首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 114 毫秒
1.
Previous workers have shown that selenium is only partially trapped on a filter during air sampling. In some cases, these losses have been attributed to volatilization of selenium dioxide. Our results demonstrate that selenium dioxide, in the presence of moist air, is completely recovered (apparently as selenious acid aerosols) and that the previous shortfalls must be due to other selenium species as yet unidentified. Selenious acid aerosols in our study were formed by volatilizing selenium dioxide (approximately 3 mg) into a stream of moist ambient air (relative humidity, greater than 50%), and trapped on glass fiber filters using a high-volume air sampler. Selenium(IV) was ultrasonically extracted from the filter with water and analyzed by atomic absorption spectrometry. Selenious acid aerosols were trapped on the filters with high efficiency (105 +/- 5 percent) using a 50 minute sampling period. With an extended sampling period (24 hours) the recovery was 103 +/- 6 percent.  相似文献   

2.
Ambient carbonaceous material collected on quartz filters is prone to measurement artifacts due to material gained or lost during post-sampling field latency, shipping, and storage. In seventeen sampling events over a one year period, ambient PM2.5 aerosols were collected on quartz filters (without denuders) and subjected to various filter treatments to assess the potential for and extent of artifacts. The filter treatments simulated post-sampling environments that filters may be exposed to and included: storage at 40 °C for up to 96 h, storage at ?16 °C for 48 h, and storage at room temperature (~21 °C) for 48 h. Carbon mass on the filters was measured using a thermal-optical method. The total carbon (TC), total organic carbon (TOC) and total elemental carbon (TEC) as well as carbon thermal fraction masses were obtained. Statistical analyses were performed to identify significant differences in carbon fraction concentrations between filters analyzed immediately after sampling and after being subjected to treatment.TOC and TC concentrations decreased by on average 15 ± 5% and 10 ± 4%, respectively, for filters maintained at 40 °C for 96 h but did not change for filters stored at room temperature or frozen for 48 h. TEC did not change for any of the filter treatments. The mass concentration for the organic carbon thermal fraction that evolves at the lowest temperature step (OC1) decreased with increasing storage time at 40 °C with average losses of 70 ± 7% after 96 h. Therefore, OC1 is not a stable measurement due to post-sampling conditions that may be encountered. This work demonstrates that TOC and TC can have substantial measurement artifacts on filters subjected to field latency and other non-temperature controlled post-sampling handling, compared to the carbon loadings on the filter at the end of the sampling period.  相似文献   

3.
An investigation of high volume particle sampling and sample handling procedures was undertaken to evaluate variations of protocols being used by the U.S. Environmental Protection Agency. These protocols are used in urban ambient air studies which collect ambient and source samples for subsequent mutagenicity analysis of the organic extracts of the aerosol fraction. Specific protocol issues investigated include: (a) duration of sampling period, (b) type of filter media used to collect air particles, (c) necessity for cryogenic field site storage and dry ice shipping of filter samples, and (d) sample handling at the receiving laboratory. Six PM10 Hi-Vol samplers were collocated at an urban site in downtown Durham, North Carolina and operated simultaneously to evaluate 12 h versus 24 h collection periods and filter media choices of glass fiber, Teflon® impregnated glass fiber (TIGF), and quartz fiber. Filters from the samplers plus field blanks were collected during each of 25 sampling periods. TIGF filters from two samplers were immediately placed on dry ice in the field and transported directly to cryogenic storage. TIGF, quartz, and glass fiber filters from three samplers were transported at ambient and maintained at room temperature for three to six days prior to cryogenic storage. One TIGF sample, which was collected on a previously tared filter, was subjected to controlled environment equilibration (40 percent relative humidity, 22°C) for 8 to 24 h and weighed prior to cryogenic storage. All filters were subsequently stored at ?70°C to ?80°C prior to a one-time extraction and Salmonella (Ames) mutagenicity bioassay of the entire sample set. Results indicate that the sample handling variations and collection period variables had no significant effect on recovery of organics or mutagens. However, a filter type difference was observed. The sonication extraction of organics and mutagens was significantly greater for TIGF filters than for glass fiber or quartz. Results from a second phase of study indicated differences in extracted organics and mutagens for these filter types.  相似文献   

