首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of receptor models for the determination of the sources of an ambient air pollutant requires that the composition of the pollutant at the point of emission be known. For this study, composition information for 10 sources of volatile organic compounds (VOC) were evaluated and source fingerprints developed. The source categories include motor vehicles, gasoline vapor, petroleum refineries, architectural coatings, graphic arts, waste-water treatment, vapor degreasing, drycleaning, automobile assembly (including body painting), and polyethylene production. The fingerprints are presented for a group of 23 compounds. These compounds were selected for a variety of reasons including ease of measurement in the ambient environment, compound toxicity, reactivity, and usefulness in previous receptor modeling applications. In general, the data for sources of VOC are remarkably consistent from study to study. Because the profiles for many of the sources of VOC are controlled by physical and chemical processes (e.g. combustion) and not raw material composition, the fingerprints have general applicability.  相似文献   

2.
It is important in the implementation of the air quality standard for ozone/oxidants and non-methane hydrocarbons to develop quantitative relationships between these pollutants in air quality regions. Analyses for ambient air non-methane hydrocarbon give a direct measure of the progress in control of hydrocarbon emissions and in the reduction of oxidant/ozone concentration levels. Total hydrocarbon concentrations are much more available than non-hydrocarbon levels. An empirical relationship between total hydrocarbons and non-methane hydrocarbons has been obtained from measurements at both west and east coast sites in the U. S. The comparability of measurements from flame ionization analyzers and gas chromatography has been demonstrated. Either analytical technique can be applied to samples collected at monitoring sites to provide the 6-9 A.M. non-methane hydrocarbon aerometric results specified in the air quality standards.  相似文献   

3.
Soil removal of propane, isobutane and n-butane from a waste air stream was evaluated in the laboratory and in a prototype soil bioreactor. Laboratory investigations indicated first-order kinetics and the potential to degrade light aliphatic hydrocarbons and trichlorethylene, a compound ordinarily resistant to aerobic biological treatment. The predicted behavior of the bioreactor, based on laboratory studies, agreed closely with the actual behavior of the Reid system. The prototype bioreactor reduced the hydrocarbon concentrations in the air by at least 90percent with a residence time of 15 minutes and a pressure drop of 85 cm of water. The bioreactor functioned well through a range of temperatures, 12°C to 24°C.  相似文献   

4.
Abstract

Samples representative of transportation-related hydrocarbon emissions were collected as part of the 1990 Atlanta Ozone Precursor Monitoring Study. Motor vehicle emissions were sampled in canisters beside a roadway in a tunnel-like underpass during periods of heavy traffic. Airport and aircraft emissions were approximated by canister samples obtained at a major airport facility. Three octane grades of gasoline were purchased from six major vendors in Atlanta. Canister samples were prepared using these fuels to approximate the whole gasoline and gasoline vapor composition of the fuels in use during the study. All samples were analyzed by gas chromatography/flame ionization detection (GC/FID) for their hydrocarbon content. Detailed speciated hydrocarbon profiles were developed from this source sampling and analysis program for use in the Chemical Mass Balance (CMB) model. Profiles presented and discussed here represent the hydrocarbon composition of emissions from a roadway, composite headspace gasoline at two temperatures, composite whole gasoline, whole gasoline at three octane grades, and an airport. The roadway profile is compared with similar profiles in the literature, and recommendations are made regarding its use in the CMB model. The roadway and fuel profiles are discussed in the context of the MOBILE5 model outputs. The headspace gasoline vapor profile presented here is compared with a headspace gasoline vapor profile calculated from the whole gasoline profile by means of Raoult’s law. Agreement between the measured and calculated headspace profiles is excellent. The airport profile demonstrates the importance of high molecular weight volatile hydrocarbons in airport and aircraft emissions.  相似文献   

