首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The U.S. Department of Defense-approved activities conducted at the Utah Test and Training Range (UTTR) include both operational readiness test firing of intercontinental ballistic missile (ICBM) motors, as well as the destruction of obsolete or otherwise unusable ICBM motors through open burn/open detonation (OB/OD). Within the Utah Division of Air Quality, these activities have been identified as having the potential to generate unacceptable noise levels, as well as significant amounts of volatile organic compounds (VOCs). Hill Air Force Base, UT, has completed a series of field tests at the UTTR in which sound-monitoring surveillance of OB/OD activities was conducted to validate the Sound Intensity Prediction System (SIPS) model. Using results generated by the SIPS model to support the decision to detonate, the UTTR successfully disposed of missile motors having an aggregate net explosive weight (NEW) of 81,374 lb without generating adverse noise levels within populated areas. In conjunction with collecting noise-monitoring data, air emissions were collected to support the development of air emission factors for both static missile motor firings and OB/OD activities. Through the installation of 15 ground-based air samplers, the generation of combustion-fixed gases, VOCs, and chlorides was monitored during the 81,374-lb NEW detonation event. Comparison of field measurements to predictions generated from the US Navy energetic combustion pollutant formation model, POLU4WN, indicated that, as the detonation fire ball expanded, organic compounds, as well as CO, continued to oxidize as the combustion gases mixed with ambient air. VOC analysis of air samplers confirmed the presence of chloromethane, vinyl chloride, benzene, toluene, and 2-methyl-1-propene. Qualitative chloride analysis indicated that gaseous HCl was generated at low concentrations, if at all.  相似文献   

2.
The U.S. Department of Defense approved activities conducted at the Utah Test and Training Range (UTTR) include both operational readiness test firing of intercontinental ballistic missile motors as well as the destruction of obsolete or otherwise unusable intercontinental ballistic missile motors through open burn/open detonation (OB/ OD). Within the Utah Division of Air Quality, these activities have been identified as having the potential to generate unacceptable noise levels, as well as significant amounts of hazardous air pollutants. Hill Air Force Base, UT, has completed a series of field tests at the UTTR in which sound-monitoring surveillance of OB/OD activities was conducted to validate the Sound Intensity Prediction System (SIPS) model. Using results generated by the SIPS model to support the decision to detonate, the UTTR successfully disposed of missile motors having an aggregate net explosive weight (NEW) of 56,500 lbs without generating adverse noise levels within populated areas. These results suggest that, under appropriate conditions, missile motors of even larger NEW may be detonated without exceeding regulatory noise limits. In conjunction with collecting noise monitoring data, air quality data was collected to support the development of air emission factors for both static missile motor firings and OB/OD activities. Through the installation of 15 ground-based air samplers, the generation of combustion fixed gases, hazardous air pollutants, and chlorides were monitored during the 56,500-lb NEW detonation event. Comparison of field measurements to predictions generated from the U.S. Navy's energetic combustion pollutant formation model, POLU4WN, indicated that, as the detonation fireball expanded from ground zero, organic compounds as well as carbon monoxide continued to oxidize as the hot gases reacted with ambient air. Hazardous air pollutant analysis of air samplers confirmed the presence of chloromethane, benzene, toluene, 1,2-propadiene, and 2-methyl-l-propene, whereas the absence of hydrogen chloride gas suggested that free chlorine is not generated during the combustion process.  相似文献   

