首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Now that the U.S. Environmental Protection Agency has promulgated new National Ambient Air Quality Standards for PM2.5, work will begin on generating the data required to determine the sources of ambient PM2.5 and the magnitude of their contributions to air pollution. This paper summarizes the results of an Environmental Research Consortium program, carried out under the auspices of the U.S. Council for Automotive Research. The program focused on particulate matter (PM) emissions from representative, current-technology, light-duty gasoline vehicles produced by DaimlerChrysler Corp., Ford Motor Co., and General Motors Corp. The vehicles, for the most part taken from the manufacturer's certification and durability fleets, were dynamometer-tested using the three-phase Federal Test Procedure in the companies' laboratories. The test fleet was made up of a mixture of both low-mileage (2K-35K miles) and high-mileage (60K-150K miles) cars, vans, sport utility vehicles, and light trucks. For each vehicle tested, PM emissions were accumulated over 4 cold-start tests, which were run on successive days. PM emission rates from the entire fleet (22 vehicles total) averaged less than 2 mg/mile. All 18 vehicles tested using California Phase 2 reformulated gasoline had PM emission rates less than 2 mg/mile at both low and high mileages.  相似文献   

2.
Representative profiles for particulate matter particles less than or equal to 2.5 µm (PM2.5) are developed from the Kansas City Light-Duty Vehicle Emissions Study for use in the U.S. Environmental Protection Agency (EPA) vehicle emission model, the Motor Vehicle Emission Simulator (MOVES), and for inclusion in the EPA SPECIATE database for speciation profiles. The profiles are compatible with the inputs of current photochemical air quality models, including the Community Multiscale Air Quality Aerosol Module Version 6 (AE6). The composition of light-duty gasoline PM2.5 emissions differs significantly between cold start and hot stabilized running emissions, and between older and newer vehicles, reflecting both impacts of aging/deterioration and changes in vehicle technology. Fleet-average PM2.5 profiles are estimated for cold start and hot stabilized running emission processes. Fleet-average profiles are calculated to include emissions from deteriorated high-emitting vehicles that are expected to continue to contribute disproportionately to the fleet-wide PM2.5 emissions into the future. The profiles are calculated using a weighted average of the PM2.5 composition according to the contribution of PM2.5 emissions from each class of vehicles in the on-road gasoline fleet in the Kansas City Metropolitan Statistical Area. The paper introduces methods to exclude insignificant measurements, correct for organic carbon positive artifact, and control for contamination from the testing infrastructure in developing speciation profiles. The uncertainty of the PM2.5 species fraction in each profile is quantified using sampling survey analysis methods. The primary use of the profiles is to develop PM2.5 emissions inventories for the United States, but the profiles may also be used in source apportionment, atmospheric modeling, and exposure assessment, and as a basis for light-duty gasoline emission profiles for countries with limited data.
Implications: PM2.5 speciation profiles were developed from a large sample of light-duty gasoline vehicles tested in the Kansas City area. Separate PM2.5 profiles represent cold start and hot stabilized running emission processes to distinguish important differences in chemical composition. Statistical analysis was used to construct profiles that represent PM2.5 emissions from the U.S. vehicle fleet based on vehicles tested from the 2005 calendar year Kansas City metropolitan area. The profiles have been incorporated into the EPA MOVES emissions model, as well as the EPA SPECIATE database, to improve emission inventories and provide the PM2.5 chemical characterization needed by CMAQv5.0 for atmospheric chemistry modeling.  相似文献   

3.
Abstract

Although the fugitive dust associated with construction mud/dirt carryout can represent a substantial portion of the particulate matter (PM) emissions inventory in non-attainment areas, it has not been well characterized by direct sampling methods. In this paper, a research program is described that directly determined both PM10 and PM2.5 (particles ≤10 and 2.5 μm in classical aerodynamic diameter, respectively) emission factors for mud/dirt carryout from a major construction project located in metropolitan Kansas City, MO. The program also assessed the contribution of automotive emissions to the total PM2.5 burden and determined the baseline emissions from the test road. As part of the study, both time-integrated and continuous exposure-profiling methods were used to assess the PM emissions, including particle size and elemental composition. This research resulted in overall PM10 and PM2.5 emission factors of 6 and 0.2 g/vehicle, respectively. Although PM10 is within the range of prior U.S. Environmental Protection Agency (EPA) guidance, the PM2.5 emission factor is far lower than previous estimates published by EPA. In addition, based on both the particle size and chemical data obtained in the study, a major portion of the PM2.5 emissions appears to be attributable to automotive exhaust from light-duty, gasoline-powered vehicles and not to the fugitive dust associated with re-entrained mud/dirt carryout.  相似文献   