4.
This study performed a workplace evaluation of emission control using available air sampling filters and characterized the emitted particles captured in filters. Characterized particles were contained in the exhaust gas released from carbon nanotube (CNT) synthesis using chemical vapor deposition (CVD). Emitted nanoparticles were collected on grids to be analyzed using transmission electron microscopy (TEM). CNT clusters in the exhaust gas were collected on filters for investigation. Three types of filters, including Nalgene surfactant-free cellulose acetate (SFCA), Pall A/E glass fiber, and Whatman QMA quartz filters, were evaluated as emission control measures, and particles deposited in the filters were characterized using scanning transmission electron microscopy (STEM) to further understand the nature of particles emitted from this CNT production. STEM analysis for collected particles on filters found that particles deposited on filter fibers had a similar morphology on all three filters, that is, hydrophobic agglomerates forming circular beaded clusters on hydrophilic filter fibers on the collecting side of the filter. CNT agglomerates were found trapped underneath the filter surface. The particle agglomerates consisted mostly of elemental carbon regardless of the shapes. Most particles were trapped in filters and no particles were found in the exhaust downstream from A/E and quartz filters, while a few nanometer-sized and submicrometer-sized individual particles and filament agglomerates were found downstream from the SFCA filter. The number concentration of particles with diameters from 5 nm to 20 µm was measured while collecting particles on grids at the exhaust piping. Total number concentration was reduced from an average of 88,500 to 700 particle/cm3 for the lowest found for all filters used. Overall, the quartz filter showed the most consistent and highest particle reduction control, and exhaust particles containing nanotubes were successfully collected and trapped inside this filter.

Implications: As concern for the toxicity of engineered nanoparticles grows, there is a need to characterize emission from carbon nanotube synthesis processes and to investigate methods to prevent their environmental release. At this time, the particles emitted from synthesis were not well characterized when collected on filters, and limited information was available about filter performance to such emission. This field study used readily available sampling filters to collect nanoparticles from the exhaust gas of a carbon nanotube furnace. New agglomerates were found on filters from such emitted particles, and the performance of using the filters studied was encouraging in terms of capturing emissions from carbon nanotube synthesis.  相似文献   

5.
ABSTRACT

Because the Federal Reference Method for PM25 specifies the collection of ambient particles on Teflon filters, we have examined the loss of a known volatile species, particulate nitrate, during sampling. Data are presented from two studies in southern California for which parallel samples were collected by different methods. Differences in collected nitrate are modeled using an evaporation model based on the work of Zhang and McMurry. The average nitrate obtained from sampling with Teflon filters was 28% lower on average than that measured by denuded nylon filters. In contrast, cascade impactor samples were within 5% of the denuded nylon filter on average. A simple model is presented that accounts for the particulate nitrate loss from Teflon filters either by scavenging nitric acid and ammonia in the sampler inlet or by heating the filter substrate during sampling. The observed magnitude of loss is explained by any of the following situations: (1) 100% nitric acid and ammonia vapor loss in the inlet, (2) 5 °C heating of the filter substrate above ambient temperature during sampling, or (3) a combination of these factors, such as 50% vapor loss in the inlet and 3 °C heating of the filter.  相似文献   

6.
Laboratory and field experiments were performed to evaluate integrative measurement methods for atmospheric nitrates, sulphate and sulphur dioxide. Denuder tubes and several filter media were tested under laboratory and field conditions. Effects of sampling variables such as temperature and relative humidity, flow rates, concentration, loading capacity and artifacts due to NO, NO2 and SO2 were also evaluated. The integrative filter sampling method and the ion chromatographic analytical procedure gave a measurement precision (relative standard deviation) of ±11.5 percent for particulate NO3 ? on Teflon and ±15.6 percent for gaseous HNO3 on nylon; for both these constituents, the detection limit was about 0.1 μ m?3.  相似文献   

