首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The 1977 and 1990 Amendments to the Clean Air Act call for visibility and atmospheric deposition monitoring throughout the United States. We compare sulfate and nitrate particle mass concentrations measured by two regional air quality networks, the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network and the Clean Air Status and Trends Network (CASTNet), or CASTNet Deposition Network (CDN). The intent of this comparison is to quantify bias that may be introduced from differences in the respective network's sampling protocols. A number of sampling protocol differences exist between the two networks that may lead to sampling bias, particularly for particle NO3. Observed differences between particle SO42− mass concentrations reported by the two monitoring networks are generally small, yet statistically significant at many comparison sites. Differences between particle NO3 mass concentrations are substantial, statistically significant at nearly all comparison sites, and the bias magnitude varies by geographic region. Differences in particle NO3, based on data from monitoring sites selected for this comparison, are 40% in the west, 56% in the interior desert/mountain region, and −9% in the east, expressed as the IMPROVE mean subtracted from the CDN mean, as a percent of the IMPROVE mean. Comparisons are made using data from 23 locations where monitoring sites from IMPROVE and CDN are within approximately 50 km.  相似文献   

2.
A collocated, dry deposition sampling program was begun in January 1987 by the US Environmental Protection Agency to provide ongoing estimates of the overall precision of dry deposition and supporting data entering the Clean Air Status and Trends Network (CASTNet) archive. Duplicate sets of dry deposition sampling instruments were installed adjacent to existing instruments and have been operated for various periods at 11 collocated field sites. All sampling and operations were performed using standard CASTNet procedures. The current study documents the bias-corrected precision of CASTNet data based on collocated measurements made at paired sampling sites representative of sites across the network. These precision estimates include the variability for all operations from sampling to data storage in the archive. Precision estimates are provided for hourly, instrumental ozone (O3) concentration and meteorological measurements, hourly model estimates of deposition velocity (Vd) from collocated measurements of model inputs, hourly O3 deposition estimates, weekly filter pack determinations of selected atmospheric chemical species, and weekly estimates of Vd and deposition for each monitored filter pack chemical species and O3.Estimates of variability of weekly pollutant concentrations, expressed as coefficients of variation, depend on chemical species: NO3∼8.1%; HNO3∼6.4%; SO2∼4.3%; NH4+∼3.7%; SO42−∼2.3%; and O3∼1.3%. Precision of estimates of weekly Vd from collocated measurements of model inputs also depends on the chemical species: aerosols ∼2.8%; HNO3∼2.6%; SO2∼3.0%; and O3∼2.0%. Corresponding precision of weekly deposition estimates are: NO3∼8.6%; HNO3∼5.2%; SO2∼5.6%; NH4+∼3.9%; SO42−∼3.5%; and O3∼3.3%. Precision of weekly concentration, Vd estimates, and deposition estimates are comparable in magnitude and slightly smaller than the corresponding hourly values. Annual precision estimates, although uncertain due to their small sample size in the current study, are consistent with the corresponding weekly values.  相似文献   

3.
ABSTRACT

A predominantly rural ozone monitoring network was operated under the auspices of the Clean Air Status and Trends Network (CASTNet) from 1988 until 1995. Ozone data from sites in the eastern United States are presented and several indices are used to describe the spatial and temporal distribution of ozone concentration and exposure. These indices are SUM06, W126, the 8-hour rolling average (MAX8hr>80), and the current National Ambient Air Quality Standards (NAAQS) for ozone. Ozone indices were selected to illustrate the spatial and temporal distribution of ozone, and the sensitivity of this distribution to different representations of concentration or exposure.

CASTNet is unique in that a uniform set of site selection criteria and uniform procedures, including traceability to a single primary standard, provide a high degree of comparability across sites. Sites were selected to avoid undue influence from point sources, area sources, or local activities. The sites reflect a wide range of land use and terrain types including agricultural and forested, in flat, rolling, and complex terrain from the eastern seaboard across the Appalachian Mountains to the Midwest.

Results indicate that ozone concentrations varied greatly in time and space across the eastern United States. Sites in the upper northeast, upper midwest, and southern periphery subregions experienced relatively low ozone during the years of record compared to sites in the northeast, midwest, and south central subregions. Ozone exposures at an individual rural site are dependent on many factors, including terrain, meteorology, and distance from sources of precursors. Relative to the current (as of 1996) NAAQS, only a handful of CASTNet sites near major urban areas report exceedances. In contrast, the majority of CASTNet sites might exceed the proposed new primary standard for ozone.

