首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Project MOHAVE was initiated in 1992 to examine the role of emissions from the 1580 MW coal-fired MOHAVE Power Project (MPP) on haze at the Grand Canyon National Park (GCNP), located about 130 km north-north-east of the power plant. Statistical relationships were analyzed between summertime ambient concentrations of a gaseous perfluorocarbon tracer released from MPP and ambient SO2, particulate sulfur, and light scattering to evaluate whether MPP's emissions could be transported to the GCNP and then impact haze levels there. Spatial analyses indicated that particulate sulfur levels were strongly correlated across the monitoring network, regardless of whether the monitoring stations were upwind or downwind of MPP. This indicates that particulate sulfur levels in this region were influenced by distant regional emission sources. A significant particulate sulfur contribution from a point source such as MPP would result in a non-uniform pattern downwind. There was no suggestion of this in the data. Furthermore, correlations between the MPP tracer and ambient particulate sulfur and light scattering at locations in the park were virtually zero for averaging times ranging from 24 hr to 1 hr. Hour-by-hour MPP tracer levels and light scattering were individually examined, and still no positive correlations were detected. Finally, agreement between tracer and particulate sulfur did not improve as a function of meteorological regime, implying that, even during cloudy monsoon days when more rapid conversion of SO2 to particulate sulfur would be expected, there was no evidence for downwind particulate sulfur impacts. Despite the fact that MPP was a large source of SO2 and tracer, neither time series nor correlation analyses were able to detect any meaningful relationship between MPP's SO2 and tracer emission "signals" to particulate sulfur or light scattering.  相似文献   

2.
ABSTRACT

Receptor-based chemical mass balance (CMB) analysis techniques are designed to apportion species that are conserved during pollutant transport using conserved source profiles. The techniques will fail if non-conservative species (or profiles) are not properly accounted for in the CMB model. The straightforward application of the CMB model developed for Project MOHAVE using regional profiles resulted in a significant under-prediction of total sulfate oxides (SOx, SO2 plus fine particulate sulfate) for many samples at Meadview, AZ. In addition, for these samples the concentration of the inert tracer emitted from the MOHAVE Power Project (MPP), ocPDCH, was also under-predicted. A second-generation model has been developed which assumes that separation of particles and SO2 can occur in the MPP plume during nighttime stable plume conditions. This second-generation CMB model accounts for all SOx present at the various receptor sites. In addition, the concentrations of ocPDCH and the presence of other inert tracers of emission from regional sources are accurately predicted. The major source of SOx at Meadview was the MPP, but the major source of sulfate at this site was the Las Vegas urban area. At Hopi Point in the Grand Canyon, the Baja California region (Imperial Valley and northwestern Mexico) was the major source of both SOx and sulfate.  相似文献   

3.
Abstract

The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was ±0.6 μg/m3 organic material, ±0.3 μg/m3 ammonium sulfate, and ±0.07 μg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction.  相似文献   

4.
The precision and accuracy of the determination of particu-late sulfate and fluoride, and gas phase SO2 and HF are estimated from the results obtained from collocated replicate samples and from collocated comparison samples for high-and low-volume filter pack and annular diffusion denuder samplers. The results of replicate analysis of collocated samples and replicate analyses of a given sample for the determination of spherical aluminosilicate fly ash particles have also been compared. Each of these species is being used in the chemical mass balance source apportionment of sulfur oxides in the Grand Canyon region as part of Project MOHAVE, and the precision and accuracy analyses given in this paper provide input to that analysis. The precision of the various measurements reported here is ±1.8 nmol/m3 and ±2.5 nmol/m3 for the determination of SO2 and sulfate, respectively, with an annular denuder. The precision is ±0.5 nmol/m3 and ±2.0 nmol/m3 for the determination of the same species with a high-volume or low-volume filter pack. The precision for the determination of the sum of HF(g) and fine particulate fluoride is ±0.3 nmol/m3. The precision for the determination of aluminosilicate fly ash particles is ±100 particles/m3. At high concentrations of the various species, reproducibility of the various measurements is ±10% to ±14% of the measured concentration. The concentrations of sulfate determined using filter pack samplers are frequently higher than those determined using diffusion denuder sampling systems. The magnitude of the difference (e.g., 2-10 nmol sulfate/m3) is small, but important relative to the precision of the data and the concentrations of particulate sul-fate present (typically 5-20 nmol sulfate/m3). The concentrations of SO2(g) determined using a high-volume cascade impactor filter pack sampler are correspondingly lower than those obtained with diffusion denuder samplers. The concentrations of SOx (SO2(g) plus particulate sulfate) determined using the two samplers during Project MOHAVE at the Spirit Mountain, NV, and Hopi Point, AZ, sampling sites were in agreement. However, for samples collected at Painted Desert, AZ, and Meadview, AZ, the concentrations of SOx and SO2(g) determined with a high-volume cascade impactor filter pack sampler were frequently lower than those determined using a diffusion denuder sampling system. These two sites had very low ambient relative humidity, an average of 25%. Possible causes of observed differences in the SO2(g) and sulfate results obtained from different types of samplers are given.  相似文献   

