首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The field of ozone air quality modeling, or as it is commonly referred to, photochemical air quality modeling, has undergone rapid change in recent years. Improvements in model components, as well as in methods of interpreting model performance, have contributed to this change. Attendant with this rapid change has been a growing need for those developing and using air quality models and policy makers to have a common understanding of the use and role of models in the decision making process. This Critical Review highlights recent advances and continuing problem areas in photochemical air quality modeling. Emphasis is placed on the components and input data for such models, model performance evaluation, and the implications for their use in regulatory decisions.  相似文献   

2.
This paper summarizes the results of an Electric Power Research Institute funded research effort to determine the feasibility of using receptor models for the apportionment of power plant contributions to air quality, deposition quality, and light extinction on local and regional scales. Sufficient information currently exists (or was developed during the course of this study) to establish feasibility for the apportionment of power plant contributions to local-scale air quality and to strongly suggest the usefulness of receptor modeling for regional-scale air quality, light extinction, and dry deposition quality apportionment. Insufficient information existed to determine whether or not receptor modeling can be useful for the allocation of wet deposition quality.

A series of seven future research recommendations were prepared for the purpose of advancing receptor modeling from theoretical feasibility to practical utility. Two recommendations address model evaluation: (1) prepare a user-oriented receptor model application and testing package, and (2) perform computer simulation testing of past, current, and proposed receptor model applications. Two recommendations address model development: (1) develop a receptor model requiring minimal information about source profiles, and (2) develop a “hybrid” model (i.e., a model that combines source and receptor oriented methods). Finally, three recommendations address source characterization: (1) develop procedures for individual particle characterization, (2) develop sampling and analysis methods for source profile determination, and (3) measure source profiles of coal- and oil-fired power plants, and other sources that confound identification of emissions from coal- and oilfired power plants.  相似文献   

3.
A personal air quality model (PAQM) has been developed to estimate the effect of being indoors on total personal exposure to outdoor-generated air pollution. Designed to improve air toxics risk assessment, PAQM accounts for individual hourly activity patterns, indoor-outdoor differences, physical exercise level, and geographic location for up to 56 different population groups. Unique hourly activity profiles are specified for each population group; group members are assigned each hour to one of up to 10 different indoor and outdoor microenvironments. To illustrate PAQM use, we apply it to two example cases: a long-term example representative of situations where pollutant health impact is related to integrated exposure (as in the case of potentially carcinogenic air toxics) and a short-term example representative of situations where health impact is related to acute exposure to peak concentrations (as with ozone).

Case study results illustrate that personal exposure, and thus health risk, attributable to outdoor-generated air pollution is sensitive to indoor-outdoor differences and population mobility. Where health impact is related to long-term integrated exposure (e.g., air toxics), exposure and subsequent risk are likely to be lower than that estimated by previous modeling techniques which do not account for such effects.  相似文献   

4.
Efficient methods are developed for modeling emissions – air quality relationships that govern ozone and NO2 concentrations over very long periods of time. A baseline model evaluation study is conducted to assess the accuracy and speed with which the relationship between pollutant emissions and the frequency distribution of O3 concentrations throughout the year can be computed along with annual average NO2 values using a deterministic photochemical airshed model driven by automated objective analysis of measured meteorological parameters. Methods developed are illustrated by application to the air quality situation that exists in Southern California. Model performance statistics for O3 are similar to the results obtained in previous short-term episodic model evaluation studies that were based on hand-crafted meteorological inputs that are supplemented by expensive field measurement campaigns. Model predictions at one of the highest NO2 concentration sites in the US indicate that measured violation of the US annual average NO2 air quality standard at that site occurs because other species such as HNO3 and PAN are measured as if they were NO2 by the chemiluminescent NOx monitors in current use.  相似文献   