Sites at high elevation (>900m) in the east exhibit relatively high exposure statistics (e.g., SUM06 and W126), but no exceedance of the current ozone standard from 1988 through 1995. Terrain effects explain some of the variability within subregions and are an important consideration in the design of monitoring networks for ozone and possibly other pollutants.  相似文献   

4.
A goal of the acidic deposition control program in the United States has been to link emissions control policies, such as those mandated under Title IV of the US Clean Air Act Amendments (CAAA) of 1990, to improvements in air and water quality. Recently, several researchers have reported trends in the time series of pollutant data in an effort to evaluate the effectiveness of the CAAA in reducing the acidic deposition problem. It is well known that pollutant concentrations are highly influenced by meteorological and climatic variations. Also, spatial and temporal inhomogeneities in time series of pollutant concentrations, induced by differences in the data collection, reduction, and reporting practices, can significantly affect the trend estimates. We present a method to discern breaks or discontinuities in the time series of pollutants stemming from emission reductions in the presence of meteorological and climatological variability. Using data from a few sites, this paper illustrates that linear trend estimates of concentrations of SO2, aerosol SO42−, and precipitation-weighted SO42− and NO3 can be biased because of such complex features embedded in pollutant time series.  相似文献   

5.
A 14-week filter pack (FP) sampler evaluation field study was conducted at a site near Bondville, IL to investigate the impact of weekly sampling duration. Simultaneous samples were collected using collocated filter packs (FP) from two independent air quality monitoring networks (CASTNet and Acid-MODES) and using duplicate annular denuder systems (ADS). Precision estimates for most of the measured species are similar for weekly ADS and composited FPs. There is generally good agreement between the weekly CASTNet FP results aggregated from weekly daytime and weekly nighttime samples and those aggregated from daily 24 h Acid-MODES samples; although SO2 is the exception, and CASTNet concentrations are higher than Acid-MODES. Comparison of weekly ADS results with composited weekly FP results from CASTNet shows good agreement for SO2-4. With the exception of the two weeks where the FP exceeded the ADS, both HNO3 and the sum of particulate and gaseous NO-3 show good agreement. The FP often provides good estimates of HNO3, but when used to sample atmospheres that have experienced substantial photochemical reactivity, FP HNO3 determinations using nylon filters may be biased high. It is suggested that HNO2 or some other oxidized nitrogen compound can accumulate on a regional scale and may interfere with the FP determination of HNO3. FP particulate NO-3 results are in fair agreement with the ADS. Since FP SO2 results are biased low by 12–20%, SO2 concentration in the CASTNet data archive should be adjusted upward. Nylon presents problems as a sampling medium in terms of SO2 recovery and specificity for HNO3. Additional comparative sampler evaluation studies are recommended at several sites over each season to permit comprehensive assessment of the concentrations of atmospheric trace constituents archived by CASTNet.  相似文献   

6.
Abstract

This paper presents measurements of daily sampling of fine particulate matter (PM2.5) and its major chemical components at three urban and one rural locations in North Carolina during 2002. At both urban and rural sites, the major insoluble component of PM2.5 is organic matter, and the major soluble components are sulfate (SO4 2?), ammonium (NH4 +), and nitrate (NO3 ?). NH4 + is neutralized mainly by SO4 2? rather than by NO3 ?, except in winter when SO4 2? concentration is relatively low, whereas NO3 ? concentration is high. The equivalent ratio of NH4 + to the sum of SO4 2? and NO3 ? is <1, suggesting that SO4 2?and NO3 ?are not completely neutralized by NH4 +. At both rural and urban sites, SO4 2?concentration displays a maximum in summer and a minimum in winter, whereas NO3 ?displays an opposite seasonal trend. Mass ratio of NO3 ? to SO4 2?is consistently <1 at all sites, suggesting that stationary source emissions may play an important role in PM2.5 formation in those areas. Organic carbon and elemental carbon are well correlated at three urban sites although they are poorly correlated at the agriculture site. Other than the daily samples, hourly samples were measured at one urban site. PM2.5 mass concen trations display a peak in early morning, and a second peak in late afternoon. Back trajectory analysis shows that air masses with lower PM2.5 mass content mainly originate from the marine environment or from a continental environment but with a strong subsidence from the upper troposphere. Air masses with high PM2.5 mass concentrations are largely from continental sources. Our study of fine particulate matter and its chemical composition in North Carolina provides crucial information that may be used to determine the efficacy of the new National Ambient Air Quality Standard (NAAQS) for PM fine. Moreover, the gas-to-particle conversion processes provide improved prediction of long-range transport of pollutants and air quality.  相似文献   