3.
Abstract

The U.S. Department of Defense approved activities conducted at the Utah Test and Training Range (UTTR) include both operational readiness test firing of intercontinental ballistic missile motors as well as the destruction of obsolete or otherwise unusable intercontinental ballistic missile motors through open burn/open detonation (OB/ OD). Within the Utah Division of Air Quality, these activities have been identified as having the potential to generate unacceptable noise levels, as well as significant amounts of hazardous air pollutants. Hill Air Force Base, UT, has completed a series of field tests at the UTTR in which sound-monitoring surveillance of OB/OD activities was conducted to validate the Sound Intensity Prediction System (SIPS) model. Using results generated by the SIPS model to support the decision to detonate, the UTTR successfully disposed of missile motors having an aggregate net explosive weight (NEW) of 56,500 lbs without generating adverse noise levels within populated areas. These results suggest that, under appropriate conditions, missile motors of even larger NEW may be detonated without exceeding regulatory noise limits. In conjunction with collecting noise monitoring data, air quality data was collected to support the development of air emission factors for both static missile motor firings and OB/OD activities. Through the installation of 15 ground-based air samplers, the generation of combustion fixed gases, hazardous air pollutants, and chlorides were monitored during the 56,500-lb NEW detonation event. Comparison of field measurements to predictions generated from the U.S. Navy’s energetic combustion pollutant formation model, POLU4WN, indicated that, as the detonation fireball expanded from ground zero, organic compounds as well as carbon monoxide continued to oxidize as the hot gases reacted with ambient air. Hazardous air pollutant analysis of air samplers confirmed the presence of chloromethane, benzene, toluene, 1,2-propadiene, and 2-methyl-1-propene, whereas the absence of hydrogen chloride gas suggested that free chlorine is not generated during the combustion process.  相似文献   

4.
The Sound Intensity Prediction System (SIPS) and Blast Operation Overpressure Model (BOOM) are semiempirical sound models that are employed by the Utah Test and Training Range (UTTR) to predict whether noise levels from the detonation of large missile motors will exceed regulatory thresholds. Field validation of SIPS confirmed that the model was effective in limiting the number of detonations of large missile motors that could potentially result in a regulatory noise exceedance. Although the SIPS accurately predicted the impact of weather on detonation noise propagation, regulators have required that the more conservative BOOM model be employed in conjunction with SIPS in evaluating peak noise levels in populated areas. By simultaneously considering the output of both models, in 2001, UTTR detonated 104 missile motors having net explosive weights (NEW) that ranged between 14,960 and 38,938 lb without a recorded public noise complaint. Based on the encouraging results, the U.S. Department of Defense is considering expanding the application of these noise models to support the detonation of missile motors having a NEW of 81,000 lb. Recent modeling results suggest that, under appropriate weather conditions, missile motors containing up to 96,000 lb NEW can be detonated at the UTTR without exceeding the regulatory noise limit of 134 decibels (dB).  相似文献   

5.
Abstract

The Sound Intensity Prediction System (SIPS) and Blast Operation Overpressure Model (BOOM) are semiempirical sound models that are employed by the Utah Test and Training Range (UTTR) to predict whether noise levels from the detonation of large missile motors will exceed regulatory thresholds. Field validation of SIPS confirmed that the model was effective in limiting the number of detonations of large missile motors that could potentially result in a regulatory noise exceedance. Although the SIPS accurately predicted the impact of weather on detonation noise propagation, regulators have required that the more conservative BOOM model be employed in conjunction with SIPS in evaluating peak noise levels in populated areas. By simultaneously considering the output of both models, in 2001, UTTR detonated 104 missile motors having net explosive weights (NEW) that ranged between 14,960 and 38,938 lb without a recorded public noise complaint. Based on the encouraging results, the U.S. Department of Defense is considering expanding the application of these noise models to support the detonation of missile motors having a NEW of 81,000 lb. Recent modeling results suggest that, under appropriate weather conditions, missile motors containing up to 96,000 lb NEW can be detonated at the UTTR without exceeding the regulatory noise limit of 134 decibels (dB).  相似文献   

6.
An aerostat-borne instrument and sampling method was developed to characterize air samples from area sources, such as emissions from open burning. The 10 kg battery-powered instrument system, termed “the Flyer”, is lofted with a helium-filled aerostat of 4 m nominal diameter and maneuvered by means of one or two tethers. The Flyer can be configured variously for continuous CO2 monitoring, batch sampling of semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs), black carbon, metals, and PM by size. The samplers are controlled by a trigger circuit to avoid unnecessary dilution from background sampling when not within the source plume. The aerostat/Flyer method was demonstrated by sampling emissions from open burning (OB) and open detonation (OD) of military ordnance. A carbon balance approach was used to derive emission factors that showed excellent agreement with published values.  相似文献   