4.
ABSTRACT

With the promulgation of a national PM2.5 ambient air quality standard, it is important that PM2.5 emissions inventories be developed as a tool for understanding the magnitude of potential PM2.5 violations. Current PM10 inventories include only emissions of primary particulate matter (1 ï PM), whereas, based on ambient measurements, both PM10 and PM2.5 emissions inventories will need to include sources of both 1ï PM and secondary particulate matter (2ï PM). Furthermore, the U. S. Environmental Protection Agency’s (EPA) current edition of AP-42 includes size distribution data for 1o PM that overestimate the PM2.5 fraction of fugitive dust sources by at least a factor of 2 based on recent studies.

This paper presents a PM2.5 emissions inventory developed for the South Coast Air Basin (SCAB) that for the first time includes both 1ï PM and 2ï PM. The former is calculated by multiplying PM10 emissions estimates by the PM2.5/PM10 ratios for different sources. The latter is calculated from estimated emission rates of gas-phase aerosol precursor and gas to aerosol conversion rates consistent with the measured chemical composition of ambient PM2.5 concentrations observed in the SCAB. The major finding of this PM2.5 emissions inventory is that the aerosol component is more than twice the aerosol component, which may result in widely different control strategies being required for fine PM and coarse PM.  相似文献   

5.
ABSTRACT

Although modeling of gaseous emissions from motor vehicles is now quite advanced, prediction of particulate emissions is still at an unsophisticated stage. Emission factors for gasoline vehicles are not reliably available, since gasoline vehicles are not included in the European Union (EU) emission test procedure. Regarding diesel vehicles, emission factors are available for different driving cycles but give little information about change of emissions with speed or engine load. We have developed size-specific speed-dependent emission factors for gasoline and diesel vehicles. Other vehicle-generated emission factors are also considered and the empirical equation for re-entrained road dust is modified to include humidity effects. A methodology is proposed to calculate modal (accelerating, cruising, or idling) emission factors. The emission factors cover particle size ranges up to 10 um, either from published data or from user-defined size distributions.

A particulate matter emission factor model (PMFAC), which incorporates virtually all the available information on particulate emissions for European motor vehicles, has been developed. PMFAC calculates the emission factors for five particle size ranges [i.e., total suspended particulates (TSP), PM10, PM5, PM25, and PM1] from both vehicle exhaust and nonexhaust emissions, such as tire wear, brake wear, and re-entrained road dust. The model can be used for an unlimited number of roads and lanes, and to calculate emission factors near an intersection in user-defined elements of the lane. PMFAC can be used for a variety of fleet structures. Hot emission factors at the user-defined speed can be calculated for individual vehicles, along with relative cold-to-hot emission factors. The model accounts for the proportions of distance driven with cold engines as a function of ambient temperature and road type (i.e., urban, rural, or motorway).

A preliminary evaluation of PMFAC with an available dispersion model to predict the airborne concentration in the urban environment is presented. The trial was on the A6 trunk road where it passes through Loughborough, a medium-size town in the English East Midlands. This evaluation for TSP and PM10 was carried out for a range of traffic fleet compositions, speeds, and meteorological conditions. Given the limited basis of the evaluation, encouraging agreement was shown between predicted and measured concentrations.  相似文献   