5.
《Environmental Forensics》2013,14(4):319-329
Accidental spills and chronic leaks of fuel oil or other hydrocarbon material (e.g., coal tar) often result in subsurface accumulation of nonaqueous phase liquid (NAPL), which can be a subsequent source of contamination in groundwater. Linking hydrocarbons in groundwater to a source NAPL has been difficult when using standard target analytes (e.g., BTEX) because of differences in partitioning properties of the analytes between the source NAPL and groundwater. Because aqueous solubility is predicted to be the controlling influence in the partitioning of hydrocarbons from NAPL to groundwater, a solubility-based approach to matching dissolved hydrocarbons in groundwater to their source NAPL has been developed and validated for two sites with commonly encountered types of NAPL contamination. Specifically, a gasoline LNAPL and a coal tar DNAPL from two separate sites (West Virginia and California) and groundwater interfaced with these NAPLs were analyzed for approximately 50 gasoline-range hydrocarbons consisting of paraffin, isoparaffin, (mono-) aromatic, naphthene, and olefin compounds (PIANO). Solubility characteristics of selected alkyl aromatic hydrocarbons from the PIANO analysis were used to identify a set of diagnostic hydrocarbons, expressed as hydrocarbon ratios, which were found to be useful in distinguishing the source(s) of hydrocarbons in groundwater. At the West Virginia site, the diagnostic ratios in a downgradient groundwater sample were similar to those of a gasoline NAPL at that site, indicating the source of hydrocarbons to the groundwater was the upgradient gasoline NAPL. The diagnostic ratios of the groundwater in contact with the gasoline NAPL and the remote groundwater were also similar, providing evidence that the diagnostic ratios were retained during transport in the aquifer. At the California site, diagnostic ratios in a cross-gradient groundwater sample differed from those of the coal tar NAPL at that site, indicating that the remote groundwater hydrocarbons did not originate from the coal tar contamination. Environmental factors such as selective degradation of specific isomers and various geological conditions (e.g., soil mineralogy, and organic content) may confound the application of this solubility-based fingerprinting approach. Thus, it is recommended that multiple diagnostic pairs be simultaneously evaluated when considering this fingerprinting approach for specific sites and product types.  相似文献   

6.
This paper provides source contribution estimates from vehicular and meat-cooking emissions to particulate polycyclic aromatic hydrocarbon (PAH) and elemental carbon (EC) concentrations measured at two Los Angeles sites during a field study in 1989. The source concentration matrix for PAH was based on new data for vehicular emissions and literature data for meat-cooking operations. The chemical mass balance (CMB 7.0) receptor model was used, and source profiles were modified to reflect reactive decay of PAH in the atmosphere. The calculations indicate that the Pico Rivera site was dominated by auto emissions, which account for more than 90 percent of all the PAH (except chrysene), carbon monoxide (CO), and 61 percent of the EC concentrations. In contrast, emissions from meat cooking contributed significantly (20 to 75 percent) to the concentrations of four-ring PAH measured at a residential site at Upland. The five-ring and larger PAH were attributed to auto emissions at Upland as well.  相似文献   

7.
ABSTRACT

Non-methane organic carbon (NMOC) is a measure of total organic carbon in an air emission, excluding that from methane. Thus, it measures the total amount of carbon, irrespective of the structure and functional groups in the molecule. The U.S. Environmental Protection Agency (EPA) Method 25 is used for quantification of NMOC in emission sources and in ambient air. This method involves laboratory analysis of collected air samples and cannot be used for real-time measurements. It is prone to interferences from CO2, CH4, and CO, as well as moisture. In this paper, a novel method for continuous, on-line monitoring of NMOC in air emissions and ambient air is presented. Detection limits are at ppb levels, and interference of permanent gases have been eliminated.  相似文献   

8.
ABSTRACT

During three measuring campaigns in June, July, and August 1996, volatile organic compound (VOC) concentrations were measured at a rural background site, a city residential site, and a street site in Berlin. In addition, samples were taken near relevant sources of VOCs. The meaurements covered the volatile hydrocarbons in the range C1-C14 and included aldehydes and ketones. Samples were taken at four characteristic periods of 2 hr/day: during the night, during the early morning rush hour, at midday, and during the evening rush hour. An assessment of the contribution of emission categories to the observed concentrations was made with the chemical mass balance (CMB) modelling technique.

The VOC concentrations at the residential area and at the street site in the inner city were, respectively, a factor of 3 and 7 above the background concentration. Traffic exhaust contributed approximately 80-90% of the non-methane hydrocarbon (NMHC) concentration in the inner city and approximately 60% at the background area. Evaporative losses of motor fuel are estimated to account for approximately 7% at all sites. Natural gas leakage also contributed significantly to the observed VOC concentrations: in the inner city approximately 510% and at the background area approximately 30%. The measurements also showed a contribution of smaller sources, such as dry cleaning, use of solvents, and bio-genic emissions. However, the contribution of these sources to the total observed concentrations at the sites is estimated to be very small.  相似文献   

9.
This study was conducted at a newly constructed federal office building in Portland, Oregon. The primary objectives were to identify the major sources of volatile organic compounds (VOC) in the building and to measure both long-term (one year) and short-term (several day) variations in concentrations and source strengths. Samples for VOC were collected on four occasions over a period of 14 months starting with the first month of occupancy. During the final sampling period, samples were collected over four days (Friday - Monday). The samples were analyzed for individual compounds and for total VOC (TVOC). The results were expressed as specific source strengths, as well as concentrations, to facilitate comparisons of measurements made under different ventilation conditions.

