首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper explores the feasibility of (1) using kriging to predict the monthly mean of daily 7-h mean (0900-1559) O3 concentrations, (2) using kriging to estimate the per cent of hourly mean O3 concentrations equal to or greater than 0.07 ppm (137 microg m(-3)) for a specific month, and (3) developing a quantitative relationship between the monthly mean of the daily 7-h (0900-1559) average O3 concentration and the monthly number of hourly concentrations > or = 0.08p ppm (157 microg m(-3)). We found that kriging can be used to estimate the (1) monthly mean of daily 7-h mean O3 concentrations and (2) the percentage of hourly concentrations for a given month > or = 0.07 ppm when sufficient spatial coverage was available. However, the per cent > or = 0.07 ppm parameter exhibited much greater relative variability than the monthly 7-h exposure index. A strong statistical association was found between the monthly number of occurrences > or = 0.08 ppm and monthly 7-h mean concentrations above 0.05 ppm (98 microg m(-3)). Because of the variability that cumulative indices, such as the monthly percentage of hourly concentrations > or = 0.07 ppm , exhibit from site to site, it appears that whether kriging techniques or mathematical regressions are used to estimate the number of elevated O3 hourly concentrations above selected thresholds, large uncertainties associated with the predicted values will exist. These large uncertainties will make it difficult to accurately estimate vegetation effects caused by ambient levels of O3. However, if a generalized quantitative relationship between repeated occurrences of hourly mean concentrations > or = 0.07 ppm or > or = 0.08 and vegetation effects can be developed, it may be possible, using kriged monthly values accompanied with confidence intervals, to identify those areas where vegetation may be at risk. However, before it will be possible to implement such an approach, researchers will have to better quantify the relationship between realistic O3 exposures and vegetation effects.  相似文献   

2.
Ambient O3 exposures have reduced growth rates of tree genotypes in some areas of the United States. For characterizing O3 exposures in forested areas, data from primarily population-oriented sites have been used. It has been speculated that exposures calculated from population-oriented sites provide estimates greater than those that would actually be experienced in the majority of forested areas. Accordingly, we compared 1988 O3 data from three remote forested sites with data from several population-oriented monitoring sites in and around the mid? and southern Appalachian Mountains. The number of hours ≥0.08 ppm was lower at the remote forested sites than at the nearby population-oriented locations. In addition, we characterized the temporal variability of O3 exposures in forested regions of the United States and Canada for the period 1978-1988. We found that the years of highest O3 exposure in the eastern United States during 1978-1988 were 1978, 1980, 1983, and 1988, with 1988 being the worst year in four of seven eastern forest regions. In 1988, the Whiteface Mountain summit site (1483 m) experienced approximately 10 percent more hourly average concentrations ≥0.08 ppm than in the second highest O3 exposure year (i.e., 1979). Consistently throughout the 11-year period, the highest O3 exposures at the Whiteface Mountain site occurred during the late evening and early morning hours, with the result that the longterm 7-h (0900-1559h) exposure index could not distinguish those years in which the highest exposures occurred from those in which the lowest occurred. Similar to the Whiteface Mountain site, two high-elevation Shenandoah National Park sites experienced their highest O3 exposures in 1988. With the exception of 1986, the lower elevation site (Dickey Ridge) consistently experienced more frequent occurrences of hourly average concentrations ≥0.08 ppm than the higher elevation site (Big Meadows).  相似文献   

3.
Rooted cuttings of hybrid Populus (DN34, Populus deltoides x nigra) were grown outdoors in pots in open-top chambers at Ithaca, NY (74.5 degrees W, 42.5 degrees N), during 1988 and 1989 (experiment 1) and during 1989 and 1990 (experiment 2). Ambient air was passed through charcoal filters to produce a 0.5 times ambient ozone treatment, and ozone generated from oxygen was added to produce one and two times ambient ozone treatments. In experiment 1, treatments were applied for 8-12 h each day for 112 days of the 1988 growing season, then the plants were grown outdoors with ambient ozone in 1989. In experiment 2, treatments were applied for 9 h each day for 98 days of the 1989 growing season, then the plants were grown outdoors with ambient ozone in 1990. Chronic exposure to ozone caused the following changes (statistically significant in one or both experiments at p<0.05): (1) earlier leaf abscission, (2) decreased stem basal diameter, (3) decreased stem mass, (4) decreased internode length, (5) decreased shoot height p=0.005, and (6) decreased leaf size in the growing season following ozone treatment. There was also strong evidence that ozone increased the number of leaves produced p=0.055. Finally, there was some evidence that ozone increased the ratio of shoot mass to root mass p=0.093.  相似文献   

