首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Abstract

The U.S. Environmental Protection Agency in 1997 revised the 1-hr ozone (O3) National Ambient Air Quality Standard (NAAQS) to one based on an 8-hr average, resulting in potential nonattainment status for substantial portions of the eastern United States. The regulatory process provides for the development of a state implementation plan that includes a demonstration that the projected future O3 concentrations will be at or below the NAAQS based on photochemical modeling and analytical techniques.

In this study, four photochemical modeling systems, based on two photochemical models, Community Model for Air Quality and the Comprehensive Air Quality Model with extensions, and two emissions processing models, Sparse Matrix Optimization Kernel for Emissions and Emissions Modeling System, were applied to the eastern United States, with emphasis on the northeastern Ozone Transport Region in terms of their response to oxides of nitrogen and volatile organic carbon-focused controls on the estimated design values. With the 8-hr O3 NAAQS set as a bright-line test, it was found that a given area could be termed as being in or out of attainment of the NAAQS depending upon the modeling system. This suggests the need to provide an estimate of model-to-model uncertainty in the relative reduction factor (RRF) for a better understanding of the uncertainty in projecting the status of an area's attainment. Results indicate that the model-to-model differences considered in this study introduce an uncertainty of the future estimated design value of ~3–5 ppb.  相似文献   

2.
A general formula is derived that can be used to calculate the reductions in emissions of inert pollutants required to achieve National Ambient Air Quality Standards (NAAQS) and to predict future urban atmospheric concentrations. The derivation incorporates the main features of atmospheric diffusion modeling and takes account of all categories of sources and their spatial distribution. In our previous paper, carbon monoxide (CO) emissions from light duty vehicles were considered separately with the approximation that emissions from other sources of CO would grow and be controlled proportionately to that of light duty vehicles.

The new general formula is applied to Phoenix-Tucson using EPA data. It Is found that Phoenix-Tucson will meet the NAAQS for CO by 1985 if a 12 g/mi light duty vehicle emission standard is adopted. The EPA, using the same data in a modified rollback analysis, had predicted that Phoenix-Tucson, as well as a number of other localities, would not achieve the NAAQS even if the 3.4 g/mi statutory standard went into effect on schedule.

The underlying reasons for these very different predictions can be readily identified by means of the general formula. It is essential that the data and parameters used in these predictions be internally consistent. It is also noted that the current Federal Test Procedure (CVS-CH) for vehicle emissions gives data inconsistent with that needed to predict CO air quality with a correct methodology.  相似文献   

3.
ABSTRACT

This paper introduces an integrated observational-modeling approach to transform the deterministic nature of attainment demonstrations of the National Ambient Air Quality Standard (NAAQS) into the probabilistic framework. While the methods presented here can be used to address any air quality standard that is based on extreme values, this paper focuses on the application to the 1-hr and 8-hr NAAQS for ozone. Extreme value statistics and resampling techniques are applied to estimate the probability of exceeding the NAAQS for both 1-hr and 8-hr ozone concentrations. Within the integrated observation-modeling analysis approach, we show that the model-to-model differences in the predicted responses to emission reductions are smaller than the model-to-model differences in predicted absolute ozone concentrations. We illustrate that the emission reductions stemming from a real-world emission control strategy would substantially reduce the probability of exceeding the NAAQS over a large portion of the eastern United States, especially for the 8-hr average ozone concentrations.  相似文献   