The primary source of VOC in the building was identified as liquid-process photocopiers and plotters which emitted a characteristic mixture of C10-Cn isoparaffinic hydrocarbons. The specific source strength of TVOC, which was dominated by the emissions from these office machines, remained relatively constant over the course of the study. Motor vehicles in the below-ground parking garage were implicated as another major source of hydrocarbons in the building. Over the final four-day sampling period, the specific source strength of TVOC varied by about a factor of five, predominantly reflecting occupant use of office machines.  相似文献   

10.
ABSTRACT

Non-methane organic compound (NMOC) profiles for on-road motor vehicle emissions were measured in a downtown tunnel and parking garages in Mexico City during 1996. Hydrocarbon samples from the tunnel and ambient air samples (C2-C12) were collected using stainless steel canisters, and carbonyl compounds were collected using 2,4-dinitrophenylhydrazine (DNPH) impregnated cartridges. Canister samples were analyzed by gas chromatog-raphy/flame ionization detection (GC/FID) to ascertain detailed hydrocarbon composition. DNPH samples were analyzed by high performance liquid chromatography (HPLC). NMOC source profiles were quantified for evaporative emissions from refueling, cold start, and hot soak, and on-road operating conditions. The ultimate purpose will be to determine the apportionment of ambient NMOC concentrations using the Chemical Mass Balance (CMB) model. The tunnel profile contained 42.3 ppbC% of alkanes, 20.6 ppbC% of unsaturated compounds, and 22.4 ppbC% of aromatics. The most abundant species were acetylene with 7.22 ppbC%, followed by ipentane with 5.69 ppbC%, and toluene with 5.42 ppbC%. These results were compared with those from studies in the United States. The cold start profile was found to be similar to the tunnel profile, although there were differences in the content of acetylene, isopentane, and oxygenates. The abundance of saturated NMOC in the hot soak profile was similar to gasoline head space profiles; it was also much larger than saturated NMOC in the roadway profile.  相似文献   

11.
A procedure has been developed for the analysis of trace quantities of light hydrocarbons in air. A freezetrap filled with chromatographic packing was installed in place of the gas sample loop of a flame ionization chromatograph. An air sample 0.1–0.5 liter volume was passed through the trap which was chilled with liquid oxygen. The trap wasthen brought to ice temperature and its contents simultaneously swept into the column. The resulting chrómatogram could be used to determine about 25 hydrocarbons through n-hexane. The minimum detectable concentration was below 1 ppb for these hydrocarbons. With such sensitivity it is possible to make useful measurements even on samples of light air pollution. Air samples from the Riverside area were analyzed in this fashion starting in the summer of 1965. The relative amounts of these hydrocarbons were then compared with the distribution reported for the various known hydrocarbon sources. The attenuation of the more reactive hydrocarbons by photolysis was also observed. A system for irradiating trapped air samples was also constructed. Samples were collected in 5-gallon borosilicate bottles which were then irradiated with ultraviolet radiation and the concentration changes followed.  相似文献   

12.
This paper discusses the development of a high-temperature subtractive analyzer for separating the hydrocarbons present in gaseous mixtures into two categories— reactive hydrocarbons and unreactive hydrocarbons. The analyzer utilizes the ability of selected substances to absorb certain groups of hydrocarbons and their derivatives from a gas mixture and is designed for operation with a flame ion-ization detector. The body of information presented in this paper is directed to individuals concerned with the analysis of the exhaust gases of gas turbine engines or other combustion sources as stationary power plants. The analyzer grew out of an investigation of a previously reported subtractive analyzer system which operates at ambient temperature. Current state-of-the-art requirements for the accurate determination of total hydrocarbons at the concentrations present in turbine exhaust gases necessitate that sampling and measurements be conducted at elevated temperatures (325-375°F), rather than ambient temperature, to reduce or eliminate condensation and wall adsorption sampling errors. To fulfill this requirement, the sampling lines and flame ionization detector must be heated. After tests determined that the previously reported scrubber system would not remove the same hydrocarbons at elevated temperature levels as it did at ambient temperatures, an investigation of the effectiveness of various absorbents at elevated temperatures was conducted. This led to the development and test of the high-temperature subtractive analyzer concept discussed in this report. In its final form, one path of this unit contains no absorbent, the second contains a column of concentrated H2SO4 on Ultraport and a column containing PdSO4 and H2SO4 on Ultraport. The two columns are connected in series. The absorbents remove olefins, aromatics, acetylene, and oxygenated hydrocarbons but pass paraffins. As the final step in this program, a comparison of the two subtractive analyzers was made using the exhaust from a gas turbine combustion system.  相似文献   

