首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The two primary factors influencing ambient air pollutant concentrations are emission rate and dispersion rate. Gaussian dispersion modeling studies for odors, and often other air pollutants, vary dispersion rates using hourly meteorological data. However, emission rates are typically held constant, based on one measured value. Using constant emission rates can be especially inaccurate for open liquid area sources, like wastewater treatment plant units, which have greater emissions during warmer weather, when volatilization and biological activity increase. If emission rates for a wastewater odor study are measured on a cooler day and input directly into a dispersion model as constant values, odor impact will likely be underestimated. Unfortunately, because of project schedules, not all emissions sampling from open liquid area sources can be conducted under worst-case summertime conditions. To address this problem, this paper presents a method of varying emission rates based on temperature and time of the day to predict worst-case emissions. Emissions are varied as a linear function of temperature, according to Henry's law, and a tenth order polynomial function of time. Equation coefficients are developed for a specific area source using concentration and temperature measurements, captured over a multiday period using a data-logging monitor. As a test case, time/temperature concentration correlation coefficients were estimated from field measurements of hydrogen sulfide (H2S) at the Rowlett Creek Wastewater Treatment Plant in Garland, TX. The correlations were then used to scale a flux chamber emission rate measurement according to hourly readings of time and temperature, to create an hourly emission rate file for input to the dispersion model ISCST3. ISCST3 was then used to predict hourly atmospheric concentrations of H2S. With emission rates varying hourly, ISCST3 predicted 384 acres of odor impact, compared with 103 acres for constant emissions. Because field sampling had been conducted on relatively cool days (85-90 degrees F), the constant emission rate underestimated odor impact significantly (by 73%).  相似文献   

2.
Abstract

The two primary factors influencing ambient air pollutant concentrations are emission rate and dispersion rate. Gaussian dispersion modeling studies for odors, and often other air pollutants, vary dispersion rates using hourly meteorological data. However, emission rates are typically held constant, based on one measured value. Using constant emission rates can be especially inaccurate for open liquid area sources, like wastewater treatment plant units, which have greater emissions during warmer weather, when volatilization and biological activity increase. If emission rates for a wastewater odor study are measured on a cooler day and input directly into a dispersion model as constant values, odor impact will likely be underestimated. Unfortunately, because of project schedules, not all emissions sampling from open liquid area sources can be conducted under worst-case summertime conditions. To address this problem, this paper presents a method of varying emission rates based on temperature and time of the day to predict worst-case emissions. Emissions are varied as a linear function of temperature, according to Henry’s law, and a tenth order polynomial function of time. Equation coefficients are developed for a specific area source using concentration and temperature measurements, captured over a multiday period using a data-logging monitor. As a test case, time/temperature concentration correlation coefficients were estimated from field measurements of hydrogen sulfide (H2S) at the Rowlett Creek Wastewater Treatment Plant in Garland, TX. The correlations were then used to scale a flux chamber emission rate measurement according to hourly readings of time and temperature, to create an hourly emission rate file for input to the dispersion model ISCST3. ISCST3 was then used to predict hourly atmospheric concentrations of H2S. With emission rates varying hourly, ISCST3 predicted 384 acres of odor impact, compared with 103 acres for constant emissions. Because field sampling had been conducted on relatively cool days (85–90 °F), the constant emission rate underestimated odor impact significantly (by 73%).  相似文献   

3.
Tropospheric ozone adversely affects human health and vegetation, and biogenic volatile organic compound (BVOC) emission has potential to influence ozone concentration in summer season. In this research, the standard emissions of isoprene and monoterpene from the vegetation of the Kinki region of Japan, estimated from growth chamber experiments, were converted into hourly emissions for July 2002 using the temperature and light intensity data obtained from results of MM5 meteorological model. To investigate the effect of BVOC emissions on ozone production, two ozone simulations for one-month period of July 2002 were carried out. In one simulation, hourly BVOC emissions were included (BIO), while in the other one, BVOC emissions were not considered (NOBIO). The quantitative analyses of the ozone results clearly indicate that the use of spatio-temporally varying BVOC emission improves the prediction of ozone concentration. The hourly differences of monthly-averaged ozone concentrations between BIO and NOBIO had the maximum value of 6 ppb at 1400 JST. The explicit difference appeared in urban area, though the place where the maximum difference occurred changed with time. Overall, BVOC emissions from the forest vegetation strongly affected the ozone generation in the urban area.  相似文献   

