首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The Models-3 Community Multiscale Air Quality (CMAQ) Modeling System and the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) were applied to simulate the period June 29–July 10, 1999, of the Southern Oxidants Study episode with two nested horizontal grid sizes: a coarse resolution of 32 km and a fine resolution of 8 km. The predicted spatial variations of ozone (O3), particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5), and particulate matter with an aerodynamic diameter less than or equal to 10 μm (PM10) by both models are similar in rural areas but differ from one another significantly over some urban/suburban areas in the eastern and southern United States, where PMCAMx tends to predict higher values of O3 and PM than CMAQ. Both models tend to predict O3 values that are higher than those observed. For observed O3 values above 60 ppb, O3 performance meets the U.S. Environmental Protection Agency's criteria for CMAQ with both grids and for PMCAMx with the fine grid only. It becomes unsatisfactory for PMCAMx and marginally satisfactory for CMAQ for observed O3 values above 40 ppb.

Both models predict similar amounts of sulfate (SO4 2?) and organic matter, and both predict SO4 2? to be the largest contributor to PM2.5. PMCAMx generally predicts higher amounts of ammonium (NH4 +), nitrate (NO3 ?), and black carbon (BC) than does CMAQ. PM performance for CMAQ is generally consistent with that of other PM models, whereas PMCAMx predicts higher concentrations of NO3 ?,NH4 +, and BC than observed, which degrades its performance. For PM10 and PM2.5 predictions over the southeastern U.S. domain, the ranges of mean normalized gross errors (MNGEs) and mean normalized bias are 37–43% and –33–4% for CMAQ and 50–59% and 7–30% for PMCAMx. Both models predict the largest MNGEs for NO3 ? (98–104% for CMAQ, 138–338% for PMCAMx). The inaccurate NO3 ? predictions by both models may be caused by the inaccuracies in the ammonia emission inventory and the uncertainties in the gas/particle partitioning under some conditions. In addition to these uncertainties, the significant PM overpredictions by PMCAMx may be attributed to the lack of wet removal for PM and a likely underprediction in the vertical mixing during the daytime.  相似文献   

2.
The Clean Air Act of 1970 requires each state to submit plans for implementation, maintenance, and enforcement of national ambient air quality standards subsequent to promulgation. Such plans have been geared to meet annual averages and maximum values. Based on experience in implementing the abatement plan it was found that air quality standards for averaging times shorter than one year are needed to shorten the time required to show contravention and to provide a basis for early corrective measures to regulate specific sources. This paper reports on the need and procedures used by New York State to develop such standards for suspended particulates. Daily suspended particulate data were analyzed by the Kolmogorov-Smirnov method goodness of fit technique to determine that the form of the distribution was log normal. A method developed by Larsen for predicting short term maximum concentrations for log normally distributed data was used to determine numerical values for one, two, and three month standards. Monthly, bi-monthly, and tri-monthly suspended particulate standards of 130, 110, and 100 µg/m3, respectively are proposed for the most extensively developed areas of New York State and correspondingly lower values for other areas. The methods used in this development are generally applicable to other air contaminants.  相似文献   

3.
ABSTRACT

Guidance for the performance evaluation of three-dimensional air quality modeling systems for particulate matter and visibility is presented. Four levels are considered: operational, diagnostic, mechanistic, and probabilistic evaluations. First, a comprehensive model evaluation should be conducted in at least two distinct geographical locations and for several meteorological episodes. Next, streamlined evaluations can be conducted for other similar applications if the comprehensive evaluation is deemed satisfactory. In all cases, the operational evaluation alone is insufficient, and some diagnostic evaluation must always be carried out. Recommendations are provided for designing field measurement programs that can provide the data needed for such model performance evaluations.  相似文献   

4.
5.
Abstract

The field of ozone air quality modeling, or as it is commonly referred to, photochemical air quality modeling, has undergone rapid change in recent years. Improvements in model components, as well as in methods of interpreting model performance, have contributed to this change. Attendant with this rapid change has been a growing need for those developing and using air quality models and policy makers to have a common understanding of the use and role of models in the decision making process. This Critical Review highlights recent advances and continuing problem areas in photochemical air quality modeling. Emphasis is placed on the components and input data for such models, model performance evaluation, and the implications for their use in regulatory decisions.  相似文献   