6.
ABSTRACT

Fuel-based emission factors for 143 light-duty gasoline vehicles (LDGVs) and 93 heavy-duty diesel trucks (HDDTs) were measured in Wilmington, CA using a zero-emission mobile measurement platform (MMP). The frequency distributions of emission factors of carbon monoxide (CO), nitrogen oxides (NOx), and particle mass with aerodynamic diameter below 2.5 μm (PM2.5) varied widely, whereas the average of the individual vehicle emission factors were comparable to those reported in previous tunnel and remote sensing studies as well as the predictions by Emission Factors (EMFAC) 2007 mobile source emission model for Los Angeles County. Variation in emissions due to different driving modes (idle, low- and high-speed acceleration, low- and high-speed cruise) was found to be relatively small in comparison to intervehicle variability and did not appear to interfere with the identification of high emitters, defined as the vehicles whose emissions were more than 5 times the fleet-average values. Using this definition, approximately 5% of the LDGVs and HDDTs measured were high emitters. Among the 143 LDGVs, the average emission factors of NOx, black carbon (BC), PM2.5, and ultrafine particle (UFP) would be reduced by 34%, 39%, 44%, and 31%, respectively, by removing the highest 5% of emitting vehicles, whereas CO emission factor would be reduced by 50%. The emission distributions of the 93 HDDTs measured were even more skewed: approximately half of the NOx and CO fleet-average emission factors and more than 60% of PM2.5, UFP, and BC fleet-average emission factors would be reduced by eliminating the highest-emitting 5% HDDTs. Furthermore, high emissions of BC, PM2.5, and NOx tended to cluster among the same vehicles.

IMPLICATIONS This study presents the characterization of on-road vehicle emissions in Wilmington, CA, by sampling individual vehicle plumes. Approximately 5% of the vehicles were high emitters, whose emissions were more than 5 times the fleet-average values. These high emitters were responsible for 30% and more than 50% of the average emission factors of LDGVs and HDDVs, respectively. It is likely that as the overall fleet becomes cleaner due to more stringent regulations, a small fraction of the fleet may contribute a growing and disproportionate share of the overall emissions. Therefore, long-term changes in on-road emissions need to be monitored.  相似文献   

7.
Mobile sources significantly contribute to ambient concentrations of airborne particulate matter (PM). Source apportionment studies for PM10 (PM < or = 10 microm in aerodynamic diameter) and PM2.5 (PM < or = 2.5 microm in aerodynamic diameter) indicate that mobile sources can be responsible for over half of the ambient PM measured in an urban area. Recent source apportionment studies attempted to differentiate between contributions from gasoline and diesel motor vehicle combustion. Several source apportionment studies conducted in the United States suggested that gasoline combustion from mobile sources contributed more to ambient PM than diesel combustion. However, existing emission inventories for the United States indicated that diesels contribute more than gasoline vehicles to ambient PM concentrations. A comprehensive testing program was initiated in the Kansas City metropolitan area to measure PM emissions in the light-duty, gasoline-powered, on-road mobile source fleet to provide data for PM inventory and emissions modeling. The vehicle recruitment design produced a sample that could represent the regional fleet, and by extension, the national fleet. All vehicles were recruited from a stratified sample on the basis of vehicle class (car, truck) and model-year group. The pool of available vehicles was drawn primarily from a sample of vehicle owners designed to represent the selected demographic and geographic characteristics of the Kansas City population. Emissions testing utilized a portable, light-duty chassis dynamometer with vehicles tested using the LA-92 driving cycle, on-board emissions measurement systems, and remote sensing devices. Particulate mass emissions were the focus of the study, with continuous and integrated samples collected. In addition, sample analyses included criteria gases (carbon monoxide, carbon dioxide, nitric oxide/nitrogen dioxide, hydrocarbons), air toxics (speciated volatile organic compounds), and PM constituents (elemental/organic carbon, metals, semi-volatile organic compounds). Results indicated that PM emissions from the in-use fleet varied by up to 3 orders of magnitude, with emissions generally increasing for older model-year vehicles. The study also identified a strong influence of ambient temperature on vehicle PM mass emissions, with rates increasing with decreasing temperatures.  相似文献   

