process variables, were found to accurately describe the composting process (the differences between the experimental values and those estimated by using the equations never exceeded 5–10% of the former). Results of the modeling showed that creating a product with acceptable chemical properties (pH, NH4 +-N and NO3 --N) entails operating at medium moisture content (55%) and medium to high particle size (3–5 cm). Moderate to low aeration (0.2 L air/min · kg) would be the best compromise to compost this residue because of the scant statistical influence of this independent variable.  相似文献   

6.
7.
8.
Particulate mass concentration measurements have been made on environmental tobacco smoke (ETS) for the purpose of assessing the relative accuracy of several measurement procedures. ETS over a range of concentrations was generated in an environmental chamber by three methods. Mass concentration was measured by a gravimetric/spectrophotometric collection procedure, piezoelectric particle mass monitors, two nephelometry-based mass monitors, and a particle counting and sizing system. Two-hour average mass concentrations were determined by each method for concentrations ranging from very low levels up to those achieved by smoking one entire cigarette in the chamber. Statistical comparisons were made among procedures employing the gravimetric filter measurement as the basis for comparison. One nephelometry-based procedure gave significantly higher and the other significantly lower values than the filter determination. In one case, a correction for the difference between the particle mass density of the calibrating aerosol and that of ETS brought the nephelometry-based procedure into reasonable agreement with the filter measurement, while for the other, the correction did not resolve the discrepancy between methods. Statistically significant differences between the responses of two supposedly identical piezoelectric mass monitors were found, as was some slight dependence of the nephelometry- based procedures on method of ETS generation. In summary, the results indicate that significant errors can be expected if the instruments studied are used “off the shelf,” even for ETS generated under controlled laboratory conditions. Caution should be employed in field measurements where numerous sources and types of particulate matter can be encountered.  相似文献   

9.
10.
A new vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel investigations was developed. The modeling concept is based on fluid dynamical similarity aspects and allows the small-scale modeling of various kinds of vegetation, e.g. field crops, shrubs, hedges, single trees and forest stands. The applicability of the modeling concept was validated in wind tunnel pollutant dispersion studies. Avenue trees in urban street canyons were modeled and their implications on traffic pollutant dispersion were investigated. The dispersion experiments proved the modeling concept to be practicable for wind tunnel studies and suggested to provide reliable concentration results. Unfavorable effects of trees on pollutant dispersion and natural ventilation in street canyons were revealed. Increased traffic pollutant concentrations were found in comparison to the tree-free reference case.  相似文献   

11.
ABSTRACT

Photochemical air quality simulation models are now used widely in evaluating the merits of alternative emissions control strategies on spatial scales from metropolitan to sub-continental. Greatly varying levels of resources have been available to support modeling, from relatively comprehensive databases and evaluation of performance to a paucity of aerometric data for developing model inputs. Where data are sparse, many alternative outcomes are consistent with the knowledge at hand. Where performance evaluation is inadequately supported, the probability of error may be high. In each instance, uncertainties may be large when compared with the signal of interest, and thus confidence in the reliability of the model as an estimator of future air quality may come into question.

This paper proposes a qualitative procedure for assessing whether a particular application of a modeling system is likely to be potentially unreliable, suggesting that either (1) modification and further evaluation is needed, if supportable, prior to adoption for regulatory application; or (2) the model should not be used if improvement is not supportable. The procedure is proposed for use by policy-makers, staffs of public agencies, air quality managers, environmental staffs of industrial organizations, and other interested parties. The proposed use of the procedure is (1) to assess, a priori, whether a proposed application is likely to be judged questionable or unacceptably uncertain in outcome; and (2) to provide, a posteriori, a basis for judging quickly the likely quality of model performance. The procedure is presented with tropospheric ozone as the pollutant of concern. With adjustments, however, the procedure should be applicable for particu-late matter and other pollutants of interest.  相似文献   

12.
13.
建立了评定环境工程中标方案的层次分析模型(以下简称AHP)。对定性因素按1 ̄9标度构造判断矩阵;对定量因素则采用一定的数学变换,将量化值转化为判断矩阵。AHP方法已成功地应用于某废水治理工程项目的评标工作。  相似文献   