4.
The updated regulatory framework for demonstrating that future 8-hr ozone (O3) design values will be at or below the National Ambient Air Quality Standards (NAAQS) provides guidelines for the development of a State Implementation Plan (SIP) that includes methods based on photochemical modeling and analytical techniques. One of the suggested approaches is the relative reduction factor (RRF) for estimating the efficacy of emission reductions. In this study, the sensitivity of model-predicted responses towards emission reductions to the choice of meteorology and chemical mechanisms was examined. While the different modeling simulations generally were found to be in agreement on whether predicted future-year design values would be above or below the NAAQS for 8-hr O3 at a majority of the monitoring locations in the eastern United States, differences existed for a small percentage of monitors (approximately 6.4%). Another issue investigated was the ability of the attainment demonstration procedure to predict changes in monitored O3 design values. A retrospective analysis was performed by comparing predicted O3 design values from model simulations using emission estimates for 1996 and 2001 with monitored O3 design values for 2001. Results indicated that an average gross error of approximately 5 ppb was present between modeled and observed design values and that, at approximately 27% of all sites, model-predicted and observed design values disagreed as to whether the design value was above or below the NAAQS. Retrospective analyses such as the one presented in this study can provide valuable insights into the strengths and limitations of modeling and analysis techniques used to predict future design values over time periods of a decade or more for the purpose of developing SIPs. Furthermore, such analyses could provide avenues for improvement and added confidence in the use of the RRF approach for addressing attainment of the NAAQS.  相似文献   

5.
Emissions of pollutants such as SO2 and NOx from external combustion sources can vary widely depending on fuel sulfur content, load, and transient conditions such as startup, shutdown, and maintenance/malfunction. While monitoring will automatically reflect variability from both emissions and meteorological influences, dispersion modeling has been typically conducted with a single constant peak emission rate. To respond to the need to account for emissions variability in addressing probabilistic 1-hr ambient air quality standards for SO2 and NO2, we have developed a statistical technique, the Emissions Variability Processor (EMVAP), which can account for emissions variability in dispersion modeling through Monte Carlo sampling from a specified frequency distribution of emission rates. Based upon initial AERMOD modeling of from 1 to 5 years of actual meteorological conditions, EMVAP is used as a postprocessor to AERMOD to simulate hundreds or even thousands of years of concentration predictions. This procedure uses emissions varied hourly with a Monte Carlo sampling process that is based upon the user-specified emissions distribution, from which a probabilistic estimate can be obtained of the controlling concentration. EMVAP can also accommodate an advanced Tier 2 NO2 modeling technique that uses a varying ambient ratio method approach to determine the fraction of total oxides of nitrogen that are in the form of nitrogen dioxide. For the case of the 1-hr National Ambient Air Quality Standards (NAAQS, established for SO2 and NO2), a “critical value” can be defined as the highest hourly emission rate that would be simulated to satisfy the standard using air dispersion models assuming constant emissions throughout the simulation. The critical value can be used as the starting point for a procedure like EMVAP that evaluates the impact of emissions variability and uses this information to determine an appropriate value to use for a longer term (e.g., 30-day) average emission rate that would still provide protection for the NAAQS under consideration. This paper reports on the design of EMVAP and its evaluation on several field databases that demonstrate that EMVAP produces a suitably modest overestimation of design concentrations. We also provide an example of an EMVAP application that involves a case in which a new emission limitation needs to be considered for a hypothetical emission unit that has infrequent higher-than-normal SO2 emissions.
ImplicationsEmissions of pollutants from combustion sources can vary widely depending on fuel sulfur content, load, and transient conditions such as startup and shutdown. While monitoring will automatically reflect this variability on measured concentrations, dispersion modeling is typically conducted with a single peak emission rate assumed to occur continuously. To realistically account for emissions variability in addressing probabilistic 1-hr ambient air quality standards for SO2 and NO2, the authors have developed a statistical technique, the Emissions Variability Processor (EMVAP), which can account for emissions variability in dispersion modeling through Monte Carlo sampling from a specified frequency distribution of emission rates.  相似文献   

6.
The U.S. Environmental Protection Agency in 1997 revised the 1-hr ozone (O3) National Ambient Air Quality Standard (NAAQS) to one based on an 8-hr average, resulting in potential nonattainment status for substantial portions of the eastern United States. The regulatory process provides for the development of a state implementation plan that includes a demonstration that the projected future O3 concentrations will be at or below the NAAQS based on photochemical modeling and analytical techniques. In this study, four photochemical modeling systems, based on two photochemical models, Community Model for Air Quality and the Comprehensive Air Quality Model with extensions, and two emissions processing models, Sparse Matrix Optimization Kernel for Emissions and Emissions Modeling System, were applied to the eastern United States, with emphasis on the northeastern Ozone Transport Region in terms of their response to oxides of nitrogen and volatile organic carbon-focused controls on the estimated design values. With the 8-hr O3 NAAQS set as a bright-line test, it was found that a given area could be termed as being in or out of attainment of the NAAQS depending upon the modeling system. This suggests the need to provide an estimate of model-to-model uncertainty in the relative reduction factor (RRF) for a better understanding of the uncertainty in projecting the status of an area's attainment. Results indicate that the model-to-model differences considered in this study introduce  相似文献   