4.
Particulate matter < or =10 microm (PM10) emissions due to wind erosion can vary dramatically with changing surface conditions. Crust formation, mechanical disturbance, soil texture, moisture, and chemical content of the soil can affect the amount of dust emitted during a wind event. A refined method of quantifying windblown dust emissions was applied at Mono Lake, CA, to account for changing surface conditions. This method used a combination of real-time sand flux monitoring, ambient PM10 monitoring, and dispersion modeling to estimate dust emissions and their downwind impact. The method identified periods with high emissions and periods when the surface was stable (no sand flux), even though winds may have been high. A network of 25 Cox sand catchers (CSCs) was used to measure the mass of saltating particles to estimate sand flux rates across a 2-km2 area. Two electronic sensors (Sensits) were used to time-resolve the CSC sand mass to estimate hourly sand flux rates, and a perimeter tapered element oscillating microbalance (TEOM) monitor measured hourly PM10 concentrations. Hourly sand flux rates were related by dispersion modeling to hourly PM10 concentrations to back-calculate the ratio of vertical PM10 flux to horizontal sand flux (K-factors). Geometric mean K-factor values (K(f)) were found to change seasonally, ranging from 1.3 x 10(-5) to 5.1 x 10(-5) for sand flux measured at 15 cm above the surface (q15). Hourly PM10 emissions, F, were calculated by applying seasonal K-factors to sand flux measurements (F = K(f) x q15). The maximum hourly PM10 emission rate from the study area was 76 g/m2 x hr (10-m wind speed = 23.5 m/sec). Maximum daily PM10 emissions were estimated at 450 g/m2 x day, and annual emissions at 1095 g/m2 x yr. Hourly PM10 emissions were used by the U.S. Environmental Protection Agency (EPA) guideline AERMOD dispersion model to estimate downwind ambient impacts. Model predictions compared well with monitor concentrations, with hourly PM10 ranging from 16 to over 60,000 microg/m3 (slope = 0.89, R2 = 0.77).  相似文献   

5.
Abstract

Air quality is degraded by many factors, among which the emissions from on‐road vehicles play a significant role. Timely and accurate estimate of such emissions becomes very important for policy‐making and effective control measures. However, lack of traffic data and outdated emission software make this task difficult. This research has demonstrated a new method that facilitates the vehicular emission inventories at the local level by using shorter-time Highway Performance Monitoring System (HPMS) traffic data along with the latest U.S. Environment Protection Agency (EPA) emission modeling software, MOBILE6. The conversion methodology was developed for converting readily available HPMS traffic volume data into EPA MOBILE-based traffic classifications, and a corresponding software program was written for automating the process. EPA MOBILE6 model was used to obtain emissions of nitrogen oxides (NOx), volatile organic compound (VOC), and cabon monoxide (CO) emitted by the parent traffic and subsampled traffic data, and these emissions were additionally compared. The case study has shown that the difference of the magnitude between the emission estimates produced by certain subsampled and parent traffic data are minor, indicating that subsampled HPMS data can be used for reporting parent traffic emissions. It was also observed that traffic emissions follow a Weibull distribution, and NOx emissions were more sensitive to the traffic data composition than VOC and CO. Lastly, use of average emission values of 20 or 30 consecutive minutes appears to be valid for representing hourly emissions.  相似文献   

6.
In recent years, ambient measurements of hourly ozone precursor concentrations, namely speciated and total nonmethane organic compounds (NMOCs), have become available through the Photochemical Assessment Monitoring Stations (PAMS) program. Prior to this, NMOCs were measured in the central business district using a canister to obtain the 3-hr integrated sample for the 6:00 a.m.-9:00 a.m. period. Such sampling had been carried out annually for nearly a decade at three locations in the New York City metropolitan area. The intent of these measurements, along with measurements of the other ozone precursor, NO(x), was to provide an understanding of ozone formation and the emissions loading and mix in the urban area. The analysis of NMOC and NO(x) measurements shows a downward trend in the case of NMOC. In addition, we compared the canister-based NMOC concentrations with data obtained from the PAMS program for the 6:00 a.m.-9:00 a.m. period. Analysis of the NMOC concentrations reveals poor spatial correlation between the various monitors, reflecting the effect of localized emissions. This suggests that NMOC measurements made at a single location cannot be viewed as representative of the entire region. On the other hand, correlations were found to be higher among the NO(x) monitors, indicating the commonality of emission  相似文献   