7.
The Clean Air Act (and proposed Clean Air Act Amendments in H.R. 5252) are addressed relative to quantification of emission data. Six case studies performed for the National Commission on Air Quality (NCAQ) are reviewed. The models used to quantify the amount of emissions needed to meet air quality standards for O3, particulates, and SO2 are reviewed for each case study city. Technical and resource limitations in meeting the Act’s emission inventory requirements for nonattainment plans.and PSD permitting are outlined.  相似文献   

8.
Atmospheric deposition of acidic cloud water is thought to be one of the causes for the recent forest decline in industrialized areas of the world. The present paper presents results from the Mountain Acid Deposition Program (MADPro), a part of EPA's Clean Air Status and Trends Network, (CASTnet). We used automated cloud water collectors at three selected mountain sites (Whiteface Mt., NY; Whitetop Mt., VA; and Clingman's Dome, TN) to take hourly samples from non-precipitating clouds during temperate (non- freezing) seasons of each year from 1994 to 1997. Samples were promptly analyzed for pH, conductivity, and concentration of dissolved ions. Cloud liquid water content (LWC) and meteorological parameters were measured at each site. Mean cloud frequencies and LWC of clouds were higher at Whiteface Mt., NY, than in the Southern Appalachians. The four most prevalent ions found in cloud water samples were usually, in order of decreasing concentration: sulfate (SO2−4) hydrogen (H+), ammonium (NH4+), and nitrate (NO3). Within cloud events the concentration of these major ions tended to co-vary. Typically there was an inverse relationship between LWC of the cloud and ionic concentration of the cloud water. During the sampling season, the highest ionic concentrations were seen during mid-summer. Ionic concentrations of samples from the southern sites were significantly higher than samples from Whiteface Mt., but further analysis indicates that this is at least partially due to the north–south difference in the LWC of clouds. MADPro results are shown to be comparable with previous studies of cloud chemistry in North America.  相似文献   

9.
In 2004 and 2005, the East Tennessee Ozone Study (ETOS) enhanced its regional measurement program with annular denuder systems to quantify sulfur dioxide (SO2) and PM2.5 sulfate (SO42?) at five sampling sites that were representative of the complex terrain and physiographic features of East Tennessee. Intersite spatial variability was more defined for SO2 than for SO42?, which showed a fairly uniform structure in both daytime and nighttime measurements. Pollution roses indicated that two sites may have been influenced by the proximity of SO2 emission sources. The data suggest that SO2 is affected by nearby sources in the study area while the sources of SO42? are regionally distributed.  相似文献   

10.
Network filter pack sampling protocol changed in 1989 from requiring a week-long daytime sample and a week-long nighttime sample to requiring a single week-long sample per week at each monitoring site. In the current study, single-filter pack weekly results are compared with weekly results aggregated from separate daytime and nighttime weekly filter pack samples collected at the monitoring site located at Egbert, Ontario, Canada. Comparisons of the concentrations resulting from the two sampling protocols for all major chemical species (SO42−, NO3, NH4+, HNO3, and SO2) show median biases of <5 nmol m−3 (0.1 ppb) and median relative biases of <10%. Median relative biases have the same sign for each species, suggesting biases in the same direction. Based on median differences, composite day–night weekly sampler results generally exceed the single-sampler weekly results (in all cases except for the summer nylon filter HNO3), and the magnitude depends on the constituent and on the season. Examination of seasonal results reveals large discrepancies in some cases, especially during summer. To use Clean Air Status and Trends Network results for trends analyses over time periods encompassing the 1989 protocol change, it may be useful to put all of the data on the same basis of sampler protocol. Algorithms derived from linear regression analyses using paired bootstrap sampling are offered to convert the recent results to the pre-1989 basis; however, they may only be appropriate for sites in the eastern US. Chemical and statistical reasoning suggests that the results of day–night weekly sampling are usually consistent with higher accuracy than single-sampler weekly results. Adjustments are indicated for summer Teflon NO3 and nylon HNO3, for summer and fall Teflon NH4, and for Total SO2 in each season. Nylon filters are also shown to have variable collection characteristics for SO2 that are consistent with a humidity effect. A network-wide change in the SO2 collection and/or retention characteristics of the nylon filters is found in April 1997.  相似文献   