7.
Emission factors (EFs) of particulate matter with aerodynamic diameter ≤10 µm (PM10) from the open burning/open detonation (OB/OD) of energetic materials were measured using a hybrid-optical remote sensing (hybrid-ORS) method. This method is based on the measurement of range-resolved PM backscattering values with a micropulse light detection and ranging (LIDAR; MPL) device. Field measurements were completed during March 2010 at Tooele Army Depot, Utah, which is an arid continental site. PM10 EFs were quantified for OB of M1 propellant and OD of 2,4,6-trinitrotoluene (TNT). EFs from this study are compared with previous OB/OD measurements reported in the literature that have been determined with point measurements either in enclosed or ambient environments, and with concurrent airborne point measurements. PM10 mass EFs, determined with the hybrid-ORS method, were 7.8?×?10?3 kg PM10/kg M1 from OB of M1 propellant, and 0.20 kg PM10/kg TNT from OD of TNT. Compared with previous results reported in the literature, the hybrid-ORS method EFs were 13% larger for OB and 174% larger for OD. Compared with the concurrent airborne measurements, EF values from the hybrid-ORS method were 37% larger for OB and 54% larger for OD. For TNT, no statistically significant differences were observed for the EFs measured during the detonation of 22.7 and 45.4 kg of TNT, supporting that the total amount of detonated mass in this mass range does not have an effect on the EFs for OD of TNT.

Implications: Particulate matter (PM) in the atmosphere affects the health of humans and ecosystems, visibility, and climate. Fugitive PM emissions are not well characterized because of spatial and temporal ubiquity and heterogeneity. The hybrid-ORS method is appropriate for quantifying fugitive PM emission factors (EFs) because it captures the spatial and temporal dispersion of ground level and elevated plumes in real time, without requiring numerous point measurement devices. The method can be applied to provide an opportunity to reduce the uncertainty of fugitive PM EFs and readily update PM emissions in National Emission Inventories for a range of fugitive PM sources.  相似文献   

8.
Abstract

The U.S. Consumer Product Safety Commission is investigating chemical emissions from carpet systems in order to determine whether the emissions may be responsible for the numerous health complaints associated with carpet installation. As part of this effort, a study was conducted to identify and quantify volatile organic compounds (VOCs) released into the air by five major product types of new carpet cushions. Cushion samples were tested in small-volume dynamic chambers over a six-hour exposure period. Airborne VOCs collected on multisorbent samplers were identified using sensitive gas chromatography/mass spectrometry. The emissions of selected VOCs were quantitated with the small-scale chamber method and further characterized in larger environmental chambers conducted over a 96-hour period under conditions more representative of indoor environments. A separate chamber method was developed to screen polyurethane cushions for emissions of toluene diisocyanates (TDI). Over 100 VOCs, spanning a broad range of chemical classes, were emitted from 17 carpet cushions. The pattern of emitted VOCs varied between and among product types, which reflects probable differences in manufacturing processes and ingredients. No significant quantities of TDI or formaldehyde were released by any cushions. Emission profiles were characterized for total VOCs and for the predominant individual VOCs. As a group, the synthetic fiber cushion samples emitted the lowest quantities of VOCs. Cushion samples purchased from carpet retailers released lesser amounts of VOCs than samples of the same cushion types obtained directly from the manufacturing mills, suggesting that chemical losses from the bulk material may ensue as a result of transport, handling, and storage prior to installation. The data suggest that placement of carpet on top of a carpet cushion, as would occur in a residential installation, reduced the rate of some VOC emissions when compared to the cushion alone.  相似文献   

