首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the chemical characteristics of fine particles in the Sihwa area, Korea, atmospheric aerosol samples were collected using a dichotomous PM10 sampler and two URG PM2.5 cyclone samplers during five intensive sampling periods between February 1998 and February 1999. The Inductively Coupled Plasma (ICP)-Atomic Emission Spectrometry (AES)/ICP-Mass Spectrometry (MS), ion chromatograph (IC), and thermal manganese dioxide oxidation (TMO) methods were used to analyze the trace elements, ionic species, and carbonaceous species, respectively. Backward trajectory analysis, factor analysis, and a chemical mass balance (CMB) model were used to estimate quantitatively source contributions to PM2.5 particles collected in the Sihwa area. The results of PM2.5 source apportionment using the CMB7 receptor model showed that (NH4)2SO4 was, on average, the major contributor to PM2.5 particles, followed by nontraffic organic carbon (OC) emission, NH4NO3, agricultural waste burning, motor vehicle emission, road dust, waste incineration, marine aerosol, and others. Here, the nontraffic OC sources include primary anthropogenic OC emitted from the industrial complex zone, secondary OC, and organic species from distant sources. The source impact of waste incineration emission became significant when the dominant wind directions were from southwest and west sectors during the sampling periods. It was found that PM2.5 particles in the Sihwa area were influenced mainly by both anthropogenic local sources and long-range transport and transformation of air pollutants.  相似文献   

2.
ABSTRACT

Chile is a fast-growing country with important industrial activities near urban areas. In this study, the mass and elemental concentrations of PM10 and PM2.5 were measured in five major Chilean urban areas. Samples of particles with diameter less than 10 um (PM10) and 2.5 um (PM2.5) were collected in 1998 in Iquique (northern Chile), Valparaiso, Vina del Mar, Rancagua (central Chile), and Temuco (southern Chile). Both PM10 and PM25 annual mean concentrations (PM10: 56.9-77.6 u,g/m3; PM25: 22.4-42.6 u.g/m3) were significantly higher than the corresponding European Union (EU) and U.S. Environmental Protection Agency (EPA) air quality standards. Moreover, the 24-hr PM10 and PM25 U.S. standards were exceeded infrequently for some of the cities (Rancagua and Valparaiso).  相似文献   

3.
In order to investigate the characteristics of carbonaceous fine aerosols, PM2.5 particulate samples were collected in the Sihwa industrial complex area between February 1998 and 1999 and in Seoul between 31 May and 9 June 1999, respectively. The carbonaceous species were analyzed by the selective thermal manganese dioxide oxidation (TMO) method. In Sihwa, average OC and EC concentrations for the entire data set were measured to be 9.8 and 1.8 μg m−3, respectively. The OC concentrations were higher than those measured in other urban environments. The EC concentrations were lower than those of other urban environments. The OC/EC ratio measured at the Sihwa area was higher than those at other urban and rural environments. Backward trajectories of sampled air masses were performed to find out the sources of those higher OC/EC levels. Enrichment in the organic compounds during winter periods can be explained by the combination of primary local emissions from the industrial complex area and long-range transport of organic species from outside the Sihwa area. High OC values in June resulted from primary anthropogenic emissions and secondary organic aerosol formation rather than the atmospheric transport of organic compounds from the outside. In urban area of Seoul, the OC and EC concentrations in PM2.5 during the summer were higher than those measured at other urban atmospheres. OC/EC ratios obtained in Seoul were lower than Sihwa. It can be concluded that carbonaceous species in Seoul were mainly emitted from primary anthropogenic sources.  相似文献   

4.
Abstract

An extensive investigation was carried out for the characterisation of the air particulate composition in Florence. The aim was to determine the aerosol elemental concentrations, as well as to identify pollution sources. For our investigation, the external Particle-Induced X-Ray Emission–Particle-Induced γ-Ray Emission beam facility of the Istituto Nazionale di Fisica Nucleare, Van de Graaff accelerator at the Physics Department of the Florence University was used. We report the results of the analysis of a long temporal series (approximately 1 yr) of PM10 particulate samples, collected on Millipore filters on a daily basis in three different sites (characterised by different urban settings). Daily concentrations of more than 20 elements were detected. The long sampling period (approximately 1 yr) allowed a comparison with the air quality recommended values and the identification of seasonal variations. Four main sources (traffic, oil-combustion, soil-dust, and wind transported sea-salt) were extracted with the help of Principal Component Analysis (PCA). An absolute PCA showed traffic to be the major source both in the high traffic site and in the urban background site.  相似文献   