8.
Federal Tier 3 motor vehicle emission and fuel sulfur standards have been promulgated in the United States to help attain air quality standards for ozone and PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm). The authors modeled a standard similar to Tier 3 (a hypothetical nationwide implementation of the California Low Emission Vehicle [LEV] III standards) and prior Tier 2 standards for on-road gasoline-fueled light-duty vehicles (gLDVs) to assess incremental air quality benefits in the United States (U.S.) and the relative contributions of gLDVs and other major source categories to ozone and PM2.5 in 2030. Strengthening Tier 2 to a Tier 3-like (LEV III) standard reduces the summertime monthly mean of daily maximum 8-hr average (MDA8) ozone in the eastern U.S. by up to 1.5 ppb (or 2%) and the maximum MDA8 ozone by up to 3.4 ppb (or 3%). Reducing gasoline sulfur content from 30 to 10 ppm is responsible for up to 0.3 ppb of the improvement in the monthly mean ozone and up to 0.8 ppb of the improvement in maximum ozone. Across four major urban areas—Atlanta, Detroit, Philadelphia, and St. Louis—gLDV contributions range from 5% to 9% and 3% to 6% of the summertime mean MDA8 ozone under Tier 2 and Tier 3, respectively, and from 7% to 11% and 3% to 7% of the maximum MDA8 ozone under Tier 2 and Tier 3, respectively. Monthly mean 24-hr PM2.5 decreases by up to 0.5 μg/m3 (or 3%) in the eastern U.S. from Tier 2 to Tier 3, with about 0.1 μg/m3 of the reduction due to the lower gasoline sulfur content. At the four urban areas under the Tier 3 program, gLDV emissions contribute 3.4–5.0% and 1.7–2.4% of the winter and summer mean 24-hr PM2.5, respectively, and 3.8–4.6% and 1.5–2.0% of the mean 24-hr PM2.5 on days with elevated PM2.5 in winter and summer, respectively.

Implications: Following U.S. Tier 3 emissions and fuel sulfur standards for gasoline-fueled passenger cars and light trucks, these vehicles are expected to contribute less than 6% of the summertime mean daily maximum 8-hr ozone and less than 7% and 4% of the winter and summer mean 24-hr PM2.5 in the eastern U.S. in 2030. On days with elevated ozone or PM2.5 at four major urban areas, these vehicles contribute less than 7% of ozone and less than 5% of PM2.5, with sources outside North America and U.S. area source emissions constituting some of the main contributors to ozone and PM2.5, respectively.  相似文献   

9.
This paper discusses results from a vehicular emissions research study of over 350 vehicles conducted in three communities in Los Angeles, CA, in 2010 using vehicle chase measurements. The study explores the real-world emission behavior of light-duty gasoline vehicles, characterizes real-world super-emitters in the different regions, and investigates the relationship of on-road vehicle emissions with the socioeconomic status (SES) of the region. The study found that in comparison to a 2007 earlier study in a neighboring community, vehicle emissions for all measured pollutants had experienced a significant reduction over the years, with oxides of nitrogen (NOX) and black carbon (BC) emissions showing the largest reductions. Mean emission factors of the sampled vehicles in low-SES communities were roughly 2–3 times higher for NOX, BC, carbon monoxide, and ultrafine particles, and 4–11 times greater for fine particulate matter (PM2.5) than for vehicles in the high-SES neighborhood. Further analysis indicated that the emission factors of vehicles within a technology group were also higher in low-SES communities compared to similar vehicles in the high-SES community, suggesting that vehicle age alone did not explain the higher vehicular emission in low-SES communities.

Evaluation of the emission factor distribution found that emissions from 12% of the sampled vehicles were greater than five times the mean from all of the sampled fleet, and these vehicles were consequently categorized as “real-world super-emitters.” Low-SES communities had approximately twice as many super-emitters for most of the pollutants as compared to the high-SES community. Vehicle emissions calculated using model-year-specific average fuel consumption assumptions suggested that approximately 5% of the sampled vehicles accounted for nearly half of the total CO, PM2.5, and UFP emissions, and 15% of the vehicles were responsible for more than half of the total NOX and BC emissions from the vehicles sampled during the study.

Implications: This study evaluated the real-world emission behavior and super-emitter distribution of light-duty gasoline vehicles in California, and investigated the relationship of on-road vehicle emissions with local socioeconomic conditions. The study observed a significant reduction in vehicle emissions for all measured pollutants when compared to an earlier study in Wilmington, CA, and found a higher prevalence of high-emitting vehicles in low-socioeconomic-status communities. As overall fleet emissions decrease from stringent vehicle emission regulations, a small fraction of the fleet may contribute to a disproportionate share of the overall on-road vehicle emissions. Therefore, this work will have important implications for improving air quality and public health, especially in low-SES communities.  相似文献   