7.
Air quality is degraded by many factors, among which the emissions from on-road vehicles play a significant role. Timely and accurate estimate of such emissions becomes very important for policy-making and effective control measures. However, lack of traffic data and outdated emission software make this task difficult. This research has demonstrated a new method that facilitates the vehicular emission inventories at the local level by using shorter-time Highway Performance Monitoring System (HPMS) traffic data along with the latest U.S. Environment Protection Agency (EPA) emission modeling software, MOBILE6. The conversion methodology was developed for converting readily available HPMS traffic volume data into EPA MOBILE-based traffic classifications, and a corresponding software program was written for automating the process. EPA MOBILE6 model was used to obtain emissions of nitrogen oxides (NOx), volatile organic compound (VOC), and cabon monoxide (CO) emitted by the parent traffic and subsampled traffic data, and these emissions were additionally compared. The case study has shown that the difference of the magnitude between the emission estimates produced by certain subsampled and parent traffic data are minor, indicating that subsampled HPMS data can be used for reporting parent traffic emissions. It was also observed that traffic emissions follow a Weibull distribution, and NOx emissions were more sensitive to the traffic data composition than VOC and CO. Lastly, use of average emission values of 20 or 30 consecutive minutes appears to be valid for representing hourly emissions.  相似文献   

8.
Urban air pollution has traditionally been modeled using annual, or at best, seasonal emissions inventories and climatology. These averaging techniques may introduce uncertainty into the analysis, if specific emissions (e.g. SO2) are correlated with dispersion factors on a short-term basis. This may well be the case for space heating emissions. An analysis of this problem, using hourly climatological and residential emission estimates for six U.S. cities, indicates that the errors introduced using such averages are modest (~ ± 12%) for annual average concentrations. Maximum hourly concentrations vary considerably more, since maximum heat demand and worst case dispersion are in general not coincident. The paper thus provides a basis for estimating more realistic air pollution Impacts due to residential space heating.  相似文献   

9.
Health risks from air pollutants are evaluated by comparing chronic (i.e., an average over 1 yr or greater) or acute (typically 1-hr) exposure estimates with chemical- and duration-specific reference values or standards. When estimating long-term pollutant concentrations via exposure modeling, facility-level annual average emission rates are readily available as model inputs for most air pollutants. In contrast, there are far fewer facility-level hour-by-hour emission rates available for many of these same pollutants. In this report, we first analyze hour-by-hour emission rates for total reduced sulfur (TRS) compounds from eight kraft pulp mill operations. This data set is used to demonstrate discrepancies between estimating exposure based on a single TRS emission rate that has been calculated as the mean of all operating hours of the year, as opposed to reported hourly emission rates. A similar analysis is then performed using reported hourly emission rates for sulfur dioxide (SO2) and oxides of nitrogen (NOx) from three power generating units from a U.S. power plant. Results demonstrate greater variability at kraft pulp mill operations, with ratios of reported hourly to average hourly TRS emissions ranging from less than 1 to greater than 160 during routine facility operations. Thus, if fluctuations in hourly emission rates are not accounted for, over- or underestimates of hourly exposure, and thus acute health risk, may occur. In addition to this analysis, we also demonstrate an additional challenge when assessing health risk based on hourly exposures: the lack of human health reference values based on 1-hr exposures.

Implications: Largely due to the lack of reported hourly emission rate data for many air pollutants, an hourly average emission rate (calculated from an annual emission rate) is often used when modeling the potential for acute health risk. We calculated ratios between reported hourly and hourly average emission rates from pulp and paper mills and a U.S. power plant to demonstrate that if not considered, hourly fluctuations in emissions could result in an over- or underestimation of exposure and risk. We also demonstrate the lack of 1-hr human health reference values meant to be protective of the general population, including children.  相似文献   


