首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A pilot submerged membrane bioreactor coupled with biological nutrient removal was used to treat the primary effluent at a municipal wastewater treatment plant. Long-term experiments were conducted by varying hydraulic retention time from 6 to 8 hours and solids retention time from 20 to 50 days, respectively. The performance was assessed by monitoring key wastewater parameters, including chemical oxygen demand (COD), nitrogen, and phosphorus concentration in individual anoxic, anaerobic, aerobic, and membrane separation zones. Results showed that the tested system can consistently achieve COD, nitrogen, and phosphorus removal efficiencies at 80 to 98%, 70 to 93%, and 89 to 98%, respectively. Effluent COD remained low as a result of efficient solid retention, even though there was great variation in influent quality. However, total nitrogen increased proportionally with influent concentration. At a 50-day solids retention time, higher COD and nitrogen oxides specific utilization rates in the anoxic zone resulted in a high production of nitrogen oxides in the subsequent aerobic zone.  相似文献   

2.
This paper describes results from a pilot study of a novel wastewater treatment technology, which incorporates nutrient removal and solids separation to a single step. The pseudoliquified activated sludge process pilot system was tested on grit removal effluent at flowrates of 29.4 to 54.7 m3/d, three different solid residence times (SRT) (15, 37, and 57 days), and over a temperature range of 12 to 28 degrees C. Despite wide fluctuations in the influent characteristics, the system performed reliably and consistently with respect to organics and total suspended solids (TSS) removals, achieving biochemical oxygen demand (BOD) and TSS reductions of > 96% and approximately 90%, respectively, with BOD5 and TSS concentrations as low as 3 mg/L. Although the system achieved average effluent ammonia concentrations of 2.7 to 3.2 mg/L, nitrification efficiency appeared to be hampered at low temperatures (< 15 degrees C). The system achieved tertiary effluent quality with denitrification efficiencies of 90 and 91% total nitrogen removal efficiency at a total hydraulic retention time of 4.8 hours and an SRT of 12 to 17 days. With ferric chloride addition, effluent phosphorous concentrations of 0.5 to 0.8 mg/L were achieved. Furthermore, because of operation at high biomass concentrations and relatively long biological SRTs, sludge yields were over 50% below typical values for activated sludge plants. The process was modeled using activated sludge model No. 2, as a two-stage system comprised an aerobic activated sludge system followed by an anoxic system. Model predictions for soluble BOD, ammonia, nitrates, and orthophosphates agreed well with experimental data.  相似文献   

3.
The overall objective of this research was to investigate various methods and parameters to increase the efficiency of chemically enhanced primary treatment (CEPT). The performance of CEPT was evaluated based on its efficiency of removal of nonsettleable solids (NSS). Some of the source characteristics that influenced NSS concentration included influent total suspended solids, influent turbidity, and influent total chemical oxygen demand. A higher concentration of the influent constituents led to a higher NSS concentration, suggesting that NSS represented a somewhat fixed fraction or percent of these influent constituents. The specific particle surface area (SPSA) was found to correlate with percent NSS in the effluent. A higher SPSA is a result of smaller-sized nonsettleable colloidal particles, thus leading to an increase in percent NSS. In summary, there are several parameters that affect NSS, which could be used to control NSS to improve CEPT, as demonstrated by this study.  相似文献   