7.
As part of an international research project, aerosol samples were collected by several filter-based devices on Nuclepore polycarbonate membrane, Teflon membrane and quartz fibre filters over separate daylight periods and nights, and on-line aerosol measurements were performed by TEOM and aethalometer within an urban canyon (kerbside) and at a near-city background site in Budapest, Hungary from 23 April–5 May 2002. Aerosol masses in PM2.0, PM10–2.0, PM2.5, PM10 size fractions and of TSP were determined gravimetrically; atmospheric concentrations of organic (OC) and elemental carbon (EC) for PM2.5 (or PM2.0), PM10 fractions and for TSP were measured by thermal–optical transmission method. Repeatability of the mass determination by Nuclepore filters seems to be 5–6%. Collections on Teflon filters yielded smaller mass on average by 8(±12)% than that for the Nuclepore filters. Quartz filters overestimated the PM10 mass in comparison with the Nuclepore filters due primarily to sampling artefacts on average by 10(±16)% at the kerbside. Tandem filter set-ups were utilised for correcting the sampling artefacts for OC by subtraction method. At the kerbside, the aerosol mass was made up on average of 35(±4)% of organic matter (OM) in the PM10 fraction, while the contribution of OM to the PM2.5 mass was 43(±9)%. At the background, OM also accounted for 43(±13)% of the PM2.0 mass. On average, EC made up 14(±6)%, 7(±2)% and 4.5(±1.1)% of the mass in the PM2.5, PM10 fractions and TSP, respectively, at the kerbside; while its contribution was only 2.1(±0.5)% in the PM2.0 fraction in the near-city background. Temporal variability for PM mass, OC and EC concentrations was related to road traffic, local meteorology and long-range transport of air masses. It was concluded that a direct coupling between the atmospheric concentration levels and vehicle circulation can be identified within the urban canyon, nevertheless, the local meteorology in particular and long-range transport of air masses have much more influence on the air quality than changes in the source intensity of road traffic. Concentration ratios of OC/EC were evaluated, and the amount of secondary organic aerosol (SOA) was estimated by using EC as tracer for the primary OC emissions. Mean contribution and standard deviation of the SOA to the OM in the PM2.5 size fraction at the kerbside over daylight periods and nights were of 37(±18) and 46(±16)%, respectively.  相似文献   

8.
Fiber filters commonly used to collect aerosols for various analyses also collect gaseous organic chemicals during sampling. These sorbed chemicals can lead to serious artifacts, particularly when analyzing aerosols for organic compounds and organic carbonaceous material. To date, this sorption process has only been looked at for a few types of filters and compound classes. This work presents a comprehensive study of this sorption process for various, widely used fiber filters and a broad variety of compound classes. Furthermore, important factors have been investigated, including relative humidity, temperature, baking and exposure to ambient air during sampling. From these data, poly-parameter linear-free energy relationships were derived that allow for estimations of sorption constants of gaseous organic compounds on different filter types. Based on the results, recommendations are provided to help predict, minimize and ensure reproducibility of artifacts caused by gaseous organic compounds sorbing to fiber filters.  相似文献   

9.
In this study, a “modified” mixed cellulose ester (MCE) filter culturing method (directly placing filter on agar plate for culturing without extraction) was investigated in enumerating airborne culturable bacterial and fungal aerosol concentration and diversity both in different environments. A Button Inhalable Sampler loaded with a MCE filter was operated at a flow rate of 5 L/min to collect indoor and outdoor air samples using different sampling times: 10, 20, and 30 min in three different time periods of the day. As a comparison, a BioStage impactor, regarded as the gold standard, was operated in parallel at a flow rate of 28.3 L/min for all tests. The air samples collected by the Button Inhalable Sampler were directly placed on agar plates for culturing, and those collected by the BioStage impactor were incubated directly at 26 °C. The colony forming units (CFUs) were manually counted and the culturable concentrations were calculated both for bacterial and fungal aerosols. The bacterial CFUs developed were further washed off and subjected to polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) for diversity analysis. For fungal CFUs, microscopy method was applied to studying the culturable fungal diversity obtained using different methods. Experimental results showed that the performance of two investigated methods varied with sampling environments and microbial types (culturable bacterial and fungal aerosols). For bacterial aerosol sampling, both methods were shown to perform equally well, and in contrast the “modified” MCE filter method was demonstrated to enumerate more culturable fungal aerosols than the BioStage impactor. In general, the microbial species richness (number of gel bands) was observed to increase with increasing collection time. For both methods, the DGGE gel patterns were observed to vary with sampling time and environment despite of similar number of gel bands. In addition, an increase in sampling time from 20 to 30 min was found not to substantially alter the species richness. Regardless of the sampling methods, more species richness was observed in the outdoor environment than the indoor environment. This study described a new personal bioaerosol exposure assessment protocol, and it was demonstrated applicable in monitoring the personal bioaerosol exposure in replace of an Andersen-type impactor.  相似文献   