10.
The objectives of this paper are to (1) quantify variability in hourly utility oxides of nitrogen (NO(x)) emission factors, activity factors, and total emissions; (2) investigate the autocorrelation structure and evaluate cyclic effects at short and long scales of the time series of total hourly emissions; (3) compare emissions for the ozone (O3) season versus the entire year to identify seasonal differences, if any; and (4) evaluate interannual variability. Continuous emissions monitoring data were analyzed for 1995 and 1998 for 32 units from nine baseload power plants in the Charlotte, NC, airshed. Unit emissions have a strong 24-hr cycle attributable primarily to the capacity factor. Typical ranges of the coefficient of variation for emissions at a given hour of the day were from 0.2 to 0.45. Little difference was found when comparing weekend emissions with the entire week or when comparing the O3 season with the entire year. There were substantial differences in the mean and standard deviation of emissions when comparing 1995 and 1998 data, indicative of the effect of retrofits of control technology during the intervening time. The wide range of variability and its autocorrelation should be accounted for when developing probabilistic utility emission inventories for analysis of near-term future episodes.  相似文献   

11.
Emissions from feedlot operations are known to vary by environmental conditions and few if any techniques or models exist to predict the variability of odor emission rates from feedlots. The purpose of this paper is to outline and summarize unpublished reports that are the result of a collective effort to develop industry-specific odor impact criteria for Australian feedlots. This effort used over 250 olfactometry samples collected with a wind tunnel and past research to develop emission models for pads, sediment basins, holding ponds, and manure storage areas over a range of environmental conditions and tested using dynamic olfactometry. A process was developed to integrate these emission models into odor dispersion modeling for the development of impact criteria. The approach used a feedlot hydrology model to derive daily feedlot pad moisture, temperature, and thickness. A submodel converted these daily data to hourly data. A feedlot pad emissions model was developed that predicts feedlot pad emissions as a function of temperature, moisture content, and pad depth. Emissions from sediment basins and holding ponds were predicted using a basin emissions model as a function of days since rain, inflow volume, inflow ratio (pond volume), and temperature. This is the first attempt to model all odor source emissions from a feedlot as variable hourly emissions on the basis of climate, management, and site-specific conditions. Results from the holding pond, sediment basin, and manure storage emission models performed well, but additional work on the pad emissions model may be warranted. This methodology mimics the variable odor emissions and odor impact expected from feedlots due to climate and management effects. The main outcome of the work is the recognition that an industry-specific odor impact criterion must be expressed in terms of all of the components of the assessment methodology.  相似文献   

12.
Abstract

The objectives of this paper are to (1) quantify variability in hourly utility oxides of nitrogen (NOx) emission factors, activity factors, and total emissions; (2) investigate the autocorrelation structure and evaluate cyclic effects at short and long scales of the time series of total hourly emissions; (3) compare emissions for the ozone (O3) season versus the entire year to identify seasonal differences, if any; and (4) evaluate interannual variability. Continuous emissions monitoring data were analyzed for 1995 and 1998 for 32 units from nine baseload power plants in the Charlotte, NC, airshed. Unit emissions have a strong 24-hr cycle attributable primarily to the capacity factor. Typical ranges of the coefficient of variation for emissions at a given hour of the day were from 0.2 to 0.45. Little difference was found when comparing weekend emissions with the entire week or when comparing the O3 season with the entire year. There were substantial differences in the mean and standard deviation of emissions when comparing 1995 and 1998 data, indicative of the effect of retrofits of control technology during the intervening time. The wide range of variability and its autocorrelation should be accounted for when developing probabilistic utility emission inventories for analysis of near-term future episodes.  相似文献   

13.
Increase in traffic volumes and changes in travel-related characteristics increase vehicular emissions significantly. It is difficult, however, to accurately estimate emissions with current practice because of the reliance on travel forecasting models that are based on steady state hourly averages and, thus, are incapable of capturing the effects of traffic variations in the transportation network. This paper proposes an intermediate model component that can provide better estimates of link speeds by considering a set of Emission Specific Characteristics (ESC) for each link. The intermediate model is developed using multiple linear regression; it is then calibrated, validated, and evaluated using a microscopic traffic simulation model. The improved link speed data can then be used to provide better estimates of emissions. The evaluation results show that the proposed emission estimation method performs better than current practice and is capable of estimating time-dependent emissions if traffic sensor data are available as model input.  相似文献   