5.
ABSTRACT

The chemical mass balance (CMB) model was applied to winter (November through January) 1991–1996 PM2.5 and PM10 data from the Sacramento 13th and T Streets site in order to identify the contributions from major source categories to peak 24-hr ambient PM2.5 and PM10 levels. The average monthly PM10 monitoring data for the nine-year period in Sacramento County indicate that elevated concentrations are typical in the winter months. Concentrations on days of highest PM10 are dominated by the PM2.5 fraction. One factor contributing to increased PM2.5 concentrations in the winter is meteorology (cool temperatures, low wind speeds, low inversion layers, and more humid conditions) that favors the formation of secondary nitrate and sulfate aerosols. Residential wood burning also elevates fine particulate concentrations in the Sacramento area.

The results of the CMB analysis highlight three key points. First, the source apportionment results indicate that primary motor vehicle exhaust and wood smoke are significant sources of both PM2.5 and PM10 in winter. Second, nitrates, secondarily formed as a result of motor-vehicle and other sources of nitrogen oxide (NOx), are another principal cause of the high PM2.5 and PM10 levels during the winter months. Third, fugitive dust, whether it is resuspended soil and dust or agricultural tillage, is not the major contributor to peak winter PM2.5 and PM10 levels in the Sacramento area.  相似文献   

6.
Abstract

The multivariate receptor model Unmix has been used to analyze a 3-yr PM2.5 ambient aerosol data set collected in Phoenix, AZ, beginning in 1995. The analysis generated source profiles and overall average percentage source contribution estimates (SCEs) for five source categories: gasoline engines (33 ± 4%), diesel engines (16 ± 2%), secondary SO4 2? (19 ± 2%), crustal/soil (22 ± 2%), and vegetative burning (10 ± 2%). The Unmix analysis was supplemented with scanning electron microscopy (SEM) of a limited number of filter samples for information on possible additional low-strength sources. Except for the diesel engine source category, the Unmix SCEs were generally consistent with an earlier multivariate receptor analysis of essentially the same data using the Positive Matrix Factorization (PMF) model. This article provides the first demonstration for an urban area of the capability of the Unmix receptor model.  相似文献   

7.
Fine particles were collected over four seasons from October 1995 to August 1996 to evaluate the chemical characteristics of principal PM2.5 components in Chongju, South Korea. The annual mean concentrations of PM2.5 (dp⩽2.5 μm), sulfate, nitrate, ammonium, elemental carbon (EC) and organic carbon (OC) were 44.2, 8.22, 3.63, 2.84, 4.44 and 4.99 μg m−3, respectively. The sum of the species measured from this study accounted for 50–62% of the PM2.5 mass. Sulfate was the most abundant species and constituted 13–23% of the PM2.5 mass. The EC and OC accounted for 17–28% of PM2.5. The correlation between OC and EC was strong, and the annual mean ratio of OC/EC was 1.12, suggesting that OC measured in the Chongju area may be emitted directly in particulate form as a primary aerosol.  相似文献   

8.
Abstract

The objectives of this study were to examine the use of carbon fractions to identify particulate matter (PM) sources, especially traffic‐related carbonaceous particle sources, and to estimate their contributions to the particle mass concentrations. In recent studies, positive matrix factorization (PMF) was applied to ambient fine PM (PM2.5) compositional data sets of 24‐hr integrated samples including eight individual carbon fractions collected at three monitoring sites in the eastern United States: Atlanta, GA, Washington, DC, and Brigantine, NJ. Particulate carbon was analyzed using the Interagency Monitoring of Protected Visual Environments/Thermal Optical Reflectance method that divides carbon into four organic carbons (OC): pyrolized OC and three elemental carbon (EC) fractions. In contrast to earlier PMF studies that included only the total OC and EC concentrations, gasoline emissions could be distinguished from diesel emissions based on the differences in the abundances of the carbon fractions between the two sources. The compositional profiles for these two major source types show similarities among the three sites. Temperature‐resolved carbon fractions also enhanced separations of carbon‐rich secondary sulfate aerosols. Potential source contribution function analyses show the potential source areas and pathways of sulfate‐rich secondary aerosols, especially the regional influences of the biogenic, as well as anthropogenic secondary aerosol. This study indicates that temperature‐resolved carbon fractions can be used to enhance the source apportionment of ambient PM2.5.  相似文献   