11.
A comprehensive ‘operational’ evaluation of the performance of the Community Multiscale Air Quality (CMAQ) modelling system version 4.6 was conducted in support of pollution assessment in the UK for the calendar year 2003. The model was run on multiple grids using one-way nests down to a horizontal resolution as fine as 5 km over the whole of the UK. The model performance was evaluated for pollutants with standards and limit values (e.g. O3, PM10) and species contributing to acidic and nitrogenous deposition (e.g. NH3, SO42–, NO3, NH4+) against data from operational national monitoring networks. The key performance characteristics of the modelling system were found to be variable according to acceptance criteria and to depend on the type (e.g. urban, rural) and location of the sites, as well as on the time of the year. As regards the techniques that were used for ‘operational’ evaluation, performance generally complied with expected levels and ranged from good (e.g. O3, SO42–) to moderate (e.g. PM10, NO3). At a few sites low correlations and large standard deviations for some species (e.g. SO2) suggest that these sites are subject to local factors (e.g. topography, emission sources) that are not well described in the model. Overall, the model tends to over predict O3 and under predict aerosol species (except SO42–). Discrepancies between predicted and observed concentrations may be due to a variety of intertwined factors, which include inaccuracies in meteorological predictions, chemical boundary conditions, temporal variability in emissions, and uncertainties in the treatment of gas and aerosol chemistry. Further work is thus required to investigate the respective contributions of such factors on the predicted concentrations.  相似文献   

12.
This study investigates ammonium, nitrate, and sulfate (NH4+, NO3?, and SO42?) in size-resolved particles (particularly nano (PM0.01–0.056)/ultrafine (PM0.01–0.1)) and NOx/SO2 collected near a busy road and at a rural site. The average (mass) cumulative fraction of secondary inorganic aerosols (SO42?+NO3?+NH4+) in nano or ultrafine particles at the roadside was found to be three to four times that at the rural site. The above three secondary inorganic aerosol species were present in similar cumulative fractions in particles of size 1–18 μm at both sites; however, dissimilar fractions were observed for Cl?, Na+, and K+. The nitrogen ratios (NRs: NR = NO3??N/(NO3??N + NO2–N)), sulfur ratios (SRs: SR = SO42??S/(SO42??S + SO2–S)), dNR/DP (derivative of NR with respect to DP (particle diameter)), and dSR/DP (derivative of SR with respect to DP) at the roadside were higher than those at the rural site for nano/ultrafine particles. At both sites (particularly the roadside), the nanoparticles had significantly higher dNR/DP and dSR/DP values than differently sized particles, implying that NO3?/SO42? (from NO2/SO2 transformation or NO3?/SO42? deposition) were present on these particles.  相似文献   

13.
On the basis of the recently estimated emission inventory for East Asia with a resolution of 1×1°, the transport and chemical transformation of sulfur compounds over East Asia during the period of 22 February through 4 May 2001 was investigated by using the Models-3 Community Multi-scale Air Quality (CMAQ) modeling system with meteorological fields calculated by the regional atmospheric modeling system (RAMS). For evaluating the model performance simulated concentrations of sulfur dioxide (SO2) and aerosol sulfate (SO42−) were compared with the observations on the ground level at four remote sites in Japan and on board aircraft and vessel during the transport and chemical evolution over the Pacific and Asian Pacific regional aerosol characterization experiment field campaigns, and it was found that the model reproduces many of the important features in the observations, including horizontal and vertical gradients. The SO2 and SO42− concentrations show pronounced variations in time and space, with SO2 and SO42− behaving differently due to the interplay of chemical conversion, removal and transport processes. Analysis of model results shows that emission was the dominant term in regulating the SO2 spatial distribution, while conversion of SO2 to SO42− in the gas phase and the aqueous phase and wet removal were the primary factors that controlled SO42− amounts. The gas phase and the aqueous phase have the same importance in oxidizing SO2, and about 42% sulfur compounds (25% in SO2) emitted in the model domain was transported out, while about 57% (35% by wet removal processes) was deposited in the domain during the study period.  相似文献   

14.
Personal exposure models for sulfates (SO4 =) and aerosol strong acidity (H+) were previously developed using concentration and activity pattern data collected from a personal monitoring study conducted in Uniontown, Pennsylvania, during the summer of 1990. Models were constructed based on time-weighted microenvironmental exposures. For SO4 =, the “best-fit” model included a correction factor, while for H+, it included both a correction factor and a neutralization term.