7.
The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.  相似文献   

8.
The National Ambient Air Quality Standard (NAAQS) for ozone is based on occurrences of the maximum 8 h average ambient ozone concentration. However, biologists have recommended a cumulative ozone exposure parameter to protect vegetation. In this paper we propose a third alternative which uses quantifiable flux-based numerical parameters as a replacement for cumulative ambient parameters. Herein we discuss the concept of ozone flux as it relates to plant response and the NAAQS, and document information needed before a flux-based ozone NAAQS for vegetation can be implemented. Additional research is needed in techniques for determining plant uptake and in the quantification of plant defensive mechanisms to ozone. Models which include feedback mechanisms should be developed to relate ozone flux, loading, and detoxification with photosynthesis and plant productivity.  相似文献   

9.
ABSTRACT

To achieve the current United States National Ambient Air Quality Standards (NAAQS) attainment level for ozone or particulate matter, current photochemical air quality models include tools to determine source apportionment and/or source sensitivity. Previous studies by the authors have used the Ozone and Particulate Matter Source Apportionment Technology and Higher-order Decoupled Direct Method probing tools in CAMx to investigate these source-receptor relationships for ozone. The recently available source apportionment for CMAQ, referred to as the Integrated Source Apportionment Method (ISAM), was used in this study to conduct future year (2030) source attribution modeling. The CMAQ-ISAM ozone source attribution results for selected cities across the U.S. showed boundary conditions were the dominant contributor to the future year highest July maximum daily 8-hour average (MDA8) ozone concentrations. Point sources were generally larger contributors in the eastern U.S. than in the western U.S. The contributions of on-road mobile emissions were around 5 ppb at most of the cities selected for analysis. Off-road mobile source contributions were around 20 ppb or nearly 30%. Since boundary conditions play an important role in future year ozone levels, it is important to characterize future year boundary conditions accurately. The current implementation of ISAM in CMAQ 5.0.2 requires significant computing resources for ozone source attribution, making it difficult to conduct long-term simulations for large domains. The computing requirements for PM source attribution are even more onerous. CMAQ 5.2 was released after this study was completed, and does not include ISAM. If an efficient version of ISAM becomes available, it could be used in long-term ozone and PM2.5 studies. Implications: Ozone source attribution results provide useful information on important emission source contribution categories and provide some initial guidance on future emission reduction strategies. This study explains a new source apportionment technique, CMAQ-ISAM, and compares it to CAMx OSAT. The techniques have similar results: ozone’s highest source contributor is boundary conditions, followed by point sources, then off-road mobile sources. The current version of ISAM in CMAQ 5.0.2 requires significant computing resources for ozone source attribution, while the computing requirements for PM source attribution are even more onerous. CMAQ 5.2 was released after this study was completed, and does not include ISAM.  相似文献   

10.
Abstract

Two problems exist in the form and the compliance test of the present National Ambient Air Quality Standard (NAAQS) for ozone. One is the use of the number of exceedances in the form of the standard, which generates confusion and unnecessary complexity when the form is translated to the design value. The other is the requirement of a zero percent chance of violation in the compliance test, which makes the NAAQS considerably more stringent than generally assumed. There are also two sample-size problems in the estimation procedure for the design value. One is the upward creeping of the (n+l)th highest value in n years as n increases from one in the table look-up approach. The other is the infinite-sample-size assumption instead of the number of high-ozone season days per year for the daily maximum ozone concentrations in the distribution fitting approach. Both problems lead to an exaggeration of the design value.