6.
The APCA Critical Review entitled “Ozone Air Quality Models” was presented by John H. Seinfeld, Louis E. Nohl Professor and Executive Officer for Chemical Engineering at the California Institute of Technology, Pasadena, California. Dr. Seinfeld presented his review at the 81st APCA Annual Meeting & Exhibition, held in Dallas, Texas in June 1988. The Critical Review paper, published in the May 1988 issue of JAPCA, highlighted recent advances and continuing problem areas in photochemical air quality modeling. Prepared discussions and floor comments presented during the Critical Review session in Dallas are published here, along with additional comments and closing remarks by Dr. Seinfeld. Howard M. Ellis, Chairman of the Critical Review Subcommittee of the Publications Committee, served as moderator of the 1988 APCA Critical Review session.  相似文献   

7.
Abstract

The removal efficiency of granular filters packed with lava rock and sand was studied for collection of airborne particles 0.05–2.5 μm in diameter. The effects of filter depth, packing wetness, grain size, and flow rate on collection efficiency were investigated. Two packing grain sizes (0.3 and 0.15 cm) were tested for flow rates of 1.2, 2.4, and 3.6 L/min, corresponding to empty bed residence times (equal to the bulk volume of the packing divided by the airflow rate) in the granular media of 60, 30, and 20 sec, respectively. The results showed that at 1.2 L/min, dry packing with grains 0.15 cm in diameter removed more than 80% (by number) of the particles. Particle collection efficiency decreased with increasing flow rate. Diffusion was identified as the predominant collection mechanism for ultrafine particles, while the larger particles in the accumulation mode of 0.7–2.5 μm were removed primarily by gravitational settling. For all packing depths and airflow rates, particle removal efficiency was generally higher on dry packing than on wet packing for particles smaller than 0.25 μm. The results suggest that development of biological filters for fine particles is possible.  相似文献   

8.
Abstract

Public housing developments across the United States are being demolished, potentially increasing local concentrations of particulate matter (PM) in communities with high burdens of severe asthma. Little is known about the impact of demolition on local air quality. At three public housing developments in Chicago, IL, PM with an aerodynamic diameter <10 μm (PM10) and <2.5 μm were measured before and during high-rise demolition. Additionally, size-selective sampling and real-time monitoring were concurrently performed upwind and downwind of one demolition site. The concentration of particulates attributable to demolition was estimated after accounting for background urban air pollution. Particle microscopy was performed on a small number of samples. Substantial increases of PM10 occurred during demolition, with the magnitude of that increase varying based on sampler distance, wind direction, and averaging time. During structural demolition, local concentrations of PM10 42 m downwind of a demolition site increased 4- to 9-fold above upwind concentrations (6-hr averaging time). After adjusting for background PM10, the presence of dusty conditions was associated with a 74% increase in PM10 100 m downwind of demolition sites (24-hr averaging times). During structural demolition, short-term peaks in real-time PM10 (30-sec averaging time) occasionally exceeded 500 μg/m3. The median particle size downwind of a demolition site (17.3 μm) was significantly larger than background (3 μm). Specific activities are associated with real-time particulate measures. Microscopy did not identify asbestos or high concentrations of mold spores. In conclusion, individuals living near sites of public housing demolition are at risk for exposure to high particulate concentrations. This increase is characterized by relatively large particles and high short-term peaks in PM concentration.  相似文献   

9.
ABSTRACT

Particulate matter (PM) is a ubiquitous air pollutant that has been receiving increasing attention in recent years due in part to the association between PM and a number of adverse health outcomes, including mortality and increases in emergency room visits and respiratory symptoms, as well as exacerbation of asthma and decrements in lung function.1-5 As a result, the ability to accurately sample ambient PM has become important, both to researchers and to regulatory agencies. The federal reference method for the determination of fine PM as PM2.5 in the atmosphere recommends that particle-sampling filters be conditioned and weighed in an environment with constant temperature and relative humidity (RH).6 It is also recommended that vibration, electrostatic charges, and contamination of the filters from laboratory air be minimized to reduce variability in filter weight measurements. These controls have typically been maintained in small, environmentally controlled “cleanrooms.” As an alternative to constructing an elaborate cleanroom, we have designed, and presented in this paper, an inexpensive weighing chamber to maintain the necessary level of humidity control.  相似文献   