4.
实际污水与模拟污水活性污泥系统的特性差异   总被引:2,自引:0,他引:2  
实验中经常采用人工配置的模拟生活污水,为了研究其与实际生活污水活性污泥系统的特性差异,采用2个序批式间歇反应器(SBR)进行平行实验(厌氧、好氧方式运行),系统地考察了在进水主要组分和运行参数相同的情况下,不同原水对活性污泥系统脱氮、除磷、比好氧速率、污泥絮体形态和出水水质等方面的影响。结果表明,模拟污水系统的硝化活性强于实际污水系统,两者的平均硝化速率分别为7.43 mg NH4+-N/(L.h)和5.55 mg NH4+-N/(L.h)。在前置厌氧段,模拟污水系统的释磷量比实际污水系统高出36.45%。两者在后续好氧阶段都能够充分吸磷。模拟污水系统的平均比好氧速率(SOUR)高达64.54 mg O2/(g MLSS.h),而实际污水系统的则只有32.81 mg O2/(g MLSS.h)。模拟污水系统的污泥絮体疏松,粒径小,形状不规则,沉降性差,沉后出水平均悬浮物浓度(SS)为20 mg/L;而实际污水系统的污泥絮体则密实、粒径大,沉降性好,沉后水十分清澈,SS几乎检测不出。  相似文献   

5.
Iron electrodes were used for electrocoagulation (EC) treatment of wastewater from a dairy plant. Electrolysis time, pH, current density and distance between electrodes were considered to assess the removal efficiency of chemical oxygen demand (COD), total solids (TS) and their fractions and turbidity. Samples were collected from the effluent of a dairy plant using a sampling methodology proportional to the flow. The treatments were applied according to design factorial of half fraction with two levels of treatments and three repetitions at the central point. The optimization of parameters for treating dairy industry effluent by electrocoagulation using iron electrodes showed that electric current application for 15 minutes, an initial sample pH close to neutral (pH 7.0) and a current density of 50 A (.)(m-2) resulted in a significant reduction in COD by 58 %; removal of turbidity, suspended solids and volatile suspended solids by 95 %; and a final treated effluent pH of approximately 9.5. Negative consequences of the type of electrode used were the emergence of an undesirable color and an increase in the proportion of dissolved solids in the treated effluent.  相似文献   

6.
The need to improve on-site wastewater treatment processes is being realized as populations move into more environmentally sensitive regions and regulators adopt the total maximum daily load approach to watershed management. Under many conditions, septic systems do not provide adequate treatment; therefore, advanced systems are required. These systems must remove significant amounts of biochemical oxygen demand (BOD) and suspended solids, and substantially nitrify, denitrify, and remove phosphorus. Many existing advanced on-site wastewater systems effectively remove BOD, suspended solids, and ammonia, but few substantially denitrify and uptake phosphorus. The purpose of this research was to design and test modifications to an existing on-site wastewater treatment system to improve denitrification and phosphorus removal. The Nayadic (Consolidated Treatment Systems, Inc., Franklin, Ohio), an established, commercially available, extended-aeration, activated sludge process, was used to represent a typical existing system. Several modifications were considered based on a literature review, and the option with the best potential was tested. To improve denitrification, a supplemental treatment tank was installed before the Nayadic and a combination flow splitter, sump, and pump box with a recirculation system was installed after it. A recirculation pump returned a high proportion of the system effluent back to the supplemental treatment tank. Two supplemental treatment tank sizes, three flowrates, and three recirculation rates were tested. Actual wastewater was dosed as brief slugs to the system in accordance with a set schedule. Several ion-exchange resins housed in a contact column were tested on the effluent for their potential to remove phosphorus. Low effluent levels of five-day biochemical oxygen demand, suspended solids, and total nitrogen were achieved and substantial phosphorous removal was also achieved using a 3780-L supplemental treatment tank, a recirculation ratio of 5:1, and a fine-grain activated aluminum-oxide-exchange media. Good results were also obtained with an 1890-L supplemental treatment tank and a recirculation ratio of 3:1. The most significant benefit of the supplemental treatment tank, in combination with the recirculation system, appears to be the low nitrogen concentration dosed to the Nayadic. By reducing the nitrogen concentration and spreading out its mass over time during no-flow periods, the Nayadic's inherent low-level denitrifying capacity was more closely matched and effective treatment was achieved.  相似文献   