9.
Volatile organics compounds (VOCs) are ubiquitous in the air we breathe. The use of passive samplers to measure these concentrations can be an effective technique. When exposed for long durations, a passive sampler may be a good tool for investigating chronic exposures to chemicals in the environment. A passive sampler that was designed for occupational exposures can be used as such a tool. Laboratory validation under as many conditions as possible needs to be accomplished so as to characterize the sampler with known parameters. This paper describes the methods and results of an investigation into the validity of using a passive monitor to sample VOCs for a three-week period. Two concentration levels, two relative humidities, and five VOCs were studied. Results indicate that the samplers work best under conditions of high concentration with low relative humidity and low concentration with high relative humidity. For the passive sampler, excluding chloroform, percent deviations from the predicted values varied between -41 and +22 percent; while the values between the passive and the active samplers varied between -27 and +24 percent. Benzene, heptane, and perchloroethylene were sampled with equal precision and accuracy.  相似文献   

10.
The availability of reliable, accurate and precise monitoring methods for toxic volatile organic compounds (VOCs) is a primary need for state and local agencies addressing daily monitoring requirements related to odor complaints, fugitive emissions, and trend monitoring. The canister-based monitoring method for VOCs is a viable and widely used approach that is based on research and evaluation performed over the past several years. This activity has involved the testing of sample stability of VOCs in canisters and the design of time-integrative samplers. The development of procedures for analysis of samples in canisters, including the procedure for VOC preconcentration from whole air, the treatment of water vapor in the sample, and the selection of an appropriate analytical finish has been accomplished. The canister-based method was initially summarized in the EPA Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air as Method TO-14. Modifications and refinements are being added to Method TO-14 in order to obtain a Statement of Work for the Superfund Contract Laboratory Program for Air. This paper discusses the developments leading to the current status of the canisterbased method and provides a critique of the method using results obtained in EPA monitoring networks.  相似文献   

11.
Abstract

Volatile organlcs compounds (VOCs) are ubiquitous in the air we breathe. The use of passive samplers to measure these concentrations can be an effective technique. When exposed for long durations, a passive sampler may be a good tool for investigating chronic exposures to chemicals in the environment. A passive sampler that was designed for occupational exposures can be used as such a tool. Laboratory validation under as many conditions as possible needs to be accomplished so as to characterize the sampler with known parameters. This paper describes the methods and results of an investigation into the validity of using a passive monitor to sample VOCs for a three-week period. Two concentration levels, two relative humidities, and five VOCs were studied. Results indicate that the samplers work best under conditions of high concentration with low relative humidity and low concentration with high relative humidity. For the passive sampler, excluding chloroform, percent deviations from the predicted values varied between ?41 and +22 percent; while the values between the passive and the active samplers varied between ?27 and +24 percent. Benzene, heptane, and perchloroethylene were sampled with equal precision and accuracy.  相似文献   

12.
Human health effects of air pollution   总被引:21,自引:0,他引:21  
Hazardous chemicals escape to the environment by a number of natural and/or anthropogenic activities and may cause adverse effects on human health and the environment. Increased combustion of fossil fuels in the last century is responsible for the progressive change in the atmospheric composition. Air pollutants, such as carbon monoxide (CO), sulfur dioxide (SO(2)), nitrogen oxides (NOx), volatile organic compounds (VOCs), ozone (O(3)), heavy metals, and respirable particulate matter (PM2.5 and PM10), differ in their chemical composition, reaction properties, emission, time of disintegration and ability to diffuse in long or short distances. Air pollution has both acute and chronic effects on human health, affecting a number of different systems and organs. It ranges from minor upper respiratory irritation to chronic respiratory and heart disease, lung cancer, acute respiratory infections in children and chronic bronchitis in adults, aggravating pre-existing heart and lung disease, or asthmatic attacks. In addition, short- and long-term exposures have also been linked with premature mortality and reduced life expectancy. These effects of air pollutants on human health and their mechanism of action are briefly discussed.  相似文献   