In this paper, we present the validation of these models using data collected in a personal monitoring study conducted in State College, Pennsylvania, during the summer of 1991. Indoor and outdoor concentration and activity pattern data collected in this study were used as inputs for the “best-fit” models for SO4 = and H+. Predicted personal exposures subsequently were compared to the measured personal exposures from State College to determine their accuracy and precision.

Predicted personal exposures for both SO4 = and H+ were in excellent agreement with measured personal exposures from State College. The models explained 91 and 62 percent of the variability in personal SO4 = and H+ exposures, respectively, and were able to estimate personal exposures substantially better than outdoor concentrations alone. Validation results suggest that the models' correction and neutralization factors are not site specific and support the models' future application as a technique to assess the personal acid aerosol exposures of children living in similar rural and semi-rural communities.  相似文献   

15.
This paper presents an examination of industrial coal-fired boiler waste products. Presently the atmospheric emissions from all new boilers larger than 250 × 106 Btu/hr are controlled by existing New Source Performance Standards, and boilers smaller than 250 × 106 Btu/hr are controlled to levels required by the regulations of the particular state in which the facility is located. The 1977 Clean Air Act Amendments, however, specify categories of sources for which EPA must develop revised New Source Performance Standards. Industrial coal-fired boilers are included as one of these categories, and a relevant issue concerns the potential amount of solid waste generated as a result of tightened emission standards that require flue gas desulfurization. This paper examines the air quality and solid waste impacts of moderate and stringent emission controls for particulate and SO2 emissions from industrial coal-fired boilers.

Comparisons are presented of physical and chemical characterizations of the emissions and solid wastes produced when boilers are equipped with particulate and SO2 control equipment. The SO2 systems examined are lime spray drying, lime/limestone, double alkali, sodium throwaway, physically cleaned coal, and fluidized-bed combustion. The solid waste disposal alternatives and the disposal costs are discussed. The most common disposal methods used are landfill for dry wastes and impoundment for sludges, with special wastewater treatment requirements for the sodium throwaway aqueous wastes.  相似文献   

16.
We have used a global version of the Regional Air Pollution Information and Simulation (RAINS) model to estimate anthropogenic emissions of the air pollution precursors sulphur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), primary carbonaceous particles of black carbon (BC), organic carbon (OC) and methane (CH4). We developed two scenarios to constrain the possible range of future emissions. As a baseline, we investigated the future emission levels that would result from the implementation of the already adopted emission control legislation in each country, based on the current national expectations of economic development. Alternatively, we explored the lowest emission levels that could be achieved with the most advanced emission control technologies that are on the market today. This paper describes data sources and our assumptions on activity data, emission factors and the penetration of pollution control measures. We estimate that, with current expectations on future economic development and with the present air quality legislation, global anthropogenic emissions of SO2 and NOx would slightly decrease between 2000 and 2030. For carbonaceous particles and CO, reductions between 20% and 35% are computed, while for CH4 an increase of about 50% is calculated. Full application of currently available emission control technologies, however, could achieve substantially lower emissions levels, with decreases up to 30% for CH4, 40% for CO and BC, and nearly 80% for SO2.  相似文献   

17.
Burton AW  Aherne J 《Ambio》2012,41(2):170-179
A re-survey of acid-sensitive lakes in Ireland (initial survey 1997) was carried out during spring 2007 (n = 60). Since 1997, atmospheric emissions of sulfur dioxide and deposition of non-marine sulfate (SO4 2−) in Ireland have decreased by ~63 and 36%, respectively. Comparison of water chemistry between surveys showed significant decreases in the concentration of SO4 2−, non-marine SO4 2−, and non-marine base cations. In concert, alkalinity increased significantly; however, no change was observed in surface water pH and total aluminum. High inter-annual variability in sea salt inputs and increasing (albeit non-significant) dissolved organic carbon may have influenced the response of pH and total aluminum (as ~70% is organic aluminum). Despite their location on the western periphery of Europe, and dominant influence from Atlantic air masses, the repeat survey suggests that the chemistry of small Irish lakes has shown a significant response to reductions in air pollution driven primarily by the implementation of the Gothenburg Protocol under the UNECE Convention on Long-Range Transboundary Air Pollution.  相似文献   