10.
Abstract

Size-resolved particulate matter (PM) emitted from light-duty gasoline vehicles (LDGVs) was characterized using filter-based samplers, cascade impactors, and scanning mobility particle size measurements in the summer 2002. Thirty LDGVs, with different engine and emissions control technologies (model years 1965–2003; odometer readings 1264–207,104 mi), were tested on a chassis dynamometer using the federal test procedure (FTP), the unified cycle (UC), and the correction cycle (CC). LDGV PM emissions were strongly correlated with vehicle age and emissions control technology. The oldest models had average ultrafine PM0.1 (0.056- to 0.1-μm aerodynamic diameter) and fine PM1.8 (≤1.8-μm aerodynamic diame ter) emission rates of 9.6 mg/km and 213 mg/km, respectively. The newest vehicles had PM0.1 and PM1.8 emis sions of 51 μg/km and 371 μg/km, respectively. Light duty trucks and sport utility vehicles had PM0.1 and PM1.8 emissions nearly double the corresponding emission rates from passenger cars. Higher PM emissions were associated with cold starts and hard accelerations. The FTP driving cycle produced the lowest emissions, followed by the UC and the CC. PM mass distributions peaked between 0.1-and 0.18-μm particle diameter for all vehicles except those emitting visible smoke, which peaked between 0.18 and 0.32 μm. The majority of the PM was composed of carbonaceous material, with only trace amounts of water-soluble ions. Elemental carbon (EC) and organic matter (OM) had similar size distributions, but the EC/OM ratio in LDGV exhaust particles was a strong function of the adopted emissions control technology and of vehicle maintenance. Exhaust from LDGV classes with lower PM emissions generally had higher EC/OM ratios. LDGVs adopting newer technologies were characterized by the highest EC/OM ratios, whereas OM dominated PM emissions from older vehicles. Driving cycles with cold starts and hard accelerations produced higher EC/OM ratios in ultrafine particles.  相似文献   

11.
The potential impact on the environment of alternative vehicle/fuel systems needs to be evaluated, especially with respect to human health effects resulting from air pollution. We used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to examine the well-to-wheels (WTW) emissions of five criteria pollutants (VOCs, NOx, PM10, PM2.5, and CO) for nine vehicle/fuel systems: (1) conventional gasoline vehicles; (2) conventional diesel vehicles; (3) ethanol (E85) flexible-fuel vehicles (FFVs) fueled with corn-based ethanol; (4) E85 FFVs fueled with switchgrass-based ethanol; (5) gasoline hybrid vehicles (HEVs); (6) diesel HEVs; (7) electric vehicles (EVs) charged using the average U.S. generation mix; (8) EVs charged using the California generation mix; and (9) hydrogen fuel cell vehicles (FCVs). Pollutant emissions were separated into total and urban emissions to differentiate the locations of emissions, and emissions were presented by sources. The results show that WTW emissions of the vehicle/fuel systems differ significantly, in terms of not only the amounts but also with respect to locations and sources, both of which are important in evaluating alternative vehicle/fuel systems. E85 FFVs increase total emissions but reduce urban emissions by up to 30% because the majority of emissions are released from farming equipment, fertilizer manufacture, and ethanol plants, all of which are located in rural areas. HEVs reduce both total and urban emissions because of the improved fuel economy and lower emissions. While EVs significantly reduce total emissions of VOCs and CO by more than 90%, they increase total emissions of PM10 and PM2.5 by 35–325%. However, EVs can reduce urban PM emissions by more than 40%. FCVs reduce VOCs, CO, and NOx emissions, but they increase both total and urban PM emissions because of the high process emissions that occur during hydrogen production. This study emphasizes the importance of specifying a thorough life-cycle emissions inventory that can account for both the locations and sources of the emissions to assist in achieving a fair comparison of alternative vehicle/fuel options in terms of their environmental impacts.  相似文献   

12.
Abstract

There is a dearth of information on dust emissions from sources that are unique to the U.S. Department of Defense testing and training activities. However, accurate emissions factors are needed for these sources so that military installations can prepare accurate particulate matter (PM) emission inventories. One such source, coarse and fine PM (PM10 and PM2.5) emissions from artillery backblast testing on improved gun positions, was characterized at the Yuma Proving Ground near Yuma, AZ, in October 2005. Fugitive emissions are created by the shockwave from artillery pieces, which ejects dust from the surface on which the artillery is resting. Other contributions of PM can be attributed to the combustion of the propellants. For a 155–mm howitzer firing a range of propellant charges or zones, amounts of emitted PM10 ranged from ~19 g of PM10 per firing event for a zone 1 charge to 92 g of PM10 per firing event for a zone 5. The corresponding rates for PM2.5 were ~9 g of PM2.5 and 49 g of PM2.5 per firing. The average measured emission rates for PM10 and PM2.5 appear to scale with the zone charge value. The measurements show that the estimated annual contributions of PM10 (52.2 t) and PM2.5 (28.5 t) from artillery backblast are insignificant in the context of the 2002 U.S. Environment Protection Agency (EPA) PM emission inventory. Using national–level activity data for artillery fire, the most conservative estimate is that backblast would contribute the equivalent of 5 x 10–4% and 1.6 x 10–3% of the annual total PM10 and PM2.5 fugitive dust contributions, respectively, based on 2002 EPA inventory data.  相似文献   