13.
Highly portable, sensitive, and selective passive air samplers were used to investigate ambient volatile organic compound (VOC) levels at multiple sampling sites in an industrial city, Fuji, Japan. We determined the spatial distributions of 27 species of VOCs in three campaigns: Mar (cold season), May (warm season), and Nov (mild season) of 2004. In all campaigns, toluene (geometric mean concentration, 14.0microg/m3) was the most abundant VOC, followed by acetaldehyde (4.76microg/m3), and formaldehyde (2.58microg/m3). The spatial distributions for certain VOCs showed characteristic patterns: high concentrations of benzene and formaldehyde were typically found along major roads, whereas high concentrations of toluene and tetrachloroethylene (PCE) were usually found near factories. The spatial distribution of PCE observed was extremely consistent with the diffusion pattern calculated from Pollutant Release and Transfer Register data and meteorological data, indicated that passive air samplers are useful for determining the sources and distributions of ambient VOCs.  相似文献   

14.
Abstract

NOX control employing several combustion modification techniques is studied in batch annealing furnaces and ammonia combustion ovens in steel plants. The fuels of the annealing furnace and ammonia oven are by-product fuel gases and ammonia vapor, respectively, which are generated in the same steelworks. Study of the emission characteristics of the annealing furnace show that delayed combustion can effectively reduce NOX emissions. Delayed combustion is accomplished by air-staging in burners, off-symmetric mixing of fuel and air, and air-biasing in the furnace, and these modification can operations achieve 60%, 40%, and 26% of NOX reductions, respectively. For the ammonia oven, NOX emission from combustion of ammonia vapor is remarkably reduced by staging the air injected into the oven, adjusting the total air rate, and adding by-product fuel gases to the combustion system.  相似文献   

15.
Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NOx emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion.  相似文献   

16.
There is a requirement to verify the performance of sorbent-based passive or active samplers and to extend their use, where possible, to monitor volatile organic compounds (VOCs) that are known to be photochemical ozone pre-cursors or are relevant to the activities of the petrochemical industry. We report measurements of the 14-day diffusive uptake rates for the VOCs: i-butane (2-methyl propane), n-butane, i-pentane (2-methyl butane), n-pentane, n-hexane, benzene, toluene, and m-xylene (at environmental level concentrations) for industry standard axial samplers (Perkin–Elmer-type samplers) containing the sorbents Carbopack-X, -Z, -B or Tenax-TA. We also present data on back-diffusion, blank levels, and storage for the above sorbents, and describe the simultaneous use of the sorbent Carbopack-X for pumped sampling of certain VOCs. The results were obtained by dosing samplers in a controlled atmosphere test facility (CATFAC) operating under well-defined conditions of concentration, nominal temperature of 20 °C, wind speed of 0.5 m s?1, and relative humidities of 0% and 80%. Field measurements were also obtained to provide supplementary data to support the laboratory study. Results are compared to existing published data, where these are available.  相似文献   

17.
Improper solid waste management leads to aesthetic and environmental problems. Emission of volatile organic compounds (VOCs) is one of the problems from uncontrolled dumpsite. VOCs are well known to be hazardous to human health and many of them are known or potential carcinogens. They also contribute to ozone formation at ground level and climate change as well. The qualitative and quantitative analysis of VOCs emitting from two municipal waste (MSW) disposal sites in Mumbai, India, namely Deonar and Malad, are presented in this paper. Air at dumpsites was sampled and analyzed on gas chromatography–mass spectrometry (GC-MS) in accordance with U.S. Environmental Protection Agency (EPA) TO-17 compendium method for analysis of toxic compounds. As many as 64 VOCs were qualitatively identified, among which 13 are listed under Hazardous Air Pollutants (HAPs). Study of environmental distribution of a few major VOCs indicates that although air is the principal compartment of residence, they also get considerably partitioned in soil and vegetation. The CO2 equivalent of target VOCs from the landfills in Malad and Deonar shows that the total yearly emissions are 7.89E+03 and 8.08E+02 kg, respectively. The total per hour ozone production from major VOCs was found to be 5.34E-01 ppb in Deonar and 9.55E-02 ppb in Malad. The total carcinogenic risk for the workers in the dumpsite considering all target HAPs are calculated to be 275 persons in 1 million in Deonar and 139 persons in 1 million in Malad.