9.
ABSTRACT

Fine particles in the atmosphere have elicited new national ambient air quality standards (NAAQS) because of their potential role in health effects and visibility-reducing haze. Since April 1997, Tennessee Valley Authority (TVA) has measured fine particles (PM2.5) in the Tennessee Valley region using prototype Federal Reference Method (FRM) samplers, and results indicate that the new NAAQS annual standard will be difficult to meet in this region. The composition of many of these fine particle samples has been determined using analytical methods for elements, soluble ions, and organic and elemental carbon. The results indicate that about one-third of the measured mass is SO4 -2, one-third is organic aerosol, and the remainder is other materials. The fraction of SO4 -2 is highest at rural sites and during summer conditions, with greater proportions of organic aerosol in urban areas throughout the year. Additional measurements of fine particle mass and composition have been made to obtain the short-term variability of fine mass as it pertains to human exposure. Measurements to account for semi-volatile constituents of fine mass (nitrates, semi-volatile organics) indicate that the FRM may significantly under-measure organic constituents. The potentially controllable anthropogenic fraction of organic aerosols is still largely unknown.  相似文献   

10.
A study on source apportionment of indoor dust and particulate matter (PM10) composition was conducted in a university building by using chemometrics. The objective of this study was to investigate the potential sources of selected heavy metals and ionic species in PM10 and indoor dust. PM10 samples were collected using a low-volume sampler (LVS) and indoor dust was collected using a soft brush. Inductively coupled plasma spectrometry (ICP-MS) was used to determine the concentration of heavy metals, while the concentration of cations and anions was determined by atomic absorption spectrometer (AAS) and ion chromatography (IC), respectively. The concentration of PM10 recorded in the building throughout the sampling period ranged from 20 ± 10 μgm?3 to 80 ± 33 μgm?3. The composition of heavy metals in PM10 and indoor dust were dominated by zinc (Zn), followed by lead (Pb), copper (Cu), and cadmium (Cd). Principle component analysis (PCA) and multiple linear regression (MLR) showed that the main sources of pollutants in PM10 came from indoor renovations (73.83%), vehicle emissions (16.38%), earth crust sources (9.68%), and other outdoor sources (0.11%). For indoor dust, the pollutant source was mainly earth crust. This study suggests that chemometrics can be used for forensic investigation to determine the possible sources of indoor contaminants within a public building.  相似文献   

11.
The Monterrey Metropolitan Area (MMA) in Northeast Mexico has shown high PM2.5 concentrations since 2003. The data shows that the annual average concentration exceeds from 2 to 3 times the Mexican PM2.5 annual air quality standard of 12 µg/m3. In a previous work we studied the chemical characterization of PM2.5 in two sites of the MMA during the winter season. Among the most important components we found ammonium sulfate and nitrate, elemental and organic carbon, and crustal matter. In this work we present the results of a second chemical characterization study performed during the summer time and the application of the chemical mass balance (CMB) model to determine the source apportionment of air pollutants in the region. The chemical analysis results show that the chemical composition of PM2.5 is similar in both sites and periods of the year. The results of the chemical analysis and the CMB model show that industrial, traffic, and combustion activities in the area are the major sources of primary PM2.5 and precursor gases of secondary inorganic and organic aerosol (SO2, NOx, NH3, and volatile organic compounds [VOCs]). We also found that black carbon and organic carbon are important components of PM2.5 in the MMA. These results are consistent with the MMA emission inventory that reports as major sources of particles and SO2 a refinery and fuel combustion, as well as nitrogen oxides and ammonium from transportation and industrial activities in the MMA and ammonium form agricultural activities in the state. The results of this work are important to identify and support effective actions to reduce direct emissions of PM2.5 and its precursor gases to improve air quality in the MMA. Implications: The Monterrey Metropolitan Area (MMA) has been classified as the most air-polluted area in Mexico by the World Health Organization (WHO). Effective actions need to be taken to control primary sources of PM2.5 and its precursors, reducing health risks on the population exposed and their associated costs. The results of this study identify the main sources and their estimated contribution to PM2.5 mass concentration, providing valuable information to the local environmental authorities to take decisions on PM2.5 control strategies in the MMA.  相似文献   