13.
In 1995, Taiwan's Environmental Protection Administration (EPA/TW) instituted a policy of levying emission taxes on polluters in order to combat the rampant national issue of pollution. Since that time, pollution control strategies, tightening exhaust emission standards for industry, improvements in fuel quality, and new stricter vehicle emission standards, etc., have been implemented. This study evaluates the effectiveness of these measures and examines the improvement of Taiwan's air quality. In this paper, we conduct a detailed analysis of change in the concentrations of pollutants (SO2, NOx and particulate matter [PM]) between two three-year periods (from 1996 to1998 and from 2000 to 2002). The pollution levels were generally lower in the latter period. Concentrations at 14 EPA/TW stations in central Taiwan were simulated and source apportionment analyses in three of Central Taiwan's largest cities were conducted using a trajectory transfer-coefficient air quality model. Correlation coefficients (r) between simulations and observations for the monthly means of the concentrations of SO2, NOx, PM2.5 and PM10 during the study periods at the 14 stations are 0.56, 0.63, 0.70 and 0.31, respectively. The sulfur control policy greatly reduced SO2 concentration island-wide, a stringent emission standard put into place for gasoline vehicles reduced NOx concentration along highways, and an emissions tax placed on construction sites, as well as a regular program for road-dust sweeping, reduced primary particulate matter. Among all of the pollution abatement policies implemented, the most effective method for reducing PM2.5 concentrations in the three largest cities involved the reduction of fine ammonium sulfate aerosols from point sources (56–63% of net PM2.5 reduction). The next largest reduction was attributed to a diminishment in primary PM2.5 emanating from point sources (27–56% of net PM2.5 reduction). Secondary particulate matter, especially sulfate, was reduced from distances up to 150 km leeward of major pollution point sources such as Taichung Power Plant.  相似文献   

14.
A microscale emission factor model (MicroFacPM) for predicting real-time site-specific motor vehicle particulate matter emissions was presented in the companion paper titled "Development of a Microscale Emission Factor Model for Particulate Matter (MicroFacPM) for Predicting Real-Time Motor Vehicle Emissions". The emission rates discussed are in mass per unit distance with the model providing estimates of fine particulate matter (PM2.5) and coarse particulate matter. This paper complements the companion paper by presenting a sensitivity analysis of the model to input variables and evaluation model outputs using data from limited field studies. The sensitivity analysis has shown that MicroFacPM emission estimates are very sensitive to vehicle fleet composition, speed, and the percentage of high-emitting vehicles. The vehicle fleet composition can affect fleet emission rates from 8 mg/mi to 1215 mg/mi; an increase of 5% in the smoking (high-emitting) current average U.S. light-duty vehicle fleet (compared with 0%) increased PM2.5 emission rates by -272% for 2000; and for the current U.S. fleet, PM2.5 emission rates are reduced by a factor of -0.64 for speeds >50 miles per hour (mph) relative to a speed of 10 mph. MicroFacPM can also be applied to examine the contribution of emission rates per vehicle class, model year, and sources of PM. The model evaluation is presented for the Tuscarora Mountain Tunnel, Pennsylvania Turnpike, PA, and some limited evaluations at two locations: Sepulveda Tunnel, Los Angeles, CA, and Van Nuys Tunnel, Van Nuys, CA. In general, the performance of MicroFacPM has shown very encouraging results.  相似文献   