4.
Rooted cuttings of hybrid Populus (DN34, Populus deltoides X nigra) were grown outdoors in pots in open-top chambers at Ithaca, NY (74.5 degrees W, 42.5 degrees N), during 1988 and 1989 (Experiment 1) and during 1989 and 1990 (Experiment 2). Ambient air was passed through charcoal filters to produce a 0.5 times ambient ozone treatment, and ozone generated from oxygen was added to produce one and two times ambient ozone treatments. In Experiment 1, treatments were applied for 8-12 h each day for 112 days of the 1988 growing season; then the plants were grown outdoors with ambient ozone in 1989. In Experiment 2, treatments were applied for 9 h each day for 98 days of the 1989 growing season; then the plants were grown outdoors with ambient ozone in 1990. Shallow wounds were made into the bark tissue and inoculated with either an aqueous suspension of conidia of Mycosphaerella populorum or sterile water on 1 and 2 September 1988 (Experiment 1) or 16 and 17 August 1989 (Experiment 2). In Experiment 1, wounds were inoculated either 0, 7, or 14 days after wounding. In Experiment 2, wounds were inoculated either 0, 3, or 6 days after wounding. Canker development was measured after harvest on 16 and 17 July 1989 (Experiment 1) and 28 May 1990 (Experiment 2). In both experiments, chronic exposure to ozone significantly increased the incidence of canker formation in inoculated wounds, and no cankers formed in wounds that received only sterile water. In Experiment 1, cankers formed only on plants inoculated the same day as wounding. No cankers formed on plants inoculated either 7 or 14 days after wounding. In Experiment 2, cankers formed on plants inoculated on the same day as wounding, and on a few plants inoculated 3 days after wounding. No cankers formed on plants inoculated 6 days after wounding. Additionally, in Experiment 2, exposure to increased concentrations of ozone caused a significantly higher number of plants to die during the subsequent winter. Analysis of partial correlation coefficients among plant growth and plant disease variables suggested that the observed ozone-induced increase in the susceptibility of the plants to disease was not mediated by alterations in plant growth.  相似文献   

5.
An enhanced ozone forecasting model using nonlinear regression and an air mass trajectory parameter has been developed and field tested. The model performed significantly better in predicting daily maximum 1-h ozone concentrations during a five-year model calibration period (1993–1997) than did a previously reported regression model. This was particularly true on the 28 “high ozone” days ([O3]>120 ppb) during the period, for which the mean absolute error (MAE) improved from 21.7 to 12.1 ppb. On the 77 days meteorologically conducive to high ozone, the MAE improved from 12.2 to 9.1 ppb, and for all 580 calibration days the MAE improved from 9.5 to 8.35 ppb. The model was field-tested during the 1998 ozone season, and performed about as expected. Using actual meteorological data as input for the ozone predictions, the MAE for the season was 11.0 ppb. For the daily ozone forecasts, which used meteorological forecast data as input, the MAE was 13.4 ppb. The high ozone days were all anticipated by the ozone forecasters when the model was used for next day forecasts.  相似文献   

6.
Surface ozone concentrations in southern Africa exceed air quality guidelines set to protect agricultural crops. This paper addresses a knowledge gap by performing a preliminary assessment of potential ozone impacts on vegetation in southern African. Maize (Zea mays L.) is the receptor of interest in the main maize producing countries, i.e. South Africa, Zambia and Zimbabwe. Surface ozone concentrations are estimated for the growing season (October to April) using photochemical modelling. Hourly mean modelled ozone concentrations ranged between 19.7 and 31.2 ppb, while maximums range between 28.9 and 61.9 ppb, and are near 30 ppb over South Africa and Zambia, while in Zimbabwe, they exceed 40 ppb and translate into monthly AOT40 values of over 3,000 ppb h in five of the seven months of the growing season. This study suggests that surface ozone may pose a threat to agricultural production in southern African, particularly in Zimbabwe.  相似文献   