Implications: This paper describes the hazards of VOC emission from open dumpsites, a common practice, in an Indian metro city. The subsequent partitioning of the emitted VOCs in other environmental compartment from air is presented. The global warming potential and the health hazards to the dumpsite workers from the emitted VOCs have also been estimated.  相似文献   

18.
Research has been conducted into the application of forced acoustics for enhancing the performance of a pyrolyzed waste afterburner configured as a dump combustor. Subscale studies showed that acoustic forcing of an air jet entering a dump chamber could trigger the formation of coherent vortices generated by entrainment of ambient gases. Subsequent studies showed that combustible gases could be introduced into the coherent vortices, and with additional modulation this configuration would lead to an enhanced combustion rate with low emissions of pollutants. The acoustically forced burner concept was scaled up to practical levels and tested as an afterburner on a commercial waste incinerator operating in pyrolysis mode. Results show that the afterburner can promote both compactness, due to the rapid combustion rate, and low pollutant emissions resulting from enhanced mixing prior to combustion.  相似文献   

19.
Air sparging is a remediation technology currently being applied for the restoration of sites contaminated with volatile organic compounds (VOCs). Attempts have been made by various researchers to model the fate of VOCs in the gas and liquid phase during air sparging. In this study, a radial diffusion model with an air–water mass transfer boundary condition was developed and applied for the prediction of VOC volatilization from air sparging of contaminated soil columns. The approach taken was to use various parameters such as mass transfer coefficients and tortuosity factors determined previously in separate experiments using a single air channel apparatus and applying these parameters to a complex system with many air channels. Incorporated in the model, is the concept of mass transfer zone (MTZ) where diffusion of VOCs in this zone was impacted by the volatilization of VOCs at the air–water interface but with negligible impact outside the zone. The model predicted fairly well the change in the VOC concentrations in the exhaust air, the final average aqueous VOC concentration, and the total mass removed. The predicted mass removal was within 1% to 20% of the actual experimental mass removed. The results of the model seemed to suggest that air-sparged soil columns may be modeled as a composite of individual air channels surrounded by a MTZ. For a given air flow rate and air saturation, the VOC removal was found to be inversely proportional to the radius of the air channel. The approach taken provided conceptual insights on mass transfer processes during air sparging operations.  相似文献   

20.
In this study, emissions of ozone precursors from oil and gas operations in Utah’s Uinta Basin are predicted (with uncertainty estimates) from 2015–2019 using a Monte-Carlo model of (a) drilling and production activity, and (b) emission factors. Cross-validation tests against actual drilling and production data from 2010–2014 show that the model can accurately predict both types of activities, returning median results that are within 5% of actual values for drilling, 0.1% for oil production, and 4% for gas production. A variety of one-time (drilling) and ongoing (oil and gas production) emission factors for greenhouse gases, methane, and volatile organic compounds (VOCs) are applied to the predicted oil and gas operations. Based on the range of emission factor values reported in the literature, emissions from well completions are the most significant source of emissions, followed by gas transmission and production. We estimate that the annual average VOC emissions rate for the oil and gas industry over the 2010–2015 time period was 44.2E+06 (mean) ± 12.8E+06 (standard deviation) kg VOCs per year (with all applicable emissions reductions). On the same basis, over the 2015–2019 period annual average VOC emissions from oil and gas operations are expected to drop 45% to 24.2E+06 ± 3.43E+06 kg VOCs per year, due to decreases in drilling activity and tighter emission standards.

Implications: This study improves upon previous methods for estimating emissions of ozone precursors from oil and gas operations in Utah’s Uinta Basin by tracking one-time and ongoing emission events on a well-by-well basis. The proposed method has proven highly accurate at predicting drilling and production activity and includes uncertainty estimates to describe the range of potential emissions inventory outcomes. If similar input data are available in other oil and gas producing regions, then the method developed here could be applied to those regions as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号