12.
Particulate matter less than 2.5 microns in diameter (PM(2.5)) has been linked with a wide range of adverse health effects. Determination of the sources of PM(2.5) most responsible for these health effects could lead to improved understanding of the mechanisms of such effects and more targeted regulation. This has provided the impetus for the Denver Aerosol Sources and Health (DASH) study, a multi-year source apportionment and health effects study relying on detailed inorganic and organic PM(2.5) speciation measurements.In this study, PM(2.5) source apportionment is performed by coupling positive matrix factorization (PMF) with daily speciated PM(2.5) measurements including inorganic ions, elemental carbon (EC) and organic carbon (OC), and organic molecular markers. A qualitative comparison is made between two models, PMF2 and ME2, commonly used for solving the PMF problem. Many previous studies have incorporated chemical mass balance (CMB) for organic molecular marker source apportionment on limited data sets, but the DASH data set is large enough to use multivariate factor analysis techniques such as PMF.Sensitivity of the PMF2 and ME2 models to the selection of speciated PM(2.5) components and model input parameters was investigated in depth. A combination of diagnostics was used to select an optimum, 7-factor model using one complete year of daily data with pointwise measurement uncertainties. The factors included 1) a wintertime/methoxyphenol factor, 2) an EC/sterane factor, 3) a nitrate/polycyclic aromatic hydrocarbon (PAH) factor, 4) a summertime/selective aliphatic factor, 5) an n-alkane factor, 6) a middle oxygenated PAH/alkanoic acid factor and 7) an inorganic ion factor. These seven factors were qualitatively linked with known PM(2.5) emission sources with varying degrees of confidence. Mass apportionment using the 7-factor model revealed the contribution of each factor to the mass of OC, EC, nitrate and sulfate. On an annual basis, the majority of OC and EC mass was associated with the summertime/selective aliphatic factor and the EC/sterane factor, respectively, while nitrate and sulfate mass were both dominated by the inorganic ion factor. This apportionment was found to vary substantially by season. Several of the factors identified in this study agree well with similar assessments conducted in St. Louis, MO and Pittsburgh, PA using PMF and organic molecular markers.  相似文献   

13.
Phoenix, AZ, experiences high particulate matter (PM) episodes, especially in the wintertime. The spatial variation of the PM concentrations and resulting differences in exposure is of particular concern. In this study, PM2.s (PM with aerodynamic diameter <2.5 microm) and PM10 (PM with aerodynamic diameter <10 microm) samples were collected simultaneously from the east and west sides of South Phoenix and at a control site in Tempe and analyzed for trace elements and bulk elemental and organic carbon. Measurements showed that although PM2.5 concentrations had similar trends in temporal scale across all sites, concentrations of PM10 did not. The difference in PM10 concentrations and fluctuation across the three sites suggest effects of a local soil source as evidenced by high concentrations of Al, Ca, and Fe in PM10. K and anthropogenic elements (e.g., Cu, Pb, and Zn) in PM2.5 samples on January 1 were strikingly high, suggesting the influence of New Year's fireworks. Concentrations of toxic elements (e.g., Pb) in the study presented here are not different from similar studies in other U.S. cities. Application of principal component analysis indicated two broad categories of emission sources--soil and combustion--together accounting for 80 and 90% of variance, respectively, in PM2.5 and PM10. The soil and combustion components explained approximately 60 and 30% of the variance in PM10, respectively, whereas combustion sources dominated PM2.5 (>50% variance). Many elements associated with anthropogenic sources were highly enriched, with enrichment factors in PM2.5 an order of magnitude higher than in PM10 relative to surface soil composition in the study area.  相似文献   