The above problems can be removed in a revised NAAQS by (1) using a statistic that is identical to the design value itself in the form of the standard, (2) defining the design value as an n-year mean of, say, the annual mth highest values rather than the xth highest value in n years, and (3) using a simple compliance test like the t test that compares the design value with the level of the standard, taking into account the year-to-year fluctuation of the annual mth highest values. When the design value of an area is close to the level of the standard, the test provides a natural “too close to call” interval, which adjusts itself with the fluctuation of the annual mth highest values, so that as the fluctuation increases, the ability to assign the compliance status of the area decreases. The inclusion of a “too close to call” interval or category in the standard is critical to reduce the tendency toward ozone attainment flip-flops in areas approaching attainment and to assure that the ozone NAAQS is not more or less stringent than it appears.  相似文献   

11.
With the promulgation of the National Ambient Air Quality Standards (NAAQS or standard) for 8-hr ozone (O3), the U.S. Environmental Protection Agency (EPA) issued modeling guidance that advocated the use of results from photochemical air quality models in a relative sense. In doing so, the EPA provided guidance on how to calculate relative response factors (RRFs) that can project current design value (DV) mixing ratios into the future for the purpose of determining the attainment status with respect to the O3 standard. The RRFs recommended by the EPA represent the average response of the photochemical model over a broad range of O3 mixing ratios above a specified cutoff threshold. However, it is known that O3 response to emission reductions of limiting precursors (i.e., NOx and/or VOC) is greater on days with higher O3 mixing ratios compared to days with lower mixing ratios. In this study, we present a segmented RRF concept termed band-RRF, which takes into account the different model responses at different O3 mixing ratios. The new band-RRF concept is demonstrated in the San Joaquin Valley (SJV) region of California for the 1-hr and 8-hr O3 standards. The 1-hr O3 analysis is relevant to work done in support of the SJV O3 State Implementation Plan (SIP) submitted to the EPA in 2013. The 8-hr example for the future year of 2019 is presented for illustrative purposes only. Further work will be conducted with attainment deadline of 2032 as part of upcoming SIPs for the 0.075 parts per million (ppm) 8-hr O3 standard. The applicability of the band-RRF concept to the particulate matter (PM2.5) standards is also discussed.
Implications:Results of photochemical models are used in regulatory applications in a relative sense using relative response factors (RRFs), which represent the impacts of emissions reductions over a wide range of ozone (O3) values. It is possible to extend the concept of RRFs to account for the fact that higher O3 mixing ratios (both 1-hr and 8-hr) respond more to emissions controls of limiting precursors than do lower O3 mixing ratios. We demonstrate this extended concept, termed band-RRF, for the 1-hr and 8-hr O3 National Ambient Air Quality Standard (NAAQS or standard) in the San Joaquin Valley of California. This extension can also be made applicable to the 24-hr PM2.5 and annual PM2.5 standards.  相似文献   

12.
A year-long study was conducted in Pinal County, AZ, to characterize coarse (2.5 – 10 μm aerodynamic diameter, AD) and fine (< 2.5 μm AD) particulate matter (PMc and PMf, respectively) to further understand spatial and temporal variations in ambient PM concentrations and composition in rural, arid environments. Measurements of PMc and PMf mass, ions, elements, and carbon concentrations at one-in-six day resolution were obtained at three sites within the region. Results from the summer of 2009 and specifically the local monsoon period are presented.

The summer monsoon season (July – September) and associated rain and/or high wind events, has historically had the largest number of PM10 NAAQS exceedances within a year. Rain events served to clean the atmosphere, decreasing PMc concentrations resulting in a more uniform spatial gradient among the sites. The monsoon period also is characterized by high wind events, increasing PMc mass concentrations, possibly due to increased local wind-driven soil erosion or transport. Two PM10 NAAQS exceedances at the urban monitoring site were explained by high wind events and can likely be excluded from PM10 compliance calculations as exceptional events. At the more rural Cowtown site, PM10 NAAQS exceedances were more frequent, likely due to the impact from local dust sources.