14.
Abstract

Subsequent to the 1997 promulgation of the Federal Reference Method (FRM) for monitoring fine particulate matter (PM2.5) in ambient air, U.S. Environmental Protection Agency (EPA) received reports that the DOW 704 diffusion oil used in the method’s Well Impactor Ninety-Six (WINS) fractionator would occasionally crystallize during field use, particularly under wintertime conditions. Although the frequency of occurrence on a nationwide basis was low, uncertainties existed as to whether crystallization of the DOW 704 oil may adversely affect a sampling event’s data quality. In response to these concerns, EPA and the State of Connecticut Department of Environmental Protection jointly conducted a series of specialized tests to determine whether crystallized oil adversely affected the performance of the WINS fractionator. In the laboratory, an experimental setup used dry ice to artificially induce crystallization of the diffusion oil under controlled conditions. Using primary polystyrene latex calibration aerosols, standard size-selective performance tests of the WINS fractionator showed that neither the position nor the shape of the WINS particle size fractionation curve was substantially influenced by the crystallization of the DOW 704 oil. No large particle bounce from the crystallized impaction surface was observed. During wintertime field tests, crystallization of the DOW 704 oil did not adversely affect measured PM2.5 concentrations. Regression of measurements with crystallized DOW 704 versus liquid dioctyl sebacate (DOS) oil produced slope, intercept, and R2 values of 0.98, 0.1, and 0.997 μg/m3, respectively. Additional field tests validated the use of DOS as an effective impaction substrate. As a result of these laboratory and field tests, DOS oil has been approved by EPA as a substitute for DOW 704 oil. Since the field deployment of DOS oil in 2001, users of this alternative oil have not reported any operational problems associated with its use in the PM2.5 FRM. Limited field evaluation of the BGI very sharp cut cyclone indicates that it provides a viable alternative to the WINS fractionator.  相似文献   

15.
Any device for assessing the visual quality of air must necessarily have an extremely high sensitivity since, at times, the Rayleigh scattering of air molecules is the determining factor. The integrating nephel-ometer of Brewer and Beuttell has been adapted for air quality measurement. It records the volume scattering coefficient and was reliable in over a month of continuous operation. The results may be interpreted in terms of visual range; if so the inherent noise in the system corresponds to more than 500 miles visual range with a 100-second response time. The low cost, simplicity, and sensitivity of the device make it appear useful for rapid evaluation of visual air quality. The design of the instrument will be presented, including both the optical and electronic components. The results of operation of the instrument in Seattle during days of moderate air pollution will be used to illustrate the utility of the device.  相似文献   

16.
以预测表面活性剂环境负荷和浓度的历年变化为目的,建立了生产量统计等为基础的表面活性剂环境负荷简易预测数学模型。这一模型适用于日本兵库县内几所城市阴离子型的负荷推定,和河流MBAS浓度变化比较,具有很好的一致性,验证了此预测数学模型的准确实用性。  相似文献   

17.
Risk characterization is defined by both the U.S. National Academy of Sciences and the U.S. EPA as the estimation of human health risk due to harmful (i.e., toxic or carcinogenic) substances or organisms. Risk characterization studies are accomplished by integrating quantitative exposure estimates and dose-response relationships with the qualitative results of hazard identification.

A Risk Characterization Framework has been developed to encourage a systematic approach for analysis and presentation of risk estimates. This methodology subdivides the four common components of the risk assessment process into ten elements. Each of these elements is based on a term in a predictive risk equation. The equation allows independent computations of exposure, dose, lifetime individual risk, and risk to affected populations. All key assumptions in the predictive risk equation can be explicitly shown. This is important to understand the basis and inherent uncertainties of the risk estimation process.