7.
The purification capacity of the contact stabilisation system at Birzeit University campus has been studied for two years. The oxidation capacity of organic matter, ammonium oxidation, and denitrification potential were determined. The reduction of chemical oxygen demand (COD) was 85%, and the effluent COD concentration was less than 110 mg/l (the average value was 88 mg/l). Suspended solids were removed with equal efficiency. The aerobic stabilization of organic solids was efficient, and no excess biosolids (sludge) had to be removed. High nitrification (70% of the influent nitrogen were nitrified) could be maintained at 15°C, and 42% of the oxidised nitrogen was denitrified. The specific oxygenation capacity of the treatment system is relatively high and reached about 5 kwh/kg COD. The specific wastewater treatment cost is about 0.52 US$/m3 or about 58 US$ per population equivalent per year. Based on the results obtained, batch operation and intermittent aeration of the biological process are suggested to achieve high effluent quality and to reduce power consumption.  相似文献   

8.
Iron electrodes were used for electrocoagulation (EC) treatment of wastewater from a dairy plant. Electrolysis time, pH, current density and distance between electrodes were considered to assess the removal efficiency of chemical oxygen demand (COD), total solids (TS) and their fractions and turbidity. Samples were collected from the effluent of a dairy plant using a sampling methodology proportional to the flow. The treatments were applied according to design factorial of half fraction with two levels of treatments and three repetitions at the central point. The optimization of parameters for treating dairy industry effluent by electrocoagulation using iron electrodes showed that electric current application for 15 minutes, an initial sample pH close to neutral (pH 7.0) and a current density of 50 A . m?2 resulted in a significant reduction in COD by 58 %; removal of turbidity, suspended solids and volatile suspended solids by 95 %; and a final treated effluent pH of approximately 9.5. Negative consequences of the type of electrode used were the emergence of an undesirable color and an increase in the proportion of dissolved solids in the treated effluent.  相似文献   

9.
Efficient nutrient removal in decentralized wastewater treatment systems is a challenging task. To improve the removal of organic matter and nitrogen from wastewater, two types of bioreactors using membrane-aerated biofilm reactor (MABR) and microbial fuel cell (MFC) techniques were evaluated. During more than 250 days of continuous-flow reactor operation, both reactors showed consistently high chemical oxygen demand removal (>86%). At an influent ammonium-nitrogen (NH4(+)-N) concentration of 30 mg N/L, the average effluent NH4(+)-N concentrations were 6.2 and 0.5 mg N/L for the MABR and MFC reactor, respectively, while the effluent nitrate-nitrogen (NO3(-)-N) concentrations were 5.4 mg/ L in the MABR and 19.2 mg/L in the MFC-based reactor. The overall total inorganic nitrogen removal efficiencies were 64% and 36% for the MABR and MFC reactor, respectively. At the measured dissolved oxygen concentrations of 5.2 and 0.23 mg/L in the aerobic/anoxic zone of the MFC and MABR, respectively, a specific oxygen uptake rate of 0.1 g O2/g VSS-d, resulting from ammonia oxidation, was detected in the settled sludge of the MFC, while no nitrifying activity of the sludge from the MABR was detected. Molecular microbial analysis demonstrated a link between the bacterial community structure and nitrifying activity. The relatively high abundance of Nitrosomonas europaea was associated with its detectable nitrification activity in the settled sludge of the MFC. The results suggest that MABR and MFC techniques have the potential to improve organic and nitrogen removal in decentralized wastewater systems.  相似文献   

10.
Anaerobic and aerobic (AnA) and completely aerobic (CA) sequencing-batch reactors (SBRs) were used to investigate the suitability of the AnA process for treating phosphorus (P)-deficient wastewaters with highly variable influent chemical oxygen demand (COD) loading. Both SBRs were subjected to influent COD loading patterns (LPs) that simulated (1) daily COD loading fluctuations, (2) weekend shutdowns, and (3) long weekend or holiday shutdowns. During LP 1, the AnA SBR produced lower average effluent soluble phosphorus concentrations than CA SBR (0.4 vs. 1.0 mgP/L). A similar result was observed during LP 2, but effluent acetate was detected after the first high COD loading cycle of the weekday loading period. During LP 3, the volatile suspended solids content of both reactors dropped sharply, and the effluent quality of both SBRs deteriorated. Model predictions suggest that the AnA process is stable when treating LP 1, but eventually fails when treating LP 2.  相似文献   