PM mass concentrations at the Cowtown site were typically higher than at the Pinal County Housing and Casa Grande sites. Crustal material was equal to 52-63% of the PMc mass concentration on average. High concentrations of phosphate and organic carbon found at the rural Cowtown were associated with local cattle feeding operations. A relatively high correlation between PMc and PMf (R2?=?0.63) indicated that the lower tail of the coarse particle fraction often impacts the fine particle fraction, increasing the PMf concentrations. Therefore, reductions in PMc sources will likely also reduce PMf concentrations, which also are near the value of the 24-hr PM2.5 NAAQS.

Implications: In the desert southwest, summer monsoons are often associated with above average PM10 (<10 μm AD) mass concentrations. Competing influences of monsoon rain and wind events showed that rain suppresses ambient concentrations while high wind increase them. In this region, the PMc fraction dominates PM10 and crustal sources contribute 52-63% to local PMc mass concentrations on average. Cattle feedlot emissions are also an important source and a unique chemical signature was identified for this source. Observations suggest monsoon wind events alone cannot explain PM10 NAAQS exceedances, thus requiring these values to remain in compliance calculations rather than being removed as exceptional wind events.  相似文献   

13.
Three modeling approaches, the U.S. Environmental Protection Agency’s (EPA) Community Multiscale Air Quality (CMAQ) zero-out, the Comprehensive Air quality Model with extensions (CAMx) zero-out, and the CAMx probing tools ozone source apportionment tool (OSAT), were used to project the contributions of various source categories to future year design values for summer 8-hr average ozone concentrations at selected U.S. monitors. The CMAQ and CAMx zero-out or brute-force approaches predicted generally similar contributions for most of the source categories, with some small differences. One of the important findings from this study was that both the CMAQ and CAMx zero-out approaches tended to apportion a larger contribution to the “other” category than the OSAT approach. For the OSAT approach, this category is the difference between the total emissions and the sum of the tracked emissions and consists of non-U.S. emissions. For the zero-out approach, it also includes the effects of nonlinearities in the system because the sum of the sensitivities of all sources is not necessarily equal to the sum of their contributions in a nonperturbed environment. The study illustrates the strengths and weaknesses of source apportionment approaches, such as OSAT, and source sensitivity approaches, such as zero-out. The OSAT approach is suitable for studying source contributions, whereas the zero-out approach is suitable for studying response to emission changes. Future year design values of summer 8-hr average ozone concentrations were projected to decrease at all the selected monitors for all the simulations in each city, except at the downtown Los Angeles monitor. Both the CMAQ and CAMx results showed all modeled locations project attainment in 2018 and 2030 to the current National Ambient Air Quality Standards (NAAQS) level of 75 ppb, except the selected Los Angeles monitor in 2018 and the selected San Bernardino monitor in 2018 and 2030.
Implications:This study illustrates the strengths and weaknesses of three modeling approaches, CMAQ zero-out, CAMx zero-out, and OSAT to project contributions of various source categories to future year design values for summer 8-hr average ozone concentrations at selected U.S. monitors. The OSAT approach is suitable for studying source contributions, whereas the zero-out approach is suitable for studying response to emission changes. Future year design values of summer 8-hr average ozone concentrations were projected to decrease, except at the downtown Los Angeles monitor. Comparing projections with the current NAAQS (75 ppb) show attainment everywhere, except two locations in 2018 and one location in 2030.  相似文献   