7.
ABSTRACT

A 15-year (1981-95) climatology for the diurnal maximum ozone concentration (DMOC) was developed using 1-hr average ozone concentrations in the Baltimore-Washington area, which was made up of four regions: Baltimore, Washington, non-urban Maryland, and non-urban northern Virginia. The DMOC time series for each of these regions were divided into four terms representing different behavioral time scales: the long-term mean; the mean in-tra-annual perturbation; the interannual perturbation; and the synoptic perturbation. The urban regions had smaller values of the long-term mean ozone, but the annual range was larger. The values of the interannual perturbation were largest in the summer, when ozone production is significant, and smallest in the late winter and early spring. The interannual perturbation in the summer in the four regions consistently had positive departures in 1983, 1988, and 1991, and it had negative departures in 1981, 1984, 1985, 1989, 1990, and 1992. Summers with large positive interannual departures experienced a large number of ozone exceedances (i.e., relative to the 1-hr National Ambient Air Quality Standard of 125 parts per billion [ppb]), and summers with large negative departures experienced few or no exceedances. About 50% of the exceedances had concentrations ranging in value from 125-135 ppb, and about 75% had concentrations from 125-145 ppb.  相似文献   

8.
This paper presents a cohesive view of the dynamics of ambient O(3) exposure and adverse crop response relationships, coupling the properties of photochemical O(3) production, flux of O(3) from the atmosphere into crop canopies and the crop response per se. The results from two independent approaches ((a) statistical and (b) micrometeorological) were analyzed for understanding cause-effect relationships of the foliar injury responses of tobacco cv Bel-W3 to the exposure dynamics of ambient O(3) concentrations. Similarly, other results from two independent approaches were analyzed in: (1) establishing a micrometeorological relationship between hourly ambient O(3) concentrations and their vertical flux from the air into a natural grassland canopy; and (2) establishing a statistical relationship between hourly ambient O(3) concentrations in long-term, chronic exposures and crop yield reductions. Independent of the approach used, atmospheric conditions appeared to be most conducive and the crop response appeared to be best explained statistically by the cumulative frequency of hourly ambient O(3) concentrations between 50 ppb and 90 ppb (100 and 180 microg m(-3)). In general, this concentration range represents intermediate or moderately enhanced hourly O(3) values in a polluted environment. Further, the diurnal occurrence of this concentration range (often approximately between 0900 and 1600 h in a polluted, agricultural environment) coincided with the optimal CO(2) flux from the atmosphere into the crop canopy, thus high uptake. The frequency of occurrence of hourly O(3) concentrations > 90 ppb (180 microg m(-3)) appeared to be of little importance and such concentrations in general appeared to occur during atmospheric conditions which did not facilitate optimal vertical flux into the crop canopy, thus low uptake. Alternatively, when > 90 ppb (180 microg m(-3)) O(3) concentrations occurred during the 0900-1600 h window, their frequency of occurrence was low in comparison to the 50-90 ppb (100-180 microg m(-3)) range. Based on the overall results, we conclude that if the cumulative frequency of hourly ambient O(3) concentrations between 50-62 ppb (100-124 microg m(-3)) occurred during 53% of the growing season and the corresponding cumulative frequency of hourly O(3) concentrations between 50-74 ppb (100-148 microg m(-3)) occurred during 71% of the growing season, then yield reductions in sensitive crops could be expected, if other factors supporting growth, such as adequate soil moisture are not limiting.  相似文献   