11.
A membrane enhanced biological phosphorus removal (MEBPR) process was studied to determine the impact of hydraulic retention time (HRT) and solids retention time (SRT) on the removal of chemical oxygen demand (COD), nitrogen, and phosphorus from municipal wastewater. The MEBPR process was capable of delivering complete nitrification independent of the prevailing operating conditions, whereas a significant improvement in COD removal efficiency was observed at longer SRTs. In the absence of carbon-limiting conditions, the MEBPR process was able to achieve low phosphorus concentrations in the effluent at increasingly higher hydraulic loads, with the lowest HRT being 5 hours. The MEBPR process was also able to maintain optimal phosphorus removal when the SRT was increased from 12 to 20 days. However, at higher suspended solids concentrations, a substantial increase was observed in carbon utilization per unit mass of phosphorus removed from the influent. These results offer critical insights to the application of membrane technology for biological nutrient removal systems.  相似文献   

12.
A combined anaerobic/aerobic sludge digestion system was studied to determine the effect of aerobic solids retention time (SRT) on its solids and nitrogen removal efficiencies. After the anaerobic digester reached steady state, effluent from the anaerobic digester was fed to aerobic digesters that were operated at 2- to 5-day SRTs. The anaerobic system was fed with a mixture of primary and secondary sludge from a local municipal wastewater treatment plant. Both systems were fed once per a day. The aerobic reactor was continuously aerated with ambient air, maintaining dissolved oxygen level at 1.1 +/- 0.3 mg/L. At a 4-day or longer SRT, more than 11% additional volatile solids and 90% or greater ammonia were removed in the aerobic digester, while 32.8 mg-N/L or more nitrite/nitrate also was measured. Most total Kjeldahl nitrogen removal was via ammonia removal, while little organic nitrogen was removed in the aerobic digester.  相似文献   

13.
In this study, a cascade of anoxic and oxic fluidized bed biofilm reactors system was carried out to treat synthetic municipal wastewater. The parameters of the influent flow rates and C/N ratios were discussed. System performance was acceptable for chemical oxygen demand (COD), ammonia, and total nitrogen removal. A decrease of ammonia and total nitrogen removal efficiencies, however, was observed when the influent flow rates increased to 5.04 and 6.12 1 h(-1). Total nitrogen removal decreased at the influent C/N ratio of 3:1. The measured ratios of COD reduction in the anoxic column to nitrogen removal through nitrification-denitrification were 3.7, 3.5, 3.3, and 3.1 g COD/g(-1) N on average when the influent C/N ratios changed from 6:1 to 3:1. The observed sludge yield (Yobs) was 0.169 g VSS g COD(-1) because of perfect denitrification in the anoxic column and the relatively long solids retention time.  相似文献   