14.
Abstract

Particulate matter (PM) less than 2.5 μm in size (PM2.5)source apportionment by chemical mass balance receptor modeling was performed to enhance regional characterization of source impacts in the southeastern United States. Secondary particles, such as NH4HSO4, (NH4)2SO4,NH4NO3, and secondary organic carbon (OC) (SOC), formed by atmospheric photochemical reactions, contribute the majority (<50%) of ambient PM2.5 with strong seasonality. Source apportionment results indicate that motor vehicle and biomass burning are the two main primary sources in the southeast, showing relatively more motor vehicle source impacts rather than biomass burning source impacts in populated urban areas and vice versa in less urbanized areas. Spatial distributions of primary source impacts show that each primary source has distinctively different spatial source impacts. Results also find impacts from shipping activities along the coast. Spatiotemporal correlations indicate that secondary particles are more regionally distributed, as are biomass burning and dust, whereas impacts of other primary sources are more local.  相似文献   

15.
ABSTRACT

Receptor-based chemical mass balance (CMB) analysis techniques are designed to apportion species that are conserved during pollutant transport using conserved source profiles. The techniques will fail if non-conservative species (or profiles) are not properly accounted for in the CMB model. The straightforward application of the CMB model developed for Project MOHAVE using regional profiles resulted in a significant under-prediction of total sulfate oxides (SOx, SO2 plus fine particulate sulfate) for many samples at Meadview, AZ. In addition, for these samples the concentration of the inert tracer emitted from the MOHAVE Power Project (MPP), ocPDCH, was also under-predicted. A second-generation model has been developed which assumes that separation of particles and SO2 can occur in the MPP plume during nighttime stable plume conditions. This second-generation CMB model accounts for all SOx present at the various receptor sites. In addition, the concentrations of ocPDCH and the presence of other inert tracers of emission from regional sources are accurately predicted. The major source of SOx at Meadview was the MPP, but the major source of sulfate at this site was the Las Vegas urban area. At Hopi Point in the Grand Canyon, the Baja California region (Imperial Valley and northwestern Mexico) was the major source of both SOx and sulfate.  相似文献   

16.
This study investigates the source identification of nickel in the aerosol of the Tokyo metropolitan area. TSP and PM2.5 samples were collected daily from August to November 2004. The samples were examined by means of the water-extraction method, followed by elemental analysis and SEM/EDX analysis. We distinguished two types of atmospheric nickel sources in the studied area: (1) particles derived from heavy oil combustion, distributed mostly in fine particles such as PM2.5, relatively water-soluble, and containing vanadium and (2) particles derived from mechanical abrasion/erosion of metallic surfaces, distributed in coarse particles such as TSP, relatively water-insoluble, and containing chromium.  相似文献   

17.
In order to better understand the characteristics of atmospheric carbonaceous aerosol at a background site in Northeast Asia, semicontinuous organic carbon (OC) and elemental carbon (EC), and time-resolved water-soluble organic carbon (WSOC) were measured by a Sunset OC/ EC and a PILS-TOC (particle-into-liquid sampler coupled with an online total organic carbon) analyzer, respectively, at the Gosan supersite on Jeju Island, Korea, in the summer (May 28-June 17) and fall (August 24-September 30) of 2009. Hourly average OC concentration varied in the range of approximately 0.87-28.38 microgC m-3, with a mean of 4.07+/- 2.60 microgC m-3, while the hourly average EC concentration ranged approximately from 0.04 to 8.19 .microgC m-3, with a mean of 1.35 +/- 0.71 microgC m-3, from May 28 to June 17, 2009. During the fall season, OC varied in the approximate range 0.9-9.6 microgC m-3, with a mean of 2.30 +/-0.80 microgC m-3, whereas EC ranged approximately from 0.01 to 5.40 microgC m-3, with a mean of 0.66 +/- 0.38 microgC m-3. Average contributions of EC to TC and WSOC to OC were 26.0% +/- 9.7% and 20.6% +/-7.4%, and 37.6% +/- 23.5% and 57.2% +/- 22.2% during summer and fall seasons, respectively. As expected, clear diurnal variation of WSOC/OC was found in summer, varying from 0.22 during the nighttime up to 0.72 during the daytime, mainly due to the photo-oxidation process. In order to investigate the effect of air mass pathway on the characteristics of carbonaceous aerosol, 5-day back-trajectory analysis was conducted using the HYSPLIT model. The air mass pathways were classified into four types: Continental (CC), Marine (M), East Sea (ES) and Korean Peninsula (KP). The highest OC/EC ratio of 3.63 was observed when air mass originated from the Continental area (CC). The lowest OC/EC ratio of 0.79 was measured when air mass originated from the Marine area (M). A high OC concentration was occasionally observed at Gosan due to local biomass burning activities. The contribution of secondary OC to total OC varied approximately between 8.4% and 32.2% and depended on air mass type.  相似文献   