10.
An investigation of high volume particle sampling and sample handling procedures was undertaken to evaluate variations of protocols being used by the U.S. Environmental Protection Agency. These protocols are used in urban ambient air studies which collect ambient and source samples for subsequent mutagenicity analysis of the organic extracts of the aerosol fraction. Specific protocol issues investigated include: (a) duration of sampling period, (b) type of filter media used to collect air particles, (c) necessity for cryogenic field site storage and dry ice shipping of filter samples, and (d) sample handling at the receiving laboratory. Six PM10 Hi-Vol samplers were collocated at an urban site in downtown Durham, North Carolina and operated simultaneously to evaluate 12 h versus 24 h collection periods and filter media choices of glass fiber, Teflon impregnated glass fiber (TIGF), and quartz fiber. Filters from the samplers plus field blanks were collected during each of 25 sampling periods. TIGF filters from two samplers were immediately placed on dry ice in the field and transported directly to cryogenic storage. TIGF, quartz, and glass fiber filters from three samplers were transported at ambient and maintained at room temperature for three to six days prior to cryogenic storage. One TIGF sample, which was collected on a previously tared filter, was subjected to controlled environment equilibration (40 percent relative humidity, 22 degrees C) for 8 to 24 h and weighed prior to cryogenic storage. All filters were subsequently stored at -70 degrees C to -80 degrees C prior to a one-time extraction and Salmonella (Ames) mutagenicity bioassay of the entire sample set.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Based on laboratory studies, recovery efficiencies of sulfur dioxide (SO2) were determined for nylon filters. The nylon filters used in these experiments were found to retain SO2. A relatively uniform amount (1.7%) was recoverable from each nylon filter, independent of relative humidity. An appreciable portion of SO2 was unrecoverable, and this increased from 5 to 16% as the RH increased from 28 to 49%. This unrecoverable SO2 may account for previous reports of a low bias for SO2 determinations employing filter packs using nylon filters. Additional characterization of nylon filters is recommended prior to their future deployment as an integrative sampling medium for ambient air.  相似文献   

12.
Abstract

A new triple filter system sampler/model is proposed for the precise and accurate simultaneous sampling and determination of gas- and aerosol-phase 2,4-toluene diisocyanate (TDI). The system consists of two front Teflon filters for sampling aerosol-phase TDI and a final coated glass fiber filter to collect gas-phase TDI. The aerosol-phase TDI is collected on the first Teflon filter, while the second Teflon filter is used to estimate gaseous TDI adsorbed by the first. According to the gas adsorption test of two Teflon filters in series, the TDI gas adsorption fraction of the two filters is almost the same. Results of the evaporation test using pure TDI aerosols collected on the Teflon filter show that significant evaporation of the compound does not occur during sampling. These two findings allow the use of a model to estimate accurate gasand aerosol-phase TDI concentrations. The comparison test with an annular denuder shows that the triple filter system can minimize the TDI sampling bias between the dual filter and the annular denuder systems.  相似文献   