14.
The main objective of this study was to investigate the feasibility of coagulation as a post-treatment method of anaerobically treated primary municipal wastewater. Both mesophilic and ambient (20 degrees C) temperature conditions were investigated in a laboratory-scale upflow anaerobic sludge bed (UASB) reactor. In addition, optimization of the coagulant, both in terms of type and dose, was performed. Finally, phosphorus removal by means of aluminum and iron coagulation and phosphorus and ammonia nitrogen removal by means of struvite precipitation were studied. Anaerobic treatment of primary effluent at low hydraulic retention times (less than 15 hours) resulted in mean chemical oxygen demand (COD) removals ranging from 50 to 70%, while, based on the filtered treated effluent, the mean removals increased to 65 to 80%. Alum coagulation of the UASB effluent gave suspended solids removals ranging from approximately 35 to 65%. Turbidity removal reached up to 80%. Remaining COD values after coagulation and settling were below 100 mg/L, while remaining total organic carbon (TOC) levels were below 50 mg/L. Filterable COD levels were generally below 60 mg/L, while filterable TOC levels were below 40 mg/L. All coagulants tested, including prepolymerized aluminum and iron coagulants, demonstrated similar efficiency compared with alum for the removal of suspended solids, COD, and TOC. Regarding struvite precipitation, optimal conditions for phosphorus and nitrogen removal were pH 10 and molar ratio of magnesium: ammonia-nitrogen: phosphate-phosphorus close to the stoichiometric ratio (1:1:1). During struvite precipitation, removal of suspended solids reached 40%, while turbidity removal reached values up to 80%. The removal of COD was approximately 30 to 35%; yet, when removal of organic matter was based on the treated filterable COD, the removal increased to approximately 65%. In addition, nitrogen was removed by approximately 70%, while phosphorus removal ranged between approximately 30 and 45% on the basis of the initial phosphorus concentration. Finally, size fractionation of the organic matter (COD) showed that the various treatment methods were capable of removing different fractions of the organic matter.  相似文献   

15.
An upflow anaerobic sludge blanket (UASB)-anoxicaerobic system was used for treatment of tomato and bean processing wastewater. At various hydraulic retention times, ranging from 0.7 to 5 days, excellent removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total suspended solids (TSS), ammonia-nitrogen (NH4-N), and total Kjeldahl nitrogen was achieved with final effluent BOD/TSS/NH4N concentrations of less than 15/15/1 mg/L. Biogas yield in the UASB reactor varied from 0.33 to 0.44 m3/kgCODremoved. The kinetics of anaerobic treatment were investigated. The yield coefficient was 0.03 gVSS/gCOD; maximum specific growth rate was 0.24 day(-1); Monod half velocity constant was 135 mgCOD/L; and specific substrate utilization rate was 3.25 gCOD/gVSS x d. Nitrification and denitrification kinetics were studied in batch experiments, and the rates were comparable with those in the continuous flow system.  相似文献   

16.
A pilot study was performed over 91 days to determine if the activated sludge process could treat a segregated stripped sour water (SSW) stream from a petroleum refinery. The study was performed in two periods. The first period was terminated after 19 days, as a result of excessive sludge bulking. The elimination of sludge bulking during the 70-day second period is attributed to operational changes, which included aerating the influent to oxidize reduced sulfur, adjusting the influent pH, and adding micronutrients to satisfy biological requirements. The pilot plant provided a chemical oxygen demand (COD) removal of up to 93%. Nitrification was achieved, with effluent ammonia values < 1 mg-N/L. These results indicate that direct treatment of SSW with the activated sludge process is possible and has direct application to full-scale petroleum refinery wastewater plant upgrades.  相似文献   

17.
The objective of this research was to modify an extended detention basin to provide batch treatment of stormwater runoff. An automated valve/controller was developed and placed on the outlet of a detention basin in Austin, Texas, which allowed the water quality volume to be retained in the basin for a preset length of time. The influent and effluent of the modified basin were monitored for total suspended solids (TSS), nutrients, chemical oxygen demand (COD), and total and dissolved metals. Statistically significant removal of total metals, COD, total nitrogen, total phosphorus, and TSS was observed, with a discharge event mean TSS concentration of 7 mg/L and a TSS removal efficiency of 91%. The modified basin has substantially better pollutant removal than conventional extended detention basins and is comparable with that of Austin sand filters, which are a common structural stormwater treatment system in the Austin area. The valve also can be used to isolate hazardous material spills.  相似文献   