18.
建立了声场中PM2.5颗粒碰撞运动模型。模拟结果表明,颗粒碰撞前速度与水平面的夹角θ是影响颗粒运动轨迹的一个重要因素,它的改变将决定颗粒在声场中是否碰撞、碰撞的位置以及碰撞后颗粒如何运动;颗粒碰撞前的速度大小将决定颗粒碰撞后是沿声波方向运动还是逆声波方向运动或是停留在原地振动;声场频率的不同改变了颗粒在发生碰撞时的运动趋势及颗粒的在碰撞时的运动趋势,同时,声场频率的改变将影响碰撞后颗粒的振幅;声场声强的改变不但影响了颗粒运动的振幅,而且影响了颗粒碰撞后运动趋势。  相似文献   

19.
24-h PM2.5 carbonaceous samples were collected between 27 November and 9 December 1999 in Seoul, and between 7 and 20 June 2000 in Kwangju to investigate characteristics of carbonaceous species, and the relationship between elemental carbon (EC) and Aethalometer-based black carbon (BC) measurements. 5-min PM2.5 BC and criteria air pollutant data were also measured using the Aethalometer and ambient air monitoring system. The PM2.5 samples were analyzed for EC and OC using a selective thermal manganese dioxide oxidation (TMO) method. The daily average EC and OC concentrations in Seoul were higher in the winter than in the summer (Atmos. Environ. 35 (2001a) 657). It was found that difference between ambient BC levels in the two cities was not directly proportional to the population ratio (∼8) or diesel traffic ratio (∼5.9) since particulate matter or BC concentration is strongly influenced by a result of varying traffic and meteorological conditions at the site. Using the primary OC/EC ratio approach, the results suggest that most of the measured OC in Kwangju is of primary origin during the summer. In Seoul, the observed OC includes additional secondary organic aerosol during the wintertime conditions. The relationship between the 24-h TMO-EC and Aethalometer BC measurements in PM2.5 reflected very good agreement for the two urban sites, with correlation coefficients of R2=0.99 and 0.92, and BC/EC slopes of 0.93 and 1.07, respectively. It was found that comparing TMO-EC to BC at a different location in Korea, a different scaling factor was needed.  相似文献   

20.
Chile is a fast-growing country with important industrial activities near urban areas. In this study, the mass and elemental concentrations of PM10 and PM2.5 were measured in five major Chilean urban areas. Samples of particles with diameter less than 10 microm (PM10) and 2.5 microm (PM2.5) were collected in 1998 in Iquique (northern Chile), Valparaiso, Vi?a del Mar, Rancagua (central Chile), and Temuco (southern Chile). Both PM10 and PM2.5 annual mean concentrations (PM10: 56.9-77.6 microg/m3; PM2.5: 22.4-42.6 microg/m3) were significantly higher than the corresponding European Union (EU) and U.S. Environmental Protection Agency (EPA) air quality standards. Moreover, the 24-hr PM10 and PM2.5 U.S. standards were exceeded infrequently for some of the cities (Rancagua and Valparaiso). Elements ranging from Mg to Pb were detected in the aerosol samples using X-ray fluorescence (XRF). For each of the five cities, factor analysis (FA) was applied to identify and quantify the sources of PM10 and PM2.5. The agreement between calculated and measured mass and elemental concentrations was excellent in most of the cities. Both natural and anthropogenic sources were resolved for all five cities. Soil and sea were the most important contributors to coarse particles (PM10-PM2.5), whereas their contributions to PM2.5 were negligible. Emissions from Cu smelters and oil refineries (and/or diesel combustion) were identified as important sources of PM2.5, particularly in the industrial cities of Rancagua, Valparaiso, and Vi?a del Mar. Finally, motor vehicles and wood burning were significant sources of both PM2.5 and PM10 in most of the cities (wood burning was not identified in Iquique).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号