14.
A study was conducted on the Brigham Young University campus during January and February 2015 to identify winter-time sources of fine particulate material in Utah Valley, Utah. Fine particulate mass and components and related gas-phase species were all measured on an hourly averaged basis. Light scattering was also measured during the study. Included in the sampling was the first-time source apportionment application of a new monitoring instrument for the measurement of fine particulate organic marker compounds on an hourly averaged basis. Organic marker compounds measured included levoglucosan, dehydroabietic acid, stearic acid, pyrene, and anthracene. A total of 248 hourly averaged data sets were available for a positive matrix factorization (PMF) analysis of sources of both primary and secondary fine particulate material. A total of nine factors were identified. The presence of wood smoke emissions was associated with levoglucosan, dehydroabietic acid, and pyrene markers. Fine particulate secondary nitrate, secondary organic material, and wood smoke accounted for 90% of the fine particulate material. Fine particle light scattering was dominated by sources associated with wood smoke and secondary ammonium nitrate with associated modeled fine particulate water.

Implications: The identification of sources and secondary formation pathways leading to observed levels of PM2.5 (particulate matter with an aerodynmaic diameter <2.5 μm) is important in making regulatory decisions on pollution control. The use of organic marker compounds in this assessment has proven useful; however, data obtained on a daily, or longer, sampling schedule limit the value of the information because diurnal changes associated with emissions and secondary aerosol formation cannot be identified. A new instrument, the gas chromtography–mass spectrometry (GC-MS) organic aerosol monitor, allows for the determination on these compounds on an hourly averaged basis. The demonstrated potential value of hourly averaged data in a source apportionment analysis indicates that significant improvement in the data used for making regulatory decisions is possible.  相似文献   


15.
There is a possibility of further controls on emissions to the atmosphere of nitrogen oxides to meet air quality objectives in the UK. Data in the National Air Quality Archive were used to calculate the likely sensitivity of hourly concentrations of nitrogen dioxide in ambient urban air to changes in the total oxides of nitrogen. Since the role of atmospheric chemical reactions is to make the response non-linearly dependent on the emissions control, we seek to establish the magnitude and sign of the effects that this non-linearity might cause. We develop a quantitative approach to analysing the non-linearity in the data. Polynomial curve fits have been developed for the empirical ratio NO2 : NOx (the ‘yield’). They describe nitrogen dioxide concentrations using total oxides of nitrogen. The new functions have the important feature of increased yield in winter episodes. Simpler functions tend to omit this feature of the yields at the highest hourly concentrations. Based on this study, the hourly nitrogen dioxide objective in the UK may require emissions control of no more than ≈50% on total oxides of nitrogen at the most polluted sites: other sites require less or even no control.  相似文献   

16.
Two competing meteorological factors influence atmospheric concentrations of pollutants from open liquid area sources such as wastewater treatment plant units: temperature and stability. High temperatures in summer produce greater emissions from liquid area sources because of increased compound volatility; however, these emissions tend to disperse more readily because of frequent occurrence of unstable conditions. An opposite scenario occurs in winter, with lesser emissions due to lower temperatures, but also frequently less dispersion, due to stable atmospheric conditions. The primary objective of this modeling study was thus to determine whether higher atmospheric concentrations from open liquid area sources occur more frequently in summer, when emissions are greater but so is dispersion, or in winter, when emissions are lesser but so is dispersion. The study utilized a rectangular clarifier emitting hydrogen sulfide as a sample open liquid area source. Dispersion modeling runs were conducted using ISCST3 and AERMOD, encompassing 5 yr of hourly meteorological data divided by season. Emission rates were varied hourly on the basis of a curve-fit developed from previously collected field data. Model output for each season was used to determine (1) maximum 2-min average concentrations, (2) the number of odor events (2-min average concentrations greater than odor detection thresholds), and (3) areas of impact. On the basis of these 3 types of output, it was found that the worst-case odors were associated with summer, considering impacts of meteorology upon both emissions and dispersion. Not accounting for the impact of meteorology on emissions (using a constant worst-case emission rate) caused concentrations to be overpredicted compared with a variable emission rate case. The highest concentrations occurred during stability classes D, E, and F, as anticipated. A comparison of ISCST3 and AERMOD found that for the area source modeled, ISCST3 predicted higher concentrations and more odor events for all seasons.  相似文献   