5.
As part of an environmental impact assessment for building a new town in Junk Bay, continuous measurement of SO2 and particulate concentrations was carried out from October 1981 to June 1982 at three sites in Junk Bay to study the air quality in the area. Flame photometric SO2 analyzers were used to measure ambient SO2 level, whereas tape monitors were used to measure the ambient suspended particulate level (in terms of soiling index, or coefficient of haze per 1000 feet). It was found that the mean SO2 concentrations at the three monitoring sites ranged from 5μg m−3 to 35μg m−3. Maximum daily values up to about 250 μg m−3 and hourly values up to 800 μg m −3 had been recorded on occasion. Comparison of the hourly meteorological data and the hourly SO2 concentrations in four high-SO2-level days suggested that the ‘sulfur dioxide episodes’ were all associated with very light wind speeds and local sources. The mean coefficient of haze level in Junk Bay was less than one, which corresponded to very slight particulate pollution.  相似文献   

6.
ABSTRACT

Project MOHAVE was a major monitoring, modeling, and data analysis study whose objectives included the estimation of the contributions of the Mohave Power Project (MPP) and other sources to visibility impairment in the southwestern United States, in particular at Grand Canyon National Park. A major element of Project MOHAVE was the release of perfluorocarbon tracers at MPP and other locations during 50-day summer and 30-day winter intensive study periods. Tracer data (from about 30 locations) were sequestered until several source and receptor models were used to predict tracer concentrations. None of the models was successful in predicting the tracer concentrations; squared correlation coefficients between predicted and measured tracer were all less than 0.2, and most were less than 0.1.  相似文献   

7.
The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was +/- 0.6 microg/m3 organic material, +/- 0.3 microg/m3 ammonium sulfate, and +/- 0.07 microg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction.  相似文献   

8.
The trends in and relationships between ambient air concentrations of sulfur dioxide and sulfate aerosols at 48 urban sites and 27 nonurban sites throughout the U.S. between 1963 and 1972 have been analyzed. The substantial decreases in ambient SO2 concentrations measured at urban sites in the eastern and midwestern U.S. are consistent with the corresponding reductions in local SO2 emissions, but these decreases have been accompanied by only modest decreases in ambient sulfate concentrations. Large differences in the amounts of SO2 emitted within individual air quality control regions are associated with much smaller differences in the corresponding ambient sulfate concentrations. Substantial changes in the patterns of SO2 emissions between air quality regions result in essentially no differences between ambient sulfate concentrations in those air quality regions. Comparisons of several air quality regions in the eastern and western U.S. with similar SO2 emission levels and patterns of emissions clearly demonstrates the higher ambient sulfate concentration levels in eastern air quality control regions. Relationships between SO2, sulfates, and vanadium concentrations at eastern nonurban U.S. sites cannot be explained by local emission sources. These various observed results can be best explained by long distance sulfur oxide transport with chemical conversion of SO2 to sulfates occurring over ranges of hundreds of kilometers. This conclusion has been suggested earlier and the present analysis strongly supports previous discussions. An impact of long range transport of sulfates is to emphasize the need for Consistent strategies for reduction of sulfur oxides throughout large geographical regions. Additions of large capacities involving elevated sources in mid-continental or western regions could result in significant increases in sulfate concentrations well downwind of such sources. Some of the types of research activities required to quantitate crucial experimental parameters are discussed.  相似文献   

9.
Project MOHAVE was a major monitoring, modeling, and data analysis study whose objectives included the estimation of the contributions of the Mohave Power Project (MPP) and other sources to visibility impairment in the southwestern United States, in particular at Grand Canyon National Park. A major element of Project MOHAVE was the release of perfluorocarbon tracers at MPP and other locations during 50-day summer and 30-day winter intensive study periods. Tracer data (from about 30 locations) were sequestered until several source and receptor models were used to predict tracer concentrations. None of the models was successful in predicting the tracer concentrations; squared correlation coefficients between predicted and measured tracer were all less than 0.2, and most were less than 0.1.  相似文献   

10.
A study was carried out to investigate the emissions of SO2 and primary sulfate materials (H2SO4 and inorganic particulate matter) from a boiler burning fossil fuel and using a wet-limestone scrubber for SO2 removal. Experiments were designed to assess the scrubbing efficiency for SO2 and sulfate, as well as the potential for scrubber liquor reentrainment. The boiler studied was an 820 MW cyclone-fired unit equipped with a wet, limestone scrubber, consisting of eight two-stage venturi-absorber modules designed to treat a flue gas flow rate of 2,760,000 acfm. The boiler fuel was a low-grade sub-bituminous coal with ash and sulfur contents of 25 and 5%, respectively. Multiple-sampling methods were employed concurrently on the inlet and outlet of a candidate absorber module to measure SO2, total water-soluble sulfate, and free H2SO4. Samples were collected during three field experiments from September 1977 through April 1978. The average SO2 scrubbing efficiency was 76% and was observed to decrease over the 5 day operation/maintenance cycle of the module. The total water-soluble sulfate input to the scrubber amounted to approximately 1% of the total sulfur oxides and was composed of a 5:1 ratio of H2SO4 to particulate sulfate. The total sulfate scrubbing efficiency, averaging about 29%, was invariant with respect to SO2 removal. The sulfate emissions measured in the scrubber exit gas consisted of about 85 % H2SO4 as a fine aerosol. Mass emissions of acid and particulate sulfate were calculated as 1730 Ib/hr and 305 Ib/hr, respectively.  相似文献   

11.
ABSTRACT

During wintertime, haze episodes occur in the Dallas-Ft. Worth (DFW) urban area. Such episodes are characterized by substantial light scattering by particles and relatively low absorption, leading to so-called “white haze.