10.
ABSTRACT

The size, composition, and concentration of particulate matter (PM) vary with location and time. Several monitoring/sampling programs are operated in California to characterize PM less than 2.5 and 10 µm in aerodynamic diameter (PM2.5 and PM10). This paper presents a broad summary of the spatial and temporal variations observed in ambient PM2.5 and PM10 concentrations in California. Many areas that have high PM10 concentrations also have relatively high PM2.5 concentrations, and data indicate that a significant portion of the PM10 air quality problem is caused by PM2.5. To develop effective plans for attaining the ambient PM standards, improved understanding of these unique problems is needed. Since 1989, pollution control efforts—whether specifically targeted for particulate matter or indirectly via controls on gaseous emissions—have caused annual average PM2.5 and PM10 concentrations to decline at most sites in California.  相似文献   

11.
Abstract

Many studies have shown strong associations between particulate matter (PM) levels and a variety of health outcomes, leading to changes in air quality standards in many regions, especially the United States and Europe. Kuwait, a desert country located on the Persian Gulf, has a large petroleum industry with associated industrial and urban land uses. It was marked by environmental destruction from the 1990 Iraqi invasion and subsequent oil fires. A detailed particle characterization study was conducted over 12 months in 2004–2005 at three sites simultaneously with an additional 6 months at one of the sites. Two sites were in urban areas (central and southern) and one in a remote desert location (northern). This paper reports the concentrations of particles less than 10 µm in diameter (PM10) and fine PM (PM2.5), as well as fine particle nitrate, sulfate, elemental carbon (EC), organic carbon (OC), and elements measured at the three sites. Mean annual concentrations for PM10 ranged from 66 to 93 µg/m3 across the three sites, exceeding the World Health Organization (WHO) air quality guidelines for PM10 of 20 µg/m3. The arithmetic mean PM2.5 concentrations varied from 38 and 37 µg/m3 at the central and southern sites, respectively, to 31 µg/m3 at the northern site. All sites had mean PM2.5 concentrations more than double the U.S. National Ambient Air Quality Standard (NAAQS) for PM2.5. Coarse particles comprised 50–60% of PM10. The high levels of PM10 and large fraction of coarse particles comprising PM10 are partially explained by the resuspension of dust and soil from the desert crust. However, EC, OC, and most of the elements were significantly higher at the urbanized sites, compared with the more remote northern site, indicating significant pollutant contributions from local mobile and stationary sources. The particulate levels in this study are high enough to generate substantial health impacts and present opportunities for improving public health by reducing airborne PM.  相似文献   

12.
Abstract

Many large metropolitan areas experience elevated concentrations of ground-level ozone pollution during the summertime “smog season”. Local environmental or health agencies often need to make daily air pollution forecasts for public advisories and for input into decisions regarding abatement measures and air quality management. Such forecasts are usually based on statistical relationships between weather conditions and ambient air pollution concentrations. Multivariate linear regression models have been widely used for this purpose, and well-specified regressions can provide reasonable results. However, pollution-weather relationships are typically complex and nonlinear—especially for ozone—properties that might be better captured by neural networks. This study investigates the potential for using neural networks to forecast ozone pollution, as compared to traditional regression models. Multiple regression models and neural networks are examined for a range of cities under different climate and ozone regimes, enabling a comparative study of the two approaches. Model comparison statistics indicate that neural network techniques are somewhat (but not dramatically) better than regression models for daily ozone prediction, and that all types of models are sensitive to different weather-ozone regimes and the role of persistence in aiding predictions.  相似文献   