17.
This work describes the development of an urban vehicle emissions inventory for South America, based on the analysis and aggregation of available inventories for major cities, with emphasis on its application in regional atmospheric chemistry modeling. Due to the limited number of available local inventories, urban emissions were extrapolated based on the correlation between city vehicle density and mobile source emissions of carbon monoxide (CO) and nitrogen oxides (NOx). Emissions were geographically distributed using a methodology that delimits urban areas using high spatial resolution remote sensing products. This numerical algorithm enabled a more precise representation of urban centers. The derived regional inventory was evaluated by analyzing the performance of a chemical weather forecast model in relation to observations of CO, NOx and O3 in two different urban areas, São Paulo and Belo Horizonte. The gas mixing ratios simulated using the proposed regional inventory show good agreement with observations, consistently representing their hourly and daily variability. These results show that the integration of municipal inventories in a regional emissions map and their precise distribution in fine scale resolutions are important tools in regional atmospheric chemistry modeling.  相似文献   

18.
19.
Emissions of pollutants such as SO2 and NOx from external combustion sources can vary widely depending on fuel sulfur content, load, and transient conditions such as startup, shutdown, and maintenance/malfunction. While monitoring will automatically reflect variability from both emissions and meteorological influences, dispersion modeling has been typically conducted with a single constant peak emission rate. To respond to the need to account for emissions variability in addressing probabilistic 1-hr ambient air quality standards for SO2 and NO2, we have developed a statistical technique, the Emissions Variability Processor (EMVAP), which can account for emissions variability in dispersion modeling through Monte Carlo sampling from a specified frequency distribution of emission rates. Based upon initial AERMOD modeling of from 1 to 5 years of actual meteorological conditions, EMVAP is used as a postprocessor to AERMOD to simulate hundreds or even thousands of years of concentration predictions. This procedure uses emissions varied hourly with a Monte Carlo sampling process that is based upon the user-specified emissions distribution, from which a probabilistic estimate can be obtained of the controlling concentration. EMVAP can also accommodate an advanced Tier 2 NO2 modeling technique that uses a varying ambient ratio method approach to determine the fraction of total oxides of nitrogen that are in the form of nitrogen dioxide. For the case of the 1-hr National Ambient Air Quality Standards (NAAQS, established for SO2 and NO2), a “critical value” can be defined as the highest hourly emission rate that would be simulated to satisfy the standard using air dispersion models assuming constant emissions throughout the simulation. The critical value can be used as the starting point for a procedure like EMVAP that evaluates the impact of emissions variability and uses this information to determine an appropriate value to use for a longer term (e.g., 30-day) average emission rate that would still provide protection for the NAAQS under consideration. This paper reports on the design of EMVAP and its evaluation on several field databases that demonstrate that EMVAP produces a suitably modest overestimation of design concentrations. We also provide an example of an EMVAP application that involves a case in which a new emission limitation needs to be considered for a hypothetical emission unit that has infrequent higher-than-normal SO2 emissions.
ImplicationsEmissions of pollutants from combustion sources can vary widely depending on fuel sulfur content, load, and transient conditions such as startup and shutdown. While monitoring will automatically reflect this variability on measured concentrations, dispersion modeling is typically conducted with a single peak emission rate assumed to occur continuously. To realistically account for emissions variability in addressing probabilistic 1-hr ambient air quality standards for SO2 and NO2, the authors have developed a statistical technique, the Emissions Variability Processor (EMVAP), which can account for emissions variability in dispersion modeling through Monte Carlo sampling from a specified frequency distribution of emission rates.  相似文献   

20.
Regional estimates of both anthropogenic and biogenic emissions are important inputs for models of atmospheric chemistry. A disaggregated emissions inventory of all relevant pollutants for an area of 100 x 100 km2 centered in Burriana (Castellon, Spain) has been worked out. Time and spatial resolutions were hourly and 1 x 1 km2, respectively. Estimates were made for all relevant sources of anthropogenic emissions. The pollutants considered were SO2, NOx, NMVOCs (nonmethane volatile organic compounds), CH4, CO, CO2, N2O, and NH3. Thus, the emissions inventory includes up to 18 different NMVOCs. Emissions were computed for a typical sunny workday in June when strong photochemical activity could be expected. A "top-down" methodology was applied, taking as a starting point official annual and provincial estimates based on CORINAIR emission factors. This procedure is a very useful tool, particularly for those cases where a lack of sufficient local detailed information about the main emission-generating activities, such as road traffic, makes the use of a "bottom-up" approximation inadvisable. Moreover, updating these emission inventories is easier and they could be used to evaluate the impact of possible abatement strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号