9.
Canton Ticino in southern Switzerland is exposed to some of the highest concentrations of tropospheric ozone in Europe. During recent field surveys in Canton Ticino, foliar symptoms identical to those caused by ozone have been documented on native tree and shrub species. In Europe, the critical ozone level for forest trees has been defined at an AOT40 of 10 ppm.h O3 (10 ppm.h accumulated exposure of ozone over a threshold of 40 ppb) during daylight hours over a six-month growing season. The objective of this study was to determine the amount of ambient ozone required to induce visible foliar symptoms on various forest plant species in southern Switzerland. Species were grown within eight open-top chambers and four open plots at the Vivaio Lattecaldo Cantonal Forest Nursery in Ticino, Switzerland. Species differed significantly in terms of the ppb.h exposures needed to cause visible symptoms. The most to least symptomatic species grown within open-plots in this study rank as Prunus serotina, Salix viminalis, Vibrnum lantana, Rhamnus cathartica, Betula pendula, Rumex obtusifolius, Sambucus racemosa, Morus nigra, Prunus avium, Fraxinus excelsior, Rhamnus frangula, Alnus viridis, Fagus sylvatica and Acer pseudoplatanus. Similar rankings were obtained in the non-filtered chamber plots. The ranking of species sensitivity closely follows AOT values for the occurrence of initial symptoms and symptom progression across the remainder of the exposure season. Species that first showed evidence of foliar injury also demonstrated the most sensitivity throughout the growing season, with symptoms rapidly advancing over ca. 25-30% of the total plant leaf surfaces by the end of the observation period. Conversely, those species that developed symptoms later in the season had far less total injury to plant foliage by the end of the observation period (1.5 to < 5% total leaf area injured). The current European ambient ozone standard may be insufficient to protect native plant species from visible foliar injury, and many more native species may be sensitive to ozone-induced foliar injury than are currently known.  相似文献   

10.
Rooted cuttings of poplar (Populus nigra) and seedlings of beech (Fagus sylvatica) were exposed to ozone in open-top chambers for one growing season. Three treatments were applied: charcoal-filtered (CF), non-filtered (NF) and non-filtered air plus 30 ppb (nl l(-1)) ozone (NF+). Extra ozone was only added on clear days, from 09:00 until 17:00-20:00. The AOT40s (accumulated exposure over a threshold of 40 ppb), calculated from April to September were 4055 ppb.h for the NF and 8880 ppb.h for the NF+ treatments. For poplar ozone exposure caused highly significant reductions in growth rate, light-saturated net CO(2) assimilation rate, stomatal conductance, F(v)/F(m) and chlorophyll content. The largest effects were observed in August at which time ozone concentrations were elevated. A reduction was noticed in new leaf production, while accelerated ageing and visible damage to leaves caused high leaf losses. For beech the responses were similar but less pronounced: ozone exposure resulted in non-significant growth reductions, slight changes in light-saturated photosynthesis and accelerated leaf abscission. The chlorophyll content of beech leaves was not affected by the ozone treatments. The results confirmed previous observations that fast-growing tree species, such as most poplar species and hybrids, are more sensitive and responsive to tropospheric ozone than slower-growing species, such as beech. The growth reductions observed and reported here for beech were within the range of those reported in relationship to the AOT40 (accumulated exposure over a threshold of 40 ppb) critical level for ozone.  相似文献   

11.
Passive samplers with two different collection substrates were used to obtain an average ozone concentration for 1 month during the summer of 2002 for each South Carolina county. One sampler contained a filter coated with indigo carmine, whose color fades when exposed to ozone. The fading was measured by reflectance spectroscopy. The other sampler contained filters that were coated with nitrite, which is oxidized to nitrate when exposed to ozone. The nitrate was measured by ion chromatography. Calibration curves were developed for the two methods by comparing color fading from indigo carmine and nitrate ion concentration from the nitrite filter with ambient ozone concentration measured by a co-located reference continuous UV ozone analyzer. These curves were used to calculate integrated ozone concentrations for samplers distributed across South Carolina. Using the indigo carmine method, the average ozone concentrations ranged from 21 to 64 ppb (average = 46 +/- 7.9 ppb, n = 58) across the 46 counties in the state during one summer month of 2002. Concentrations for the same time period from the nitrite-coated filters ranged from 23 to 62 ppb (average = 41 +/- 8.1 ppb, n = 58). Also for the same time period, the 23 continuous UV photometric ozone monitors operated by the South Carolina Department of Health and Environmental Control at sites within 10 miles of some of the passive monitors showed ozone concentrations ranging from 28 to 50 ppb (average = 39 +/- 6.3 ppb, n = 22).  相似文献   