The systematic treatment of each of the ten elements in this framework aids in the difficult job of comparing risk estimates by different researchers using different methodologies. The Risk Characterization Framework has been applied to various indoor and outdoor air pollutants of a carcinogenic nature. With further development, it also promises to be applicable to noncarcinogenic effects.  相似文献   

18.
Abstract

Measurements were made of respirable suspended particles (RSP) in a large sports tavern on 26 dates over approximately two years in which smoking was allowed, followed by measurements on 50 dates during the year after smoking was prohibited. The smoking prohibition occurred without warning when the city government passed a regulation restricting smoking in local restaurants and taverns. Two follow-up field surveys, consisting of 24 and 26 visits, respectively, were conducted to measure changes in RSP levels after smoking was prohibited. No decrease in tavern attendance was evident after smoking was prohibited. During the smoking period, the average RSP concentration was 56.8 |ig/m3 above the outdoor concentrations, but the average abruptly dropped to 5.9 ug/m3 above outdoor levels—a 90% decrease— on 24 visits in the first two months immediately after smoking was prohibited (first follow-up study). A second set of 26 follow-up visits (matched by time of day, day of the week, and season to the earlier smoking visits) yielded an average concentration of 12.9 jig/m3 above the outdoor levels, or an overall decrease in the average RSP concentration of 77% compared with the smoking period. During the smoking period, RSP concentrations more than 100 ug/m3 above outdoor levels occurred on 30.7% of the visits. During the 50 nonsmoking visits, 92% of the RSP concentrations were less than 20 u,g/m3 above outdoor levels, and no concentration exceeded 100 ug/m3 on any nonsmoking visit. The data show there was a striking decline in indoor RSP concentrations in the tavern after smoking was prohibited. The indoor concentration observed in the nonsmoking periods (9.1 u.g/m3 average for all nonsmoking visits) was attributed to cooking and resuspended dust. A mathematical model based on the mass balance equation was developed that included smoking, cooking, and resuspended dust. Using cigarette emission rates from the literature, the tavern volume of 521 m3, and the air exchange rate measured in the tavern under conditions regarded by the management as "typical," the model predicted 42.5 ug/m3 for an average smoking count of 1.17 cigarettes, which compared favorably with the average concentration of 43.9 ng/m3 observed in the tavern. A regression analysis indicated that the active smoking count explained over 50% of the variation of the RSP concentrations measured on different dates. The mathematical model can be used to estimate RSP concentrations from smoking in other similar taverns under similar conditions.  相似文献   

19.
Asbestos dust and bioaerosol sampling data from suspected contaminated zones in buildings allowed development of an environmental data evaluation protocol based on the differences in frequency of detection of a target contaminant between zones of comparison. Under the assumption that the two test zones of comparison are similar, application of population proportion probability calculates the significance of observed differences in contaminant levels. This was used to determine whether levels of asbestos dust contamination detected after a fire were likely the result of smoke-borne contamination, or were caused by pre-existing/background conditions. Bioaerosol sampling from several sites was also used to develop the population proportion probability protocol. In this case, significant differences in indoor air contamination relative to the ambient conditions were identified that were consistent with the visual observations of contamination. Implicit in this type of probability analysis is a definition of "contamination" based on significant differences in contaminant levels relative to a control zone. Detection of a suspect contaminant can be assessed as to possible sources(s) as well as the contribution made by pre-existing (i.e., background) conditions, provided the test and control zones are subjected to the same sampling and analytical methods.  相似文献   

20.
Abstract

This paper presents a model for predicting the performance of an electrostatic precipitator (ESP) for collecting polydisperse particles. The particle charge was obtained by modifying Cochet’s charge equation; the particle size distribution was approximated by a lognormal function; and then the statistic method of moments was employed to obtain a set of the first three moment equations. The continuous evolution of the particle size distribution in an ESP is easily taken into account by the first three moment equations. The performance of this model was validated by comparing its predictions with the existing data available in the literature. Effects of the particle size distribution on the ESP performance were examined, and the results indicated that both overall mass and number efficiencies are lower for inlet particles with a larger mass median diameter and a higher geometric standard deviation. The methodology introduced may be applied to develop design criteria and determine optimal operating conditions of an ESP for improving the collection efficiency of the submicron particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号