18.
Abstract

The U.S. Environmental Protection Agency Clean Air Status and Trends Network (CASTNET) utilizes an open-face filter pack system to measure concentrations of atmospheric sulfur and nitrogen species. Concentration data for nitrogen species measured with filter pack systems sometimes deviate from data collected by other measurement systems used to measure the same species. The nature of these differences suggests that more than one sampling mechanism or atmospheric process is involved. The study presented here examines these differences by intercomparing CASTNET data with data from other studies, examining the results from earlier intercomparison studies, and conducting a field test to investigate the effect of particle size on filter pack measurement systems. Measurements of nitrogen species from the Maryland Aerosol Research and Characterization (MARCH) monitoring site were compared with nitrogen concentrations at three nearby CASTNET sites. Results indicate that CASTNET measured higher particulate nitrate (NO3 -) and lower gaseous nitric acid (HNO3) concentrations. Comparisons of NO3 - from 34 collocated CASTNET and Inter-agency Monitoring of Protected Visual Environments (IMPROVE) sites show that CASTNET NO3 - measurements were typically higher than the corresponding IM PROVE values. Also, results from the Lake Michigan Air Director’s Consortium Midwest Ammonia Monitoring Project demonstrated NO3 - dissociation on Teflon filters. To investigate the effect of particle size, filter pack measurement systems were operated at three CASTNET sites with and without cyclones during six 7-day measurement periods from March to August 2006. Results indicate the size-selection cyclones had a significant effect on both NO3 - and HNO3 concentrations, but little effect on sulfate (SO4 2-) and ammonium (NH4 +) levels. NO3 - concentrations sampled with the open-face filters were significantly higher than concentrations measured with a 2.5-μm cut point, as were HNO3 concentrations. Although limited in spatial and temporal coverage, the field study showed that the use of an open-face filter pack may allow for the collection of coarse NO3 - particles and for the reaction of HNO3 with metals/salts on the Teflon filter.  相似文献   

19.
A comparison of data records in the 1990s, both before (1991–1994) and after (1995–1997) implementation of Phase I of the Clean Air Act Amendments (CAAA) of 1990 for the eastern US, shows a significant reduction in SO2 emissions for most states, except for Texas, North Carolina, Illinois, Florida, and Alabama. However, of the major NOx emitting states, only two eastern states (New York and Pennsylvania) show significant declines in NOx. A pattern of large declines in SO2 emissions (>20%) after CAAA implementation, and large declines in precipitation SO42− and H+, as well as air concentrations of SO2 and SO42− (components of dry deposition), exists for most regions of the eastern US. In most cases, the emission/concentration relations are close to 1 : 1 when the source region based on 15-h back trajectories is used for the New England region, and source regions based on 9-h back trajectories are used for the six other eastern US regions that were studied. The southern Appalachian Mountain region, an acid-sensitive area receiving high levels of acidic deposition, has not seen an appreciable improvement in precipitation acidity. This area has also shown the least improvement in wet and dry sulfur concentrations, of the areas examined. Precipitation base cations (Ca2+ and Mg2+) show a pattern of either increasing or level concentrations when comparing 1990–1994 to 1995–1998 data, for six of the seven regions examined. Ammonium concentrations have generally changed <10%, except for the Illinois and southern Appalachian Mtn. regions, which increased >15%.  相似文献   

20.
Regional trends of seasonal and annual wet deposition and precipitation-weighted concentrations (PWCs) of sulfate in the United States over the period 1980–1995 were developed from monitoring data and scaled to a mean of unity. To reduce some effects of year to year climatological variability, the unitless regional deposition and PWC trends were averaged (hereafter termed CONCDEP). The SO2 emissions data over the same period from the United States, Canada, and northern Mexico, aggregated by state and province, were weighted appropriately for each deposition region in turn to produce scaled trends of the emissions affecting each region. The emission-weighting factors, which were held constant year to year, were estimated by exercise of a regional transport model. The sulfate CONCDEP regional trends are generally similar to those of regionally weighted SO2 emissions, although the latter trends are less steep and the former trends have more year to year variability. In eastern regions, sulfate CONCDEPs and SO2 emissions patterns both generally show an initial decrease, an essentially trendless middle period, and a final decrease as reductions mandated by the Acid Rain Provisions of the 1990 Clean Air Act Amendments began. Linear regressions of regional sulfate CONCDEPs on corresponding regionally weighted SO2 emissions produced statistically significant relationships in all regions. The analysis indicated that although regional sulfate CONCDEPs decreased relatively faster than did SO2 emissions during the period in all regions except the Great Plains, in general the slopes were not significantly different from unity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号