13.
Abstract

This paper elucidated a novel approach to locating volatile organic compound (VOC) emission sources and characterizing their VOCs by database and contour plotting. The target of this survey was a petrochemical plant in Linyan, Kaohsiung County, Taiwan. Samples were taken with canisters from 25 sites inside this plant, twice per season, and analyzed by gas chromatography–mass spectrometry. The survey covered 1 whole year. By consolidated into a database, the data could be readily retrieved, statistically analyzed, and clearly presented in both table and graph forms. It followed from the cross‐analysis of the database that the abundant types of VOCs were alkanes, alkenes/dienes, and aromatics, all of which accounted for 99% of total VOCs. By contour plotting, the emission sources for alkanes, aromatics, and alkenes/dienes were successfully located. Through statistical analysis, the database could provide the range and 90% confidence interval of each species from each emission source. Both alkanes and alkene/dienes came from tank farm and naphtha cracking units and were mainly composed of C3–C5 members. Regarding aromatics, benzene, toluene, and xylenes were the primary species; they were emitted from tank farm, aromatic units, and xylene units.  相似文献   

14.
Abstract

Anaerobic lagoons are a major source of odor at concentrated animal feeding operations. Seven different kinds of artificial (geotextile and polyethylene foam) and natural (straw and redwood) permeable lagoon covers were evaluated for their potential to reduce odorous emissions generated by anaerobic waste lagoons. A novel floating sampling raft was constructed and used to simultaneously evaluate the effectiveness of lagoon covers on an operating swine waste lagoon. The air collected from the raft was evaluated for odor, total reduced sulfur (TRS) compounds, ammonia, total hydrocarbons, dimethyldisulfide, and trimethylamine. The emission rates from the lagoon were highly variable both temporally and spatially. All of the lagoon covers substantially reduced TRS emissions and odor. Geotextile fabric and a recycled foam cover exhibited the greatest reduction in total hydrocarbon emissions; natural covers were less effective. Because of consistently low emission rates of ammonia, no statistically significant reduction of ammonia emissions were observed from any of the lagoon covers.  相似文献   

15.
《Environmental Forensics》2002,3(3-4):227-241
The successful application of forensic geology to contamination studies involving natural systems requires identification of appropriate endmembers and an understanding of the geologic setting and processes affecting the systems. Studies attempting to delineate the background, or natural, source for hydrocarbon contamination in Gulf of Alaska (GOA) benthic sediments have invoked a number of potential sources, including seep oils, source rocks, and coal. Oil seeps have subsequently been questioned as significant sources of hydrocarbons present in benthic sediments of the GOA in part because the pattern of relative polycyclic aromatic hydrocarbon (PAH) abundance characteristic of benthic GOA sediments is inconsistent with patterns typical of weathered seep oils. Likewise, native coal has been dismissed in part because ratios of labile hydrocarbons to total organic carbon (e.g. PAH:TOC) for Bering River coal field (BRCF) sources are too low—i.e. the coals are over mature—to be consistent with GOA sediments. We present evidence here that native coal may have been prematurely dismissed, because BRCF coals do not adequately represent the geochemical signatures of coals elsewhere in the Kulthieth Formation. Contrary to previous thought, Kulthieth Formation coals east of the BRCF have much higher PAH:TOC ratios, and the patterns of labile hydrocarbons in these low thermal maturity coals suggest a possible genetic relationship between Kulthieth Formation coals and nearby oil seeps on the Sullivan anticline. Analyses of low-maturity Kulthieth Formation coal indicate the low maturity coal is a significant source of PAH. Source apportionment models that neglect this source will underestimate the contribution of native coals to the regional background hydrocarbon signature.  相似文献   