12.
Spring wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.) plants were exposed to simulated ozone (O(3)) episodes (7 h day(-1) for 7 days) at maximum concentrations of 120, 180 and 240 microg m(-3) O(3), in comparison to a charcoal-filtered air control. Fumigations were conducted in four closed chambers placed in a climate room. Exposures took place prior to inoculation of the plants with six different facultative leaf pathogens. On wheat, significant enhancement of leaf attack by Septoria nodorum Berk. and S. tritici Rob. ex Desm. appeared, particularly on the older leaves and at the highest level of O(3). The same was true for Gerlachia nivalis W. Gams et E. Müll/Fusarium culmorum (W.F.Sm.) Sacc. on wheat and net blotch (Drechslera teres (Sacc.) Shoem.) or G. nivalis leaf spots on barley. Disease development was promoted both on leaves with and without visible injury following exposure to O(3). Sporulation of the two Septoria species increased at 120 and 180 microg m(-3) O(3); however, it was reduced to the level of the control, if 240 microg m(-3) were applied. No significant effects of predisposition were observed with Bipolaris sorokiniana (Sacc.) Shoem. (syn. Helminthosporium sativum Pamm., King et Bakke), the causal agent of spot blotch, neither on wheat nor on barley. Doses and peak concentrations applied in the experiments were in good agreement with measurements of ambient ozone in Southern Lower Saxony, FRG. Six years' ozone data (1984-1989) revealed the annual occurrence of between 3 and 11 ozone episodes with potentially harmful effects on cereals (three or more consecutive 'ozone days' with 8-h means above 80 microg m(-3)). The frequency of ozone episodes followed by weather periods favourable for infections by facultative pathogens was higher in years with low O(3) pollution than in ozone-rich years, and varied between one and five cases per season. The number of ozone days during the main growing season of cereals (1 April until 31 August) varied from 25 in 1984 to 98 in 1989. However, only 7.9% of ozone days during the 6 years examined were concurrent with weather conditions suitable for fungal infections. It is concluded that the majority of leaf infections in the field happens under low-level concentrations of photooxidants.  相似文献   

13.
The differences in growth, leaf senescence, visible ozone injuries and stomatal density between one coastal site (natural ozone) and two inland sites (natural and elevated ozone) in Finland were determined for saplings of Betula pendula clones grown under open-field conditions during two growing seasons. Responses in growth, leaf senescence, visible injuries, and stomatal density were determined in relation to cumulative ozone exposure accumulated over the thresholds of 30, 40 and 50 ppb (10(9)) during the exposure period. In addition, the effects of the different ozone exposures on ultrastructure of chloroplasts were studied. Increasing ozone exposure resulted in reduced shoot dry weight, stimulated (first year) or reduced (second year) height growth, accelerated autumn yellowing of leaves, increased stomatal density, visible symptoms and chloroplast injuries, and increased number and size of plastoglobuli. Newly expanded mature leaves in midsummer were more sensitive to ozone episodes than younger developing leaves in the early growing season. In most parameters, the best correlation was achieved with the exposure index AOT30. Ozone risk for birch is highest in the southern coastal area of Finland, where background ozone concentrations are higher than in inland sites.  相似文献   

14.
Over the past few years, concern has increased in Canada over the health and environmental impacts of elevated concentrations of ground-level ozone. During the summer the most populated regions of Canada frequently record ozone concentrations that exceed the one-hour average maximum acceptable air quality objective of 32 parts per billion (ppb). In 1988 the Canadian Council of Ministers of the Environment agreed to develop a federal/provincial management plan to control nitrogen oxide and volatile organic compound emissions to reduce ozone concentrations in all affected regions of the country. In addition to the proposed interim control measures, the plan recommended that studies be undertaken to acquire the information necessary to develop sound control strategies. This report represents one of those studies and provides a summary of ground-level ozone measurements for eastern Canada for the 1980 to 1991 period with an emphasis on seasonal variations, trends, and occurrences of high concentrations.