13.
Abstract

Wildfires and prescribed burns are receiving increasing attention as sources of fine particulate matter (PM2.5). The goal of this research project was to understand the impact of mitigation strategies for residences impacted by scheduled prescribed burns and wildfires. Pairs of residences were solicited to have PM2.5 concentrations monitored inside and outside of their houses during four fires. The effect of using air cleaners on indoor PM2.5 was investigated, as well as the effect of keeping windows closed. Appropriately sized air cleaners were provided to one of each pair of residences; occupants of all of the residences were asked to keep windows shut and minimize opening of exterior doors. Additionally, residents were asked to record all of the activities that may be a source of particulate matter, such as cooking and cleaning. Measurements were made during one prescribed burn and three wildfires during the 2002 fire season. Outdoor 24‐hr average PM2.5 concentrations ranging from 6 to 38 µg/m3 were measured during the fires, compared with levels of 2–5 µg/m3 during background measurements when no fires were burning. During the fires, PM2.5 was <3 µg/m3 inside all of the houses with air cleaners installed. This corresponds with a decrease of 63–88% in homes with the air cleaners operating when compared with homes without air cleaners. In the homes without the air cleaners, measured indoor concentrations were 58–100% of the concentrations measured outdoors.  相似文献   

14.
Atmospheric dustfall was qualitatively examined for sulfate content by the techniques of chemical micrurgy. Quantitative assessment of suspended sulfate particulate according to size was by cascade impactor sampling and turbidimetric analysis of stage washings as BaSO4. Sulfate particles less than 1.9 micron mass median diameter in size contributed approximately 43% by weight and 90% by number to total particulate sulfate in Pittsburgh air. The mechanics of particulate sulfate formation in the atmosphere are discussed on the basis of these findings.  相似文献   

15.
The Tenth Government Affairs Seminar conducted by the Air Pollution Control Association was held in Washington, D.C. on March 17–18, 1982. The APCA Government Affairs Committee of which John S. Lagarias is Chairman, sponsored this meeting. Dr. Jerry Pell was General Chairman of the Seminar Steering Committee which included in its membership: Gordon M. Rapier, Vice-chairman, William K. Bonta, Facilities Chairman, Barbara Bankoff, David Benforado, D. Kent Berry, Samuel Booras, William Chapman, Stanley Coloff, Philip T. Cummings, Roy S. Denham, Gerald P. Dodson, Daniel Dreyfus, Raymond W. Durante, Victor S. Engleman, Richard Grundy, W. G. Hamlin, Glenn Hanson, G. Steve Hart, Terrence Li Puma, Michael Lukey, John E. Maroney, William Megonnell, Curtis A. Moore, Russell Mosher, Joseph Mullan, Sidney R. Orem, Dennis G. Seipp, Martin L. Smith, Roger Strelow, Michael Tinkleman, Neal Troy.

This meeting served as a forum for discussion of the issues of: the Clean Air Act amendments, regulatory reform, international perspectives on acid rain, and new directions pursued by the U.S. Environmental Protection Agency.

Representative Henry A. Waxman, Chairman, Subcomittee on Health and the Environment, Committee on Energy and Commerce, U.S. House of Representatives, was the keynote speaker. The Honorable C. Boyden Gray, Counsel to the Vice President of the United States was the luncheon speaker on Wednesday. Daniel J. Goodwin, President, State and Territorial Air Pollution Program Administrators, was the luncheon speaker on Thursday.

Session 1. entitled “The Clean Air Act: Legislative Status,” was moderated by G. Steve Hart, President of APCA. Session 2. “Regulatory Reform,” was chaired by Richard N. Holwill, Vice President for Government Information, The Heritage Foundation. The Honorable A. Alan Hill, and Gordon Snow, from the President’s Council on Environmental Quality were co-moderators for Session 3. which was entitled, “Acid Rain: International Perspectives.” Session 4. “Critical Issues,” was moderated by Walter C. Barber, Jr., Director, Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency.

Condensed versions of the remarks of the participants are presented here. A more extensive summary of the meeting which includes floor discussion is available in the Proceedings of the Tenth APCA Government Seminar which can be obtained from APCA headquarters.  相似文献   

16.
ABSTRACT

Recent epidemiological studies have consistently shown that the acute mortality effects of high concentrations of ambient particulate matter (PM), documented in historic air pollution episodes, may also be occurring at the low to moderate concentrations of ambient PM found in modern urban areas. In London in December 1952, the unexpected deaths due to PM exposure could be identified and counted as integers by the coroners. In modern times, the PM-related deaths cannot be as readily identified, and they can only be inferred as fractional average daily increases in mortality rates using sophisticated statistical filtering and analyses of the air quality and mortality data. The causality of the relationship between exposure to ambient PM and acute mortality at these lower modern PM concentrations has been questioned because of a perception that there is little significant correlation in time between the ambient PM concentrations and measured personal exposure to PM from all sources (ambient PM plus indoor-generated PM).