13.
A new triple filter system sampler/model is proposed for the precise and accurate simultaneous sampling and determination of gas- and aerosol-phase 2,4-toluene diisocyanate (TDI). The system consists of two front Teflon filters for sampling aerosol-phase TDI and a final coated glass fiber filter to collect gas-phase TDI. The aerosol-phase TDI is collected on the first Teflon filter, while the second Teflon filter is used to estimate gaseous TDI adsorbed by the first. According to the gas adsorption test of two Teflon filters in series, the TDI gas adsorption fraction of the two filters is almost the same. Results of the evaporation test using pure TDI aerosols collected on the Teflon filter show that significant evaporation of the compound does not occur during sampling. These two findings allow the use of a model to estimate accurate gas- and aerosol-phase TDI concentrations. The comparison test with an annular denuder shows that the triple filter system can minimize the TDI sampling bias between the dual filter and the annular denuder systems.  相似文献   

14.
Atmospheric concentrations are reported for the main component of the brominated flame retardant decaBDE (BDE-209) in air samples collected from Southern Ontario for the period January 23-June 06, 2002. Levels ranged from below detection to 105pgm(-3) with virtually all of BDE-209 being trapped by the filter and thus deduced to be sorbed to aerosol particles. Thus, it is likely that the long-range atmospheric transport (LRAT) of BDE-209 is controlled by the transport characteristics of the aerosols. This conclusion that BDE-209 does not have the same potential for LRAT as other more volatile PBDEs is subject to possible complications arising from the uncertainties about the LRAT potential of aerosols.  相似文献   

15.
Tests were conducted to determine the limitations of glass fiber filters in sampling atmospheric hydrogen fluoride. Filters without latex binder were more efficient collectors than those with the binder. Up to 75 μg F/in.2 of filter area was collected by a single filter before the loss reached 5 percent. Two filters, one behind the other, collected over 250 μg F/in.2 of filter area before loss through them reached five percent. By controlling the sampling rate and time to avoid exceeding the saturation limit, it is possible to use glass fiber filters for sampling over a wide range of fluoride concentrations.  相似文献   

16.
Simultaneous continuous measurements of PM2.5, PM10, black carbon mass (BCae), Black smoke (BS) and particle number density (N) were conducted in the close vicinity of a high traffic road around Paris during a three-month period beginning in August 1997. In parallel some aerosol collection was performed on filters in order to assess the black carbon (BC), organic carbon (OC) and water soluble organic fractions (WSOC) of the freshly emitted traffic aerosols. The high hourly concentrations of PM2.5 (39±20 μg m−3), BCae (14±7 μg m−3), and N (220,000±115,000 cm−3), were found to be well correlated with each other. On average PM2.5 represented 66±13% of PM10 and appears to be composed primarily of BC (43±20%). On the contrary no correlation was found between PM2.5 and the coarse (PM10–PM2.5) mass fractions which was attributed to resuspension processes by vehicles. Black carbon mass concentrations obtained from both filter analyses (BC) and Aethalometre data (BCae) show a good agreement suggesting that the Aethalometre calibration based on a black carbon specific attenuation coefficient (σ) of 19 m2 g−1 is well adapted to nearby roadside measurements. Daily BC (used as a surrogate for fine particles) concentrations and wind speed were found to be anti-correlated. Average daily variations of BC could be related to traffic intensity and regime as well as to the boundary layer height. As expected for freshly emitted traffic aerosols, filter analyses indicated a high BC/TC ratio (29±5%) and a low mean WSOC/OC ratio (12.5±5%) for the bulk aerosol. For these two ratios no day/night differences were observed, the sampling station being probably too close to traffic to evidence photochemical modification of the aerosol phase. Finally, a linear relationship was found between BC and BS hourly concentrations (BC=0.10×BS+1.18; r2=0.93) which offers interesting perspectives to retrieve BC concentrations from existing BS archives.  相似文献   