5.
Abstract

Despite the widespread application of photochemical air quality models (AQMs) in U.S. state implementation planning (SIP) for attainment of the ambient ozone standard, documentation for the reliability of projections has remained highly subjective. An “idealized” evaluation framework is proposed that provides a means for assessing reliability. Applied to 18 cases of regulatory modeling in the early 1990s in North America, a comparative review of these applications is reported. The intercomparisons suggest that more than two thirds of these AQM applications suffered from having inadequate air quality and meteorological databases. Emissions representations often were unreliable; uncertainties were too high. More than two thirds of the performance evaluation efforts were judged to be substandard compared with idealized goals. Meteorological conditions chosen according regulatory guidelines were limited to one or two cases and tended to be similar, thus limiting the extent to which public policy makers could be confident that the emission controls adopted would yield attainment for a broad range of adverse atmospheric conditions. More than half of the studies reviewed did not give sufficient attention to addressing the potential for compensating errors. Corroborative analyses were conducted in only one of the 18 studies reviewed. Insufficient attention was given to the estimation of model and/or input database errors, uncertainties, or variability in all of the cases examined. However, recent SIP and policy‐related regional modeling provides evidence of substantial improvements in the underlying science and available modeling systems used for regulatory decision making. Nevertheless, the availability of suitable databases to support increasingly sophisticated modeling continues to be a concern for many locations. Thus, AQM results may still be subject to significant uncertainties. The evaluative process used here provides a framework for modelers and public policy makers to assess the adequacy of contemporary and future modeling work.  相似文献   

6.
Windblown dust is known to impede visibility, deteriorate air quality and modify the radiation budget. Arid and semiarid areas with unpaved and unvegetated land cover are particularly prone to windblown dust, which is often attributed to high particulate matter (PM) pollution in such areas. Yet, windblown dust is poorly represented in existing regulatory air quality models. In a study by the authors on modeling episodic high PM events along the US/Mexico border using the state-of-the-art CMAQ/MM5/SMOKE air quality modeling system [Choi, Y.-J., Hyde, P., Fernando, H.J.S., 2006. Modeling of episodic particulate matter events using a 3D air quality model with fine grid: applications to a pair of cities in the US/Mexico border. Atmospheric Environment 40, 5181–5201], some of the observed PM10 NAAQS exceedances were inferred as due to windblown dust, but the modeling system was incapable of dealing with time-dependent episodic dust entrainment during high wind periods. In this paper, a time-dependent entrainment parameterization for windblown dust is implemented in the CMAQ/MM5/SMOKE modeling system with the hope of improving PM predictions. An approach for realizing windblown dust emission flux for each grid cell over the study domain on an hourly basis, which accounts for the influence of factors such as soil moisture content, atmospheric stability and wind speed, is presented in detail. Comparison of model predictions with observational data taken at a pair of US/Mexico border towns shows a clear improvement of model performance upon implementation of the dust emission flux parameterization.  相似文献   

7.
Abstract

Transit traffic through the Austrian Alps is of major concern in government policy. Pollutant burdens resulting from such traffic are discussed widely in Austrian politics and have already led to measures to restrict traffic on transit routes. In the course of an environmental assessment study, comprehensive measurements were performed. These included air quality observations using passive samplers, a differential optical absorption spectroscopy system, a mobile and a fixed air quality monitoring station, and meteorological observations. As was evident from several previous studies, dispersion modeling in such areas of complex terrain and, moreover, with frequent calm wind conditions, is difficult to handle. Further, in the case presented here, different pollutant sources had to be treated simultaneously (e.g., road networks, exhaust chimneys from road tunnels, and road tunnel portals). No appropriate system for modeling all these factors has so far appeared in the literature. A prognostic wind field model coupled with a Lagrangian dispersion model is thus presented here and is designed to treat all these factors. A comparison of the modeling system with results from passive samplers and from a fixed air quality monitoring station proved the ability of the model to provide reasonable figures for concentration distributions along the A10.  相似文献   

8.
ABSTRACT

Guidance for the performance evaluation of three-dimensional air quality modeling systems for particulate matter and visibility is presented. Four levels are considered: operational, diagnostic, mechanistic, and probabilistic evaluations. First, a comprehensive model evaluation should be conducted in at least two distinct geographical locations and for several meteorological episodes. Next, streamlined evaluations can be conducted for other similar applications if the comprehensive evaluation is deemed satisfactory. In all cases, the operational evaluation alone is insufficient, and some diagnostic evaluation must always be carried out. Recommendations are provided for designing field measurement programs that can provide the data needed for such model performance evaluations.  相似文献   