15.
To explore the effect of biodiesel and sulfur content on PM2.5 emissions, engine dynamometer tests were performed on a Euro II engine to compare the PM2.5 emissions from four fuels: two petroleum diesel fuels with sulfur contents of 50 and 100 ppm respectively, and two B20 fuels in which soy methyl ester (SME) biodiesel was added to each of the above mentioned petroleum diesel fuels (v/v: 80%/20% for petroleum diesel and SME respectively). Gaseous pollutants and PM2.5 emissions were sampled with an AVL AMA4000 and Model 130 High-Flow Impactor (MSP Corp). Measurements were made of the PM2.5 mass, organic carbon (OC), elemental carbon (EC) and the water-soluble ion distribution. The results showed that PM2.5 emissions decreased with lower sulfur content or blending with SME biodiesel, and the decrease would be more by applying both two methods together. Particles of approximately 0.13 μm contributed 48–83% of PM2.5 emissions. The impact of sulfur content on this percentage was different for low and high engine speed. The majority of PM2.5 was comprised of OC and EC, and the carbon emission rate had the same trend as PM2.5. Since the EC abatement of B20 was larger than OC, the OC/EC ratio of B20 was always larger than that of petroleum diesel. For petroleum diesel, the OC/EC increased with sulfur content, which was not the case for B20. The SO42? had highest emission rate in the water-soluble ions of PM.  相似文献   

16.
Abstract

A sensitivity analysis was conducted to characterize sources of uncertainty in results of a molecular marker source apportionment model of ambient particulate matter using mobile source emissions profiles obtained as part of the Gasoline/Diesel PM Split Study. A chemical mass balance (CMB) model was used to determine source contributions to samples of fine particulate matter (PM2.5) collected over 3 weeks at two sites in the Los Angeles area in July 2001. The ambient samples were composited for organic compound analysis by the day of the week to investigate weekly trends in source contributions. The sensitivity analysis specifically examined the impact of the uncertainty in mobile source emissions profiles on the CMB model results. The key parameter impacting model sensitivity was the source profile for gasoline smoker vehicles. High-emitting gasoline smoker vehicles with visible plumes were seen to be a significant source of PM in the area, but use of different measured profiles for smoker vehicles in the model gave very different results for apportionment of gasoline, diesel, and smoker vehicle tailpipe emissions. In addition, the contributions of gasoline and diesel emissions to total ambient PM varied as a function of the site and the day of the week.  相似文献   

17.
ABSTRACT

A study of particulate matter (PM) emissions from in-use, light-duty vehicles was conducted during the summer of 1996 and the winter of 1997 in the Denver, CO, region. Vehicles were tested as received on chassis dynamometers on the Federal Test Procedure Urban Dynamometer Driving Schedule (UDDS) and the IM240 driving schedule. Both PM10 and regulated emissions were measured for each phase of the UDDS. For the summer portion of the study, 92 gasoline vehicles, 10 diesel vehicles, and 9 gasoline vehicles with visible smoke emissions were tested once. For the winter, 56 gasoline vehicles, 12 diesel vehicles, and 15 gasoline vehicles with visible smoke were tested twice, once indoors at 60 °F and once outdoors at the prevailing temperature. Vehicle model year ranged from 1966 to 1996. Impactor particle size distributions were obtained on a subset of vehicles. Continuous estimates of the particle number emissions were obtained with an electrical aerosol analyzer. This data set is being provided to the Northern Front Range Air Quality Study program and to the State of Colorado and the U.S. Environmental Protection Agency for use in updating emissions inventories.  相似文献   

18.
ABSTRACT

From 2004 to 2009, aiming to better understand implications for its smelters, Rio Tinto Alcan conducted a detailed study of PM2.5 and PM10 (particulate matter [PM] ≤ 2.5 and 10 μm in aerodynamic diameter, respectively) in its facilities. This involved a two-level study: part 1, emission quantification; and part 2, assessment of aluminum smelter contribution to the surrounding environment. In the first part, U.S. Environmental Protection Agency Other Test Method (OTM) OTM27 and OTM28 are assessed as relevant and efficient methods for measuring fine particle emissions from aluminum smelter stacks. Rio Tinto Alcan has also developed a safe and robust method called CYCLEX to measure PM2.5 and condensable particulate matter (CPM) at the roof vents of potrooms. This work aims to determine the PM2.5 emission coefficients of 17, 55, and 417 g·t?1 of aluminum produced (including CPM) in anode baking furnace exhaust (fume treatment center), at potroom scrubber stacks (gas treatment centers), and at potroom roof vents, respectively. Results indicate that roof vents are the primary PM2.5 emitters (85% of all smelter emissions) and that 71% of all smelter PM2.5 comes from CPM. In the second part, preliminary inorganic speciation studies are conducted by scanning electron microscopy–energy-dispersive X-ray analysis and by isotopic ratios to track smelter emissions to their surrounding environment. This paper releases the first speciation results for an aluminum smelter, and the preliminary isotopic ratio study indicates a 3% impact in terms of PM2.5 emissions for a representative smelter in an urban area.