Southwestern Ontario experiences the highest maximum hourly ozone concentrations and the greatest frequency of hours greater than the 82 ppb acceptable objective. Urban sites have the highest frequencies of ozone concentration measurements in the < 10 ppb range, while rural and remote sites show peaks in frequency distribution in the 20 to 30 ppb range. Trend analysis of summertime (May to September) average daily maximum ozone concentration showed no consistent pattern for eastern Canadian sites during 1980 to 1991. Sites in Montreal showed statistically insignificant downward trends while sites in Toronto showed small but statistically significant upward trends. These ozone-increasing trends are associated with reductions in nitric oxide concentrations. At all sites there was large year-to-year variability in peak ozone levels and in the frequency of hours with ozone concentrations above the maximum acceptable objective.  相似文献   

15.
Field symptoms typical of ozone injury have been observed on several conifer species in Great Smoky Mountains National Park, and tropospheric ozone levels in the Park can be high, suggesting that ozone may be causing growth impairment of these plants. The objective of this research was to test the ozone sensitivity of selected conifer species under controlled exposure conditions. Seedlings of three species of conifers, Table Mountain pine (Pinus pungens), Virginia pine (Pinus virginiana), and eastern hemlock (Tsuga canadensis), were exposed to various levels of ozone in open-top chambers for one to three seasons in Great Smoky Mountains National Park in Tennessee, USA. A combination of episodic profiles (1988) and modified ambient exposure regimes (1989-92) were used. Episodic profiles simulated an average 7-day period from a monitoring station in the Park. Treatments used in 1988 were: charcoal-filtered (CF), 1.0x ambient, 2.0x ambient, and ambient air-no chamber (AA). In 1989 a 1.5x ambient treatment was added, and in 1990, additional chambers were made available, allowing a 0.5x ambient treatment to be added. Height, diameter, and foliar injury were measured most years. Exposures were 3 years for Table Mountain pine (1988-90), 3 years for hemlock (1989-91), and 1 and 2 years for three different sets of Virginia pine (1990, 1990-91, and 1992). There were no significant (p<0.05) effects of ozone on any biomass fraction for any of the species, except for older needles in Table Mountain and Virginia pine, which decreased with ozone exposure. There were also no changes in biomass allocation patterns among species due to ozone exposure, except for Virginia pine in 1990, which showed an increase in the root:shoot ratio. There was foliar injury (chlorotic mottling) in the higher two treatments (1.0x and 2.0x for Table Mountain and 2.0x for Virginia pine), but high plant-to-plant variability obscured formal statistical significance in many cases. We conclude, at least for growth in the short-term, that seedlings of these three conifer species are insensitive to ambient and elevated levels of ozone, and that current levels of ozone in the Park are probably having minimal impacts on these particular species.  相似文献   

16.
Combustion emissions and strong Santa Ana winds had pronounced effects on patterns and levels of ambient ozone (O3) in southern California during the extensive wildland fires of October 2007. These changes are described in detail for a rural receptor site, the Santa Margarita Ecological Reserve, located among large fires in San Diego and Orange counties. In addition, O3 changes are also described for several other air quality monitoring sites in the general area of the fires. During the first phase of the fires, strong, dry and hot northeasterly Santa Ana winds brought into the area clean continental air masses, which resulted in minimal diurnal O3 fluctuations and a 72-h average concentration of 36.8 ppb. During the second phase of the fires, without Santa Ana winds present and air filled with smoke, daytime O3 concentrations steadily increased and reached 95.2 ppb while the lowest nighttime levels returned to ~0 ppb. During that period the 8-h daytime average O3 concentration reached 78.3 ppb, which exceeded the federal standard of 75 ppb. After six days of fires, O3 diurnal concentrations returned to pre-fire patterns and levels.  相似文献   