9.
Statistical analyses of health effects of air pollution have increasingly used GIS-based covariates for prediction of ambient air quality in “land use” regression models. More recently these spatial regression models have accounted for spatial correlation structure in combining monitoring data with land use covariates. We present a flexible spatio-temporal modeling framework and pragmatic, multi-step estimation procedure that accommodates essentially arbitrary patterns of missing data with respect to an ideally complete space by time matrix of observations on a network of monitoring sites. The methodology incorporates a model for smooth temporal trends with coefficients varying in space according to Partial Least Squares regressions on a large set of geographic covariates and nonstationary modeling of spatio-temporal residuals from these regressions. This work was developed to provide spatial point predictions of PM2.5 concentrations for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) using irregular monitoring data derived from the AQS regulatory monitoring network and supplemental short-time scale monitoring campaigns conducted to better predict intra-urban variation in air quality. We demonstrate the interpretation and accuracy of this methodology in modeling data from 2000 through 2006 in six U.S. metropolitan areas and establish a basis for likelihood-based estimation.  相似文献   

10.
This two-part paper reports on the development, implementation, and improvement of a version of the Community Multi-Scale Air Quality (CMAQ) model that assimilates real-time remotely-sensed aerosol optical depth (AOD) information and ground-based PM2.5 monitor data in routine prognostic application. The model is being used by operational air quality forecasters to help guide their daily issuance of state or local-agency-based air quality alerts (e.g. action days, health advisories). Part 1 describes the development and testing of the initial assimilation capability, which was implemented offline in partnership with NASA and the Visibility Improvement State and Tribal Association of the Southeast (VISTAS) Regional Planning Organization (RPO). In the initial effort, MODIS-derived aerosol optical depth (AOD) data are input into a variational data-assimilation scheme using both the traditional Dark Target and relatively new “Deep Blue” retrieval methods. Evaluation of the developmental offline version, reported in Part 1 here, showed sufficient promise to implement the capability within the online, prognostic operational model described in Part 2. In Part 2, the addition of real-time surface PM2.5 monitoring data to improve the assimilation and an initial evaluation of the prognostic modeling system across the continental United States (CONUS) is presented.

Implications: Air quality forecasts are now routinely used to understand when air pollution may reach unhealthy levels. For the first time, an operational air quality forecast model that includes the assimilation of remotely-sensed aerosol optical depth and ground based PM2.5 observations is being used. The assimilation enables quantifiable improvements in model forecast skill, which improves confidence in the accuracy of the officially-issued forecasts. This helps air quality stakeholders be more effective in taking mitigating actions (reducing power consumption, ride-sharing, etc.) and avoiding exposures that could otherwise result in more serious air quality episodes or more deleterious health effects.  相似文献   

11.
Atmospheric pollution in urban centers has been one of the main causes of human illness related to the respiratory and circulatory system. Efficient monitoring of air quality is a source of information for environmental management and public health. This study investigates the spatial patterns of atmospheric pollution using a spatial multicriteria model that helps target locations for air pollution monitoring sites. The main objective was to identify high-priority areas for measuring human exposures to air pollutants as they relate to emission sources. The method proved to be viable and flexible in its application to various areas.

Implications:?Spatial multicriteria models provide a tool for air pollution management in urban areas. Analytic hierarchy process (AHP) modeling can help with the process of prioritizing monitoring site locations and minimizing costs.  相似文献   

12.
This study presents a new method that incorporates modern air dispersion models allowing local terrain and land–sea breeze effects to be considered along with political and natural boundaries for more accurate mapping of air quality zones (AQZs) for coastal urban centers. This method uses local coastal wind patterns and key urban air pollution sources in each zone to more accurately calculate air pollutant concentration statistics. The new approach distributes virtual air pollution sources within each small grid cell of an area of interest and analyzes a puff dispersion model for a full year’s worth of 1-hr prognostic weather data. The difference of wind patterns in coastal and inland areas creates significantly different skewness (S) and kurtosis (K) statistics for the annually averaged pollutant concentrations at ground level receptor points for each grid cell. Plotting the S-K data highlights grouping of sources predominantly impacted by coastal winds versus inland winds. The application of the new method is demonstrated through a case study for the nation of Kuwait by developing new AQZs to support local air management programs. The zone boundaries established by the S-K method were validated by comparing MM5 and WRF prognostic meteorological weather data used in the air dispersion modeling, a support vector machine classifier was trained to compare results with the graphical classification method, and final zones were compared with data collected from Earth observation satellites to confirm locations of high-exposure-risk areas. The resulting AQZs are more accurate and support efficient management strategies for air quality compliance targets effected by local coastal microclimates.