18.
The physical and chemical qualities of the process effluent and the tailings dam wastewater of AngloGold-Ashanti Limited, a gold mining company in Ghana, were studied from June to September, 2010. The process effluent from the gold extraction plant contains high amounts of suspended solids and is therefore highly turbid. Arsenic, copper and cyanide were identified as the major pollutants in the process effluent with average concentrations of 10.0, 3.1 and 21.6 mg?L?1, respectively. Arsenic, copper, iron and free cyanide (CN?) concentrations in the process effluent exceeded the Ghana EPA discharge limits; therefore, it is necessary to treat the process effluent before it can be discharged into the environment. Principal component analysis of the data indicated that the process effluent characteristics were influenced by the gold extraction process as well as the nature of the gold-bearing ore processed. No significant correlation was observed between the wastewater characteristics themselves, except for the dissolved oxygen and the biochemical oxygen demand. The process effluent is fed to the Sansu tailings dam, which removes 99.9 % of the total suspended solids and 99.7 % of the turbidity; but copper, arsenic and cyanide concentrations were still high. The effluent produced can be classified as inorganic with a high load of non-biodegradable compounds. It was noted that, though the Sansu tailings dam stores the polluted effluent from the gold extraction plant, there will still be serious environmental problems in the event of failure of the dam.  相似文献   

19.
The present study sought to examine the performance of six different wastewater treatment processes from 12 wastewater treatment plants using a toxicogenomic approach in rainbow trout hepatocytes. Freshly prepared rainbow trout hepatocytes were exposed to increasing concentrations of influent (untreated wastewaters) and effluent (C18) extracts for 48 h at 15 °C. A test battery of eight genes was selected to track changes in xenobiotic biotransformation, estrogenicity, heavy metal detoxification, and oxidative stress. The wastewaters were processed by six different treatment systems: facultative and aerated lagoons, activated sludge, biological aerated filter, biological nutrient removal, chemically assisted primary treated, and trickling filter/solids contact. Based on the chemical characteristics of the effluents, the treatment plants were generally effective in removing total suspended solids and chemical oxygen demand, but less so for ammonia and alkalinity. The 12 influents differed markedly with each other, which makes the comparison among treatment processes difficult. For the influents, both population size and flow rate influenced the increase in the following mRNA levels in exposed hepatocytes: metallothionein (MT), cytochrome P4503A4 (CYP3A4), and vitellogenin (VTG). Gene expression of glutathione S-transferase (GST) and the estrogen receptor (ER), were influenced only by population size in exposed cells to the influent extracts. The remaining genes—superoxide dismutase (SOD) and multidrug resistance transporter (MDR)—were not influenced by either population size or flow rate in exposed cells. It is noteworthy that the changes in MT, ER, and VTG in cells exposed to the effluents were significantly affected by the influents across the 12 cities examined. However, SOD, CYP1A1, CYP3A4, GST, and MDR gene expression were the least influenced by the incoming influents. The data also suggest that wastewater treatments involving biological or aeration processes had the best performance. We found that the effects of municipal effluents on gene expression depended on the population size, the initial properties of the incoming influent, and the wastewater treatment method applied. Considering that the long-term goals of wastewater treatment is to produce clean effluents for the aquatic biota and independent of the incoming influent, more research is needed in developing treatment processes to better protect aquatic life from anthropogenic contamination.  相似文献   

20.
颗粒污泥与絮状污泥处理垃圾渗滤液的耐盐性能比较   总被引:1,自引:0,他引:1  
通过批次实验系统研究了好氧颗粒污泥和絮状污泥处理垃圾渗滤液时的耐盐性能。实验结果表明,进水含盐量小于10 000 mg/L时,实验所用好氧颗粒污泥和絮状污泥的有机物去除能力、沉降性能、污泥活性基本上不受进水含盐量变化的影响。当进水含盐量大于10 000 mg/L时,随着进水含盐量的增大,絮状污泥的污泥沉降指数(SVI)快速减小,污泥活性及去除有机物的能力下降;相比而言,好氧颗粒污泥沉降性能更为稳定,SVI基本维持在30 mL/g左右,污泥活性及去除有机物的能力缓慢下降。当进水含盐量重新降低时,好氧颗粒污泥沉降性能变化不大,污泥活性及去除有机物的能力恢复迅速;而絮状污泥沉降性能变差,污泥活性及去除有机物的能力仍受较大抑制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号