17.
Abstract

A research site for atmospheric chemistry and air pollution measurements was established at Pinnacle State Park in Addison, NY, in 1995. This paper presents an overview of the site characteristics and measurement program, as well as monthly average concentrations for many of the trace gas and aerosol pollutants over the full measurement period. Monthly averaged ozone concentrations range from values as low as 15 parts per billion (ppb) during cold-season months, to values approaching 50 ppb during some spring and summer months. Sulfur dioxide (SO2), oxides of nitrogen (NOx), and reactive odd nitrogen (NOy) all show distinct seasonal variation, with summertime monthly averages as low as 1–3 ppb, and wintertime monthly averages from 6–12 ppb. The variation in carbon monoxide (CO) is much smaller, with minimums of approximately 150 ppb and maximums only rarely exceeding 250 ppb. Data for three hydrocarbon species propane, benzene, and isoprene—are presented. Propane and benzene show higher monthly averaged concentrations in the winter and lower values in the summer, with values ranging over a factor of 4–5. Isoprene, on the other hand has much higher values during the summer season, sometimes a factor of 10 or more greater than concentrations measured in the winter. Monthly averaged plots for fine particulate matter (PM2.5) beginning in 1999 show a robust summer maximum and winter minimum, and roughly a factor of two difference between the two. An empirical measure of ozone production using the correlation of hour-averaged ozone and NOy data illustrates relatively robust ozone production during some, but not all, summertime months over the time period. Also, an analysis of the frequency distribution of the hours of maximum ozone concentration shows a strong mid-afternoon peak, as expected, but also a prominent secondary maximum centered around midnight. The secondary peak is interpreted as ozone transported from ozone-producing areas to the west, including Buffalo, Cleveland, Pittsburgh, and the Ohio Valley. Finally, SO2 concentrations as a function of wind direction clearly indicate maximum impacts when the winds are out of the south (Pittsburgh and Philadelphia), with a secondary peak when the winds are from the north-northeast, consistent with the locations of major SO2 emission sources in the region.  相似文献   

18.
Norway spruce saplings [Picea abies (L.) Karst.] were exposed during four growing seasons to two different ozone treatments in open-top chambers: charcoal filtered air (CF), and non-filtered air with extra ozone (NF+, 1.4xambient concentrations). Within each ozone treatment the saplings were either kept well watered or treated with a 7-8 week period with reduced water supply each growing season. The total biomass of the trees was measured in April and September during each of the last three growing seasons. NF+ significantly reduced the total biomass accumulation of Norway spruce saplings during the fourth growing season. No interaction between ozone and reduced water supply could be detected. The magnitude of the ozone impact after 4 years of exposure was an 8% reduction of the total plant biomass and a 1.5% reduction of the RGR. The reduced water supply reduced the total biomass 29% and the RGR 12%.  相似文献   

19.
Among eight commercial Greek varieties of tobacco (Nicotiana tabacum L.) tested for their ozone-sensitivity levels, the Zichnomirodata (KK6/5) variety was found to be the most sensitive, although less sensitive than the well-known super-sensitive Bel-W3. Besides qualitative differences in the appearance of macroscopic symptoms these two varieties can be used simultaneously as a reliable pair of ozone bioindicators. The occurrence of ozone in the Greek countryside was surveyed by biomonitoring in 14 rural regions over the country and by a simultaneous biomonitoring and instrumental recording of ozone concentrations at a single remote side (Pournaria, Arcadia). Phytotoxic symptoms were observed mainly on the leaves of Bel-W3 and occasionally on those of Zichnomirodata varieties, suggesting that ozone levels were high enough to affect at least sensitive species. The instrumental monitoring (during a total period of 912 h) revealed maximum hourly O3 concentration 62 ppb, while the thresholds of 30, 40 and 50 ppb were exceeded for 40%, 20% and 6% of the recording period, respectively. The accumulated exposure over 40 ppb (AOT40) for the daylight hours over the 38 monitored days was 680 ppb h.  相似文献   

20.
Increasing risk for negative ozone impacts on vegetation in northern Sweden   总被引:1,自引:0,他引:1  
Trends were found for increasing surface ozone concentrations during April-September in northern Sweden over the period 1990-2006 as well as for an earlier onset of vegetation growing season. The highest ozone concentrations in northern Sweden occurred in April and the ozone concentrations in April showed a strong increasing trend. A model simulation of ozone flux for Norway spruce indicated that the provisional ozone flux based critical level for forests in Europe is exceeded in northern Sweden. Future climate change would have counteracting effects on the stomatal conductance and needle ozone uptake, mediated on the one hand by direct effect of increasing air temperatures and on the other through increasing water vapour pressure difference between the needles and air. Thus, there is a substantial and increasing risk for negative impacts of ozone on vegetation in northern Sweden, related mainly to increasing ozone concentrations and an earlier onset of the growing season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号