IMPLICATIONS Aluminum smelters tend to continuously improve their competitiveness by incrementally increasing production. In this context, assessing the effect of major contaminants is overriding, and ambient air modeling is often the preferred way to do so. Fine particles fit this category, and the primary aluminum industry needs to accurately know their emission factors to obtain representative modeling. Moreover, not all aluminum smelters have a method to measure PM2.5 at roof vents, the primary emission outlets. Therefore, this paper describes the first-rate PM2.5 measurement methods for aluminum smelter roof vents without down-comers. It also provides insight for environmental managers for tracking PM2.5 emissions in plant surroundings.  相似文献   

19.
ABSTRACT

Motor vehicle contributions to primary particulate matter (PM) emissions include exhaust, tire wear, brake and clutch wear, and resuspended road dust. Relatively few field studies have been conducted to quantify fleetaverage exhaust emissions for actual on-road conditions. Therefore, direct measurements of motor vehicle-related PM emissions are warranted. In this study, PM10 and PM2.5 mass concentrations were measured near two major highways in the St. Louis area over the period from February–April 1997. Samplers were deployed both upwind and downwind of the roadways to capture the transport and dispersion of PM with distance from the roadway. The observed microscale concentration fields were compared to estimates using the PART5 emission factor model together with the CALINE4 highway dispersion model. Traffic- induced PM mass concentrations observed downwind of the roadway were always less than PART5/CALINE4 predictions; average percent differences for observed traffic-induced mass concentrations compared to predicted values were ?34% for PM2.5 and -70% for PM10. In most cases, the observed PM concentration decay with increasing distance from the roadway was steeper than predicted by dispersion modeling. Motor vehicle-induced emission factors were reconstructed by fitting CALINE4 to the observed concentration data with the emission factor as the sole adjustable parameter. Reconstructed fleet-average motor vehicle emission factors for the urban interstate highway were 0.03–0.04 g/VMT for both PM2.5 and PM10, while the fleet-average emission factors for the rural interstate highway were 0.2 and 0.3 g/VMT for PM2.5 and PM10, respectively.  相似文献   

20.
Nitrous oxide (N2O) emissions measurements were made on light duty gasoline and light duty diesel vehicles during chassis dynamometer testing conducted at the Environment Canada and California Air Resources Board vehicle emissions laboratories between 2001 and 2007. Per phase and composite FTP emission rates were measured. A subset of vehicles was also tested using other driving cycles to characterize emissions as a function of different driving conditions. Vehicles were both new (<6500 km) and in-use (6500–160,000 km) and were tested on low sulfur gasoline (<30 ppm) or low sulfur diesel (<300 ppm). Measurements from selected published studies were combined with these new measurements to give a test fleet of 467 vehicles meeting both US EPA and California criteria pollutant emissions standards between Tier 0 and Tier 2 Bin 3 or SULEV. Aggregate distance-based and fuel-based emission factors for N2O are reported for each emission standard and for each of the different test cycles. Results show that the distinction between light duty automobile and light duty truck is not significant for any of the emission standards represented by the test fleet and the distinction between new and aged catalyst is significant for vehicles meeting all emission standards but Tier 2. This is likely due to the relatively low mileage accumulated by the Tier 2 vehicles in this study as compared to the durability requirement of the standard. The FTP composite N2O emission factors for gasoline vehicles meeting emission standards more stringent than Tier 1 are substantially lower than those currently used by both Canada and the US for the 2005 inventories. N2O emission factors from test cycles other than the FTP illustrate the variability of emission factors as a function of driving conditions. N2O emission factors are shown to strongly correlate with NMHC/NMOG emission standards and less strongly with NOX and CO emission standards. A review of several published reports on the effect of gasoline sulfur content on N2O emissions suggests that additional research is needed to adequately quantify the increase in N2O emissions as a function of fuel sulfur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号