Implications: A novel method to determine air quality zones in coastal urban areas is introduced using skewness (S) and kurtosis (K) statistics calculated from grid concentrations results of air dispersion models. The method identifies land–sea breeze effects that can be used to manage local air quality in areas of similar microclimates.  相似文献   


13.
14.
An enhanced PM2.5 air quality forecast model based on nonlinear regression (NLR) and back-trajectory concentrations has been developed for use in the Louisville, Kentucky metropolitan area. The PM2.5 air quality forecast model is designed for use in the warm season, from May through September, when PM2.5 air quality is more likely to be critical for human health. The enhanced PM2.5 model consists of a basic NLR model, developed for use with an automated air quality forecast system, and an additional parameter based on upwind PM2.5 concentration, called PM24. The PM24 parameter is designed to be determined manually, by synthesizing backward air trajectory and regional air quality information to compute 24-h back-trajectory concentrations. The PM24 parameter may be used by air quality forecasters to adjust the forecast provided by the automated forecast system. In this study of the 2007 and 2008 forecast seasons, the enhanced model performed well using forecasted meteorological data and PM24 as input. The enhanced PM2.5 model was compared with three alternative models, including the basic NLR model, the basic NLR model with a persistence parameter added, and the NLR model with persistence and PM24. The two models that included PM24 were of comparable accuracy. The two models incorporating back-trajectory concentrations had lower mean absolute errors and higher rates of detecting unhealthy PM2.5 concentrations compared to the other models.  相似文献   

15.
ABSTRACT

For the evaluation of air quality improvement strategies, emission data in high temporal and spatial resolution is necessary, including all emission sources and all relevant pollutant species. Computer aided models are usually used to generate this emission data because it is not possible to obtain measurements from all sources, and, furthermore, a large amount of data has to be handled. For the development of emission modeling systems, a software tool called CAREAIR has been created. The intention of this paper is to introduce CAREAIR to the international community dealing with emission inventories and air quality improvement strategies.

CAREAIR is not just a single emission model but a flexible modeling toolbox. The database contains data and formulas for data manipulation, which is performed by using a set of flexible operators with different specifications. The emission calculation is carried out by combining several data manipulation operators. The CAREAIR modeling toolbox allows model implementation for the calculation of emissions from different pollutants in a high spatial and temporal resolution. The application of CAREAIR within various investigation projects in Germany, Europe, and Nigeria shows that CAREAIR is an appropriate instrument for the development of flexible emission models by meeting the various demands of these projects. The function and the data structures of this modeling toolbox are described and, towards the end of the paper, an example of an emission calculation with CAREAIR is given.  相似文献   

16.
ABSTRACT

During New Source Review modeling of proposed major sources of oxides of nitrogen (NOx), maximum impacts are often predicted to occur very close to the source. At the same time, current modeling guidance recommends techniques that may be overly conservative in estimating the fraction of nitrogen dioxide (NO2) in these plumes. A new technique called the Plume Volume Molar Ratio Method (PVMRM) is being proposed that simulates both chemistry and dispersion to better estimate the fraction of NO2. This paper documents the methodology behind the technique. A follow-up pa-per1 will evaluate its performance against a number of databases. This method is designed to realistically predict NO2 fraction at close-in receptors yet still provide conservative estimates so that the air quality standards can be protected.  相似文献   