17.
Experimental measurements of ammonia, acid gases, and the inorganic components of atmospheric aerosols were made at a commercial hog farm in eastern North Carolina from May 1998 to June 1999 by an annular denuder system (ADS). The ADS consisted of a cyclone separator, one diffusion denuder coated with sodium carbonate, another diffusion denuder with citric acid, and a filter pack containing Teflon and nylon filters in series. The equilibrium time constant for transfer between ammonia, acid gases, and aerosol phase of ammonium nitrate and ammonium chloride was determined based on kinetic rate constants (kN as the rate constant of ammonium nitrate aerosol: 2.04 × 10-4 m³/µmole/sec; kCl as the rate constant of ammonium chloride aerosol: 3.44 × 10-4 m³/µmole/sec) and the observed inorganic components of atmospheric aerosols. The equilibrium time constant was determined based on kinetic rate constants and the observed inorganic components of atmospheric aerosols. The equilibrium time constant has a wide range of values, with an average value of 15.26 (±10.94) minutes for ambient equilibrium time between ammonia, nitric acid gas and ammonium nitrate aerosol; and 8.22 (±6.81) minutes for ammonia, hydrochloric acid, and ammonium chloride. Significant correlations were determined between comparisons of equilibrium time constant estimates with meteorological parameters, such as ambient temperature and relative humidity. The predicted chemical compositions in the particle by EQUISOLV II Model are in good agreement with the observed chemical composition at the experimental site.  相似文献   

18.
PM2.5 and size-segregated aerosols were collected in May 2002 as part of the Bay Regional Atmospheric Chemistry Experiment (BRACE), Florida, USA. Aerosol organic composition was used to estimate sources of a series of alkanes and polycyclic aromatic hydrocarbons (PAHs) using chemical indices, hierarchical cluster analysis (HCA) and a chemical mass balance receptor model (CMB). Aerosols were collected on quartz fiber filters (QFF) using a PM2.5 high volume sampler and on aluminum foil discs using a Micro-Orifice Uniform Deposit Impactor (MOUDI, 50% aerodynamic cut diameters were 18, 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.315 and 0.171 μm). Target compounds included alkanes and PAHs and were solvent extracted using a mixture of dichloromethane, acetone and hexane, concentrated and then analyzed using a gas chromatograph/mass spectrometer (GC/MS). The target compounds in PM2.5 were dominated by six sources during the study period: mobile sources (39±5%), coal burning (33±5%), biogenic primary emission (20±2%), oil combustion (5±2%), biomass burning (1.0±0.3%) and an unidentified source (3±2%). Results obtained from the chemical indices, HCA and CMB were in very good agreement with each other. PAH size distributions are presented for days dominated by a same source. Seventy-five percent and 50% of the PAH were found below 1.8 and 0.56 μm, respectively (monthly PAH geometric diameters averaged 0.43 μm). Coarse size PAHs were observed on 1 day (15 May) and were correlated with nitrate and sodium size distribution. It is hypothesized that the PAHs, sodium and nitrate were internally mixed and that the PAHs deposited onto a pre-existing marine aerosol. This transfer process has significant implications for PAH deposition and lifetime and warrants further study.  相似文献   

19.
For high volume air sampling, New York State uses a random once every six days schedule. To avoid double travel, this usually requires leaving filters mounted for five days before the actual sampling period of 24 hr. The starting and stopping of the sampling is controlled by a 7 day timer. (At the maximum, it is possible that a filter could be in place for 10 days with the motor idle.) The purpose of this investigation was to determine whether the filter collects a significant weight of particulate matter during the period the motor is idle, and what effect the collected windborne particulate matter has on computed TSP concentrations.  相似文献   

20.
Adsorption and desorption properties of the dust accumulated on air filters were examined by using a small-scale test apparatus with model compounds. The dust samples were loaded with the model compounds either by adsorption from a constant concentration in air flow or by direct injection into the dust. Desorption was measured at three different relative humidities of air (4–5%, 40–50%, 70–80%). Results indicated that constant relative humidity (RH) of air did not affect the rate of desorption in the test conditions. However, an increase in humidity substantially increased desorption of the model compounds. Similar results were obtained when experiments were conducted using dirty filters without added model compounds. In addition, emission products from clean and dusty filter materials were analyzed at two temperatures (50°C and 100°C) by using an automatic thermodesorption device. The main compounds released were carboxylic acids, aldehydes and terpenes. The emission profiles were similar for the pre-filters and main filters, but the emissions were higher from pre-filters than from the main filters. This result is consistent with the earlier findings of higher odor emissions from pre-filters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号