14.
Abstract

This study comprehensively characterizes hourly fine particulate matter (PM2.5) concentrations measured via a tapered element oscillating microbalance (TEOM), β-gauge, and nephelometer from four different monitoring sites in U.S. Environment Protection Agency (EPA) Region 5 (in U.S. states Illinois, Michigan, and Wisconsin) and compares them to the Federal Reference Method (FRM). Hourly characterization uses time series and autocorrelation. Hourly data are compared with FRM by averaging across 24-hr sampling periods and modeling against respective daily FRM concentrations. Modeling uses traditional two-variable linear least-squares regression as well as innovative nonlinear regression involving additional meteorological variables such as temperature and humidity. The TEOM shows a relationship with season and temperature, linear correlation as low as 0.7924 and nonlinear model correlation as high as 0.9370 when modeled with temperature. The β-gauge shows no relationship with season or meteorological variables. It exhibits a linear correlation as low as 0.8505 with the FRM and a nonlinear model correlation as high as 0.9339 when modeled with humidity. The nephelometer shows no relationship with season or temperature but a strong relationship with humidity is observed. A linear correlation as low as 0.3050 and a nonlinear model correlation as high as 0.9508 is observed when modeled with humidity. Nonlinear models have higher correlation than linear models applied to the same dataset. This correlation difference is not always substantial, which may introduce a tradeoff between simplicity of model and degree of statistical association. This project shows that continuous monitor technology produces valid PM2.5 characterization, with at least partial accounting for variations in concentration from gravimetric reference monitors once appropriate nonlinear adjustments are applied. Although only one regression technically meets new EPA National Ambient Air Quality Standards (NAAQS) Federal Equivalent Method (FEM) correlation coefficient criteria, several others are extremely close, showing optimistic potential for use of this nonlinear adjustment model in garnering EPA NAAQS FEM approval for continuous PM2.5 sampling methods.  相似文献   

15.
ABSTRACT

Fine particles in the atmosphere have elicited new national ambient air quality standards (NAAQS) because of their potential role in health effects and visibility-reducing haze. Since April 1997, Tennessee Valley Authority (TVA) has measured fine particles (PM2.5) in the Tennessee Valley region using prototype Federal Reference Method (FRM) samplers, and results indicate that the new NAAQS annual standard will be difficult to meet in this region. The composition of many of these fine particle samples has been determined using analytical methods for elements, soluble ions, and organic and elemental carbon. The results indicate that about one-third of the measured mass is SO4 -2, one-third is organic aerosol, and the remainder is other materials. The fraction of SO4 -2 is highest at rural sites and during summer conditions, with greater proportions of organic aerosol in urban areas throughout the year. Additional measurements of fine particle mass and composition have been made to obtain the short-term variability of fine mass as it pertains to human exposure. Measurements to account for semi-volatile constituents of fine mass (nitrates, semi-volatile organics) indicate that the FRM may significantly under-measure organic constituents. The potentially controllable anthropogenic fraction of organic aerosols is still largely unknown.  相似文献   

16.
Air quality sensors are becoming increasingly available to the general public, providing individuals and communities with information on fine-scale, local air quality in increments as short as 1 min. Current health studies do not support linking 1-min exposures to adverse health effects; therefore, the potential health implications of such ambient exposures are unclear. The U.S. Environmental Protection Agency (EPA) establishes the National Ambient Air Quality Standards (NAAQS) and Air Quality Index (AQI) on the best science available, which typically uses longer averaging periods (e.g., 8 hr; 24 hr). Another consideration for interpreting sensor data is the variable relationship between pollutant concentrations measured by sensors, which are short-term (1 min to 1 hr), and the longer term averages used in the NAAQS and AQI. In addition, sensors often do not meet federal performance or quality assurance requirements, which introduces uncertainty in the accuracy and interpretation of these readings. This article describes a statistical analysis of data from regulatory monitors and new real-time technology from Village Green benches to inform the interpretation and communication of short-term air sensor data. We investigate the characteristics of this novel data set and the temporal relationships of short-term concentrations to 8-hr average (ozone) and 24-hr average (PM2.5) concentrations to examine how sensor readings may relate to the NAAQS and AQI categories, and ultimately to inform breakpoints for sensor messages. We consider the empirical distributions of the maximum 8-hr averages (ozone) and 24-hr averages (PM2.5) given the corresponding short-term concentrations, and provide a probabilistic assessment. The result is a robust, empirical comparison that includes events of interest for air quality exceedances and public health communication. Concentration breakpoints are developed for short-term sensor readings such that, to the extent possible, the related air quality messages that are conveyed to the public are consistent with messages related to the NAAQS and AQI.