17.
Abstract

The management of tropospheric ozone (O3) is particularly difficult. The formulation of emission control strategies requires considerable information including: (1) emission inventories, (2) available control technologies, (3) meteorological data for critical design episodes, and (4) computer models that simulate atmospheric transport and chemistry. The simultaneous consideration of this information during control strategy design can be exceedingly difficult for a decision-maker. Traditional management approaches do not explicitly address cost minimization. This study presents a new approach for designing air quality management strategies; a simple air quality model is used conjunctively with a complex air quality model to obtain low-cost management strategies. A simple air quality model is used to identify potentially good solutions, and two heuristic methods are used to identify cost-effective control strategies using only a small number of simple air quality model simulations. Subsequently, the resulting strategies are verified and refined using a complex air quality model. The use of this approach may greatly reduce the number of complex air quality model runs that are required. An important component of this heuristic design framework is the use of the simple air quality model as a screening and exploratory tool. To achieve similar results with the simple and complex air quality models, it may be necessary to “tweak” or calibrate the simple model. A genetic algorithm-based optimization procedure is used to automate this tweaking process. These methods are demonstrated to be computationally practical using two realistic case studies, which are based on data from a metropolitan region in the United States.  相似文献   

18.
Abstract

The use of sorbents has been proposed to remove volatile organic compounds (VOCs) present in ambient air at concentrations in the parts-per-billion (ppb) range, which is typical of indoor air quality applications. Sorbent materials, such as granular activated carbon and molecular sieves, are used to remove VOCs from gas streams in industrial applications, where VOC concentrations are typically in the parts-per-million range. A method for evaluating the VOC removal performance of sorbent materials using toluene concentrations in the ppb range is described. Breakthrough times for toluene at concentrations from 2 to 7500 ppb are presented for a hydrophobic molecular sieve at 25% relative humidity. By increasing the ratio of challenge gas flow rate to the mass of the sorbent bed and decreasing both the mass of sorbent in the bed and the sorbent particle size, this method reduces the required experimental times by a factor of up to several hundred compared with the proposed American Society of Heating, Refrigerating, and Air-Conditioning Engineers method, ASHRAE 145P, making sorbent performance evaluation for ppb-range VOC removal more convenient. The method can be applied to screen sorbent materials for application in the removal of VOCs from indoor air.  相似文献   

19.
Recent advances in the development of receptor-oriented source apportionment techniques (models) have provided a new approach to evaluating the performance of particulate dispersion models. Rather than limiting performance evaluations to comparisons of particulate mass, receptor model estimates of source impacts can be used to open new opportunities for in-depth analysis of dispersion model performance. Recent experiences in the joint application of receptor and dispersion models have proven valuable in developing increased confidence in source impact projections used for control strategy development. Airshed studies that have followed this approach have identified major errors in emission inventory data bases and provided technical support for modeling assumptions.

This paper focuses on the joint application of dispersion and receptor models to particulate source impact analysis and dispersion model performance and evaluation. The limitations and advantages of each form of modeling are reviewed and case studies are examined. The paper is offered to provide several new perspectives into the model evaluation process in the hope that they may prove useful to those that manage our nation’s air resources.  相似文献   

20.
In recent years, the application of titanium dioxide (TiO2) as a photocatalyst in asphalt pavement has received considerable attention for purifying ambient air from traffic-emitted pollutants via photocatalytic processes. In order to control the increasing deterioration of ambient air quality, urgent and proper risk assessment tools are deemed necessary. However, in practice, monitoring all process parameters for various operating conditions is difficult due to the complex and non-linear nature of air pollution-based problems. Therefore, the development of models to predict air pollutant concentrations is very useful because it can provide early warnings to the population and also reduce the number of measuring sites. This study used artificial neural network (ANN) and neuro-fuzzy (NF) models to predict NOx concentration in the air as a function of traffic count (Tr) and climatic conditions including humidity (H), temperature (T), solar radiation (S), and wind speed (W) before and after the application of TiO2 on the pavement surface. These models are useful for modeling because of their ability to be trained using historical data and because of their capability for modeling highly non-linear relationships. To build these models, data were collected from a field study where an aqueous nano TiO2 solution was sprayed on a 0.2-mile of asphalt pavement in Baton Rouge, LA. Results of this study showed that the NF model provided a better fitting to NOx measurements than the ANN model in the training, validation, and test steps. Results of a parametric study indicated that traffic level, relative humidity, and solar radiation had the most influence on photocatalytic efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号