This article shows that the critical factor supporting the plausibility of a linear PM mortality relationship is the expected high correlation in time of people's exposure to PM of ambient origin with measured ambient PM concentrations, as used in the epidemiological time series studies. The presence of indoor and personal sources of PM masks this underlying relationship, leading to confusion in the scientific literature about the strong underlying temporal relationship between personal exposure to PM of ambient origin and ambient PM concentration. The authors show that the sources of PM of non-ambient origin operate independently of the ambient PM concentrations, so that the mortality effect of non-ambient PM, if any, must be independent of the effects of the ambient PM exposures.  相似文献   

17.
Abstract

A microanalytical method suitable for the quantitative determination of the sugar anhydride levoglucosan in low-volume samples of atmospheric fine particulate matter (PM) has been developed and validated. The method incorporates two sugar anhydrides as quality control standards. The recovery standard sedoheptulosan (2,7-anhydro-β-D-altro-heptulopyranose) in 20 μL solvent is added onto samples of the atmospheric fine PM and aged for 1 hr before ultrasonic extraction with ethylacetate/ triethylamine. The extract is reduced in volume, an internal standard is added (1,5-anhydro-D-mannitol), and a portion of the extract is derivatized with 10% by volume N-trimethylsilylimidazole. The derivatized extract is analyzed by gas chromatography/mass spectrometry (GC/MS). The recovery of levoglucosan using this procedure was 69 ± 6% from five filters amended with 2 μg levoglu-cosan, and the reproducibility of the assay is 9%. The limit of detection is ~0.1 μg/mL, which is equivalent to ~3.5 ng/m3 for a 10 L/min sampler or ~8.7 ng/m3 for a 4 L/min personal sampler (assuming 24-hr integrated samples). We demonstrated that levoglucosan concentrations in collocated samples (expressed as ng/m3) were identical irrespective of whether samples were collected by PM with aerodynamic diameter ≤2.5 μm or PM with aerodynamic diameter ≤10 μm impactors. It was also demonstrated that X-ray fluorescence analysis of samples of atmospheric PM, before levoglucosan determinations, did not alter the levels of levoglucosan.  相似文献   

18.
ABSTRACT

Most time-series studies of particulate air pollution and acute health outcomes assess exposure of the study population using fixed-site outdoor measurements. To address the issue of exposure misclassification, we evaluate the relationship between ambient particle concentrations and personal exposures of a population expected to be at risk of particle health effects.

Sampling was conducted within the Vancouver metropolitan area during April-September 1998. Sixteen subjects (non-smoking, ages 54-86) with physician-diagnosed chronic obstructive pulmonary disease (COPD) wore personal PM2 5 monitors for seven 24-hr periods, randomly spaced approximately 1.5 weeks apart. Time-activity logs and dwelling characteristics data were also obtained for each subject. Daily 24-hr ambient PM10 and PM2.5 concentrations were measured at five fixed sites spaced throughout the study region. SO4 2-, which is found almost exclusively in the fine particle fraction and which does not have major indoor sources, was measured in all PM2 5 samples as an indicator of accumulation mode particu-late matter of ambient origin.  相似文献   

19.
Particulate matter is characterized by its physical and chemical properties. Federal and state emission standards identify two important physical properties, opacity (visible emissions) and particulate mass concentration. In addition, particle size and particle composition are characteristics that play a significant role in the assessment of health effects, visibility, and control strategy. Systems to monitor these particle characteristics are in various stages of development. Opacity monitors have the longest history of commercial availability and of applicability to various source emissions. Particulate mass monitors have a short history as commercially available systems and are under evaluation in various source applications. Particle size monitors are mainly in the advanced prototype development stage undergoing evaluation. Particle composition monitors are in the early stages of development as research prototypes. Real time size monitoring systems will eventually be wedded to real time particle composition analyzers to give a monitoring system for particle size distributions of chemical constituents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号