Implications: Real-time sensors have the potential to provide important information about fine-scale current air quality and local air quality events. The statistical analysis of short-term regulatory and sensor data, coupled with policy considerations and known health effects experienced over longer averaging times, supports interpretation of such short-term data and efforts to communicate local air quality.  相似文献   


17.
Windblown dust is known to impede visibility, deteriorate air quality and modify the radiation budget. Arid and semiarid areas with unpaved and unvegetated land cover are particularly prone to windblown dust, which is often attributed to high particulate matter (PM) pollution in such areas. Yet, windblown dust is poorly represented in existing regulatory air quality models. In a study by the authors on modeling episodic high PM events along the US/Mexico border using the state-of-the-art CMAQ/MM5/SMOKE air quality modeling system [Choi, Y.-J., Hyde, P., Fernando, H.J.S., 2006. Modeling of episodic particulate matter events using a 3D air quality model with fine grid: applications to a pair of cities in the US/Mexico border. Atmospheric Environment 40, 5181–5201], some of the observed PM10 NAAQS exceedances were inferred as due to windblown dust, but the modeling system was incapable of dealing with time-dependent episodic dust entrainment during high wind periods. In this paper, a time-dependent entrainment parameterization for windblown dust is implemented in the CMAQ/MM5/SMOKE modeling system with the hope of improving PM predictions. An approach for realizing windblown dust emission flux for each grid cell over the study domain on an hourly basis, which accounts for the influence of factors such as soil moisture content, atmospheric stability and wind speed, is presented in detail. Comparison of model predictions with observational data taken at a pair of US/Mexico border towns shows a clear improvement of model performance upon implementation of the dust emission flux parameterization.  相似文献   

18.
This paper introduces an integrated observational-modeling approach to transform the deterministic nature of attainment demonstrations of the National Ambient Air Quality Standard (NAAQS) into the probabilistic framework. While the methods presented here can be used to address any air quality standard that is based on extreme values, this paper focuses on the application to the 1-hr and 8-hr NAAQS for ozone. Extreme value statistics and resampling techniques are applied to estimate the probability of exceeding the NAAQS for both 1-hr and 8-hr ozone concentrations. Within the integrated observation-modeling analysis approach, we show that the model-to-model differences in the predicted responses to emission reductions are smaller than the model-to-model differences in predicted absolute ozone concentrations. We illustrate that the emission reductions stemming from a real-world emission control strategy would substantially reduce the probability of exceeding the NAAQS over a large portion of the eastern United States, especially for the 8-hr average ozone concentrations.  相似文献   

19.
ABSTRACT

Owners of hazardous waste treatment, storage, and disposal facilities, and certain major air pollution sources, must conduct several separate ambient air dispersion modeling analyses before beginning construction of new facilities or modifying existing facilities. These analyses are critical components of the environmental permitting and facility certification processes and must be completed to the satisfaction of federal, state, and local regulatory authorities.

The U.S. Army has conducted air dispersion modeling for its proposed chemical agent disposal facilities to fulfill the following environmental regulatory and risk management requirements: (1) Resource Conservation and Recovery Act human health and ecological risk assessment analysis for the hazardous waste treatment and storage permit applications, (2) Quantitative Risk Assessment to support the site-specific risk management programs, and (3) Prevention of Significant Deterioration ambient air impact analysis for the air permit applications. The purpose of these air dispersion modeling studies is to show that the potential impacts on human health and the environment, due to operation of the chemical agent disposal facilities, are acceptable. This paper describes and compares the types of air dispersion models, modeling input data requirements, modeling algorithms, and approaches used to satisfy the three environmental regulatory and risk management requirements listed above. Although this paper discusses only one industry (i.e., chemical demilitarization), the information it contains could help those in other industries who need to communicate to the public the purpose and objectives of each modeling analysis. It may also be useful in integrating the results of each analysis into an overarching summary of compliance and potential risks.  相似文献   

20.
Abstract

Combinations of total reactive organic gas (ROG) and nitrogen oxide (NOx) emissions that do not exceed the National Ambient Air Quality Standard (NAAQS) for ozone for the meteorological conditions of the August 26-28, 1987 SCAQS episode, have been determined using the California Institute of Technology (CIT) photochemical air quality model. The sensitivity of these combinations to pollutant boundary conditions is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号