16.
《Environmental Forensics》2013,14(3-4):227-241
The successful application of forensic geology to contamination studies involving natural systems requires identification of appropriate endmembers and an understanding of the geologic setting and processes affecting the systems. Studies attempting to delineate the background, or natural, source for hydrocarbon contamination in Gulf of Alaska (GOA) benthic sediments have invoked a number of potential sources, including seep oils, source rocks, and coal. Oil seeps have subsequently been questioned as significant sources of hydrocarbons present in benthic sediments of the GOA in part because the pattern of relative polycyclic aromatic hydrocarbon (PAH) abundance characteristic of benthic GOA sediments is inconsistent with patterns typical of weathered seep oils. Likewise, native coal has been dismissed in part because ratios of labile hydrocarbons to total organic carbon (e.g. PAH: TOC) for Bering River coal field (BRCF) sources are too low--i.e. the coals are over mature--to be consistent with GOA sediments. We present evidence here that native coal may have been prematurely dismissed, because BRCF coals do not adequately represent the geochemical signatures of coals elsewhere in the Kulthieth Formation. Contrary to previous thought, Kulthieth Formation coals east of the BRCF have much higher PAH: TOC ratios, and the patterns of labile hydrocarbons in these low thermal maturity coals suggest a possible genetic relationship between Kulthieth Formation coals and nearby oil seeps on the Sullivan anticline. Analyses of low-maturity Kulthieth Formation coal indicate the low maturity coal is a significant source of PAH. Source apportionment models that neglect this source will underestimate the contribution of native coals to the regional background hydrocarbon signature.  相似文献   

17.
Fingerprints of dioxin from thermal industrial processes   总被引:3,自引:0,他引:3  
Buekens A  Cornelis E  Huang H  Dewettinck T 《Chemosphere》2000,40(9-11):1021-1024
PCDD/F homologue profiles and 2,3,7,8 chlorine-substituted congener patterns are studied using principal component analysis and hierarchical cluster analysis. Measurement data from different industrial metallurgical processes such as iron and steel manufacturing, copper smelters and aluminium plants are compared. It appears that the PCDD/F homologue profiles from industrial metallurgical processes are similar to those from municipal solid waste incinerators. The 2,3,7,8 chlorine-substituted congener pattern from copper smelters is also very similar to that of municipal solid waste incinerators. However, the 2,3,7,8 chlorine-substituted congener pattern from an aluminum plant is very different, 2,3,7,8-TCDF being by far the most important TCDF congener.  相似文献   

18.
ABSTRACT

The CHA Corporation has completed the U.S. Air Force Phase II Small Business Innovation Research program to investigate the feasibility of using a novel microwave-based process for the removal and destruction of volatile organic compounds (VOCs) in effluents from noncombustion sources, such as paint booth ventilation streams. Removal of solvents by adsorption, followed by the regeneration of saturated granular activated carbon (GAC) by microwave energy, was achieved in a single fixed-bed reactor. Microwave regeneration of the fixed-bed-saturated carbon restored the original GAC adsorption capacity. After 20 adsorption/regeneration cycles, the adsorption capacity dropped from 13.5 g methyl ethyl ketone (MEK)/100 g GAC to 12.5 g MEK/100 g GAC. During microwave regeneration of the GAC fixed bed, the concentrated desorbed paint solvent was oxidized by passing the solvent mixture through a fixed bed of an oxidation catalyst mixed with silicon carbide in a microwave reactor. A 98% oxidation efficiency was consistently achieved from the oxidation of VOCs in the microwave catalytic reactor.  相似文献   

19.
Audit materials containing principal organic hazardous constituents (POHCs) have been developed by EPA for use by federal, state, and local agencies or their contractors to assess the accuracy of measurement methods used during RCRA trial burn tests. Audit materials are currently available for 27gaseous organics in five, six, seven, and nine-component mixtures at parts-per-billion levels (7 to 10,000 ppb) in compressed gas cylinders in a balance gas of nitrogen. The criteria used for the selection of 27 gaseous organic compounds is described.

Stability studies indicate that all of the organics tested (with the exception of ethylene oxide and propylene oxide below 10 ppb levels) are stable enough to be used as reliable audit materials.

Subsequent to completion of the stability studies, 89 performance audits have been conducted with the audit materials to assess the accuracy of the Volatile Organic Sampling Train (VOST) and bag measurement methods during or prior to RCRA trial burn tests. A summary of the audits conducted for each POHC and the measurement system audited is shown in this paper. The audit results obtained with audit gases during RCRA trial burn tests are generally within ±50 percent of the audit concentrations.  相似文献   

20.
二维气相色谱法测定空气中的总烃及非甲烷总烃   总被引:3,自引:0,他引:3  
采用单一进样口六通阀进样、毛细管柱二维气相色谱仪三通路分离塔柱分离系统、采用氢离子化检测器分别产生信号,测定环境空气中的非甲烷总烃。通过柱分离系统将样品平均分配到不同类型的两个毛细管色谱柱,分别测定总烃及甲烷。方法简单、快速,最大程度地保证了进样的一致性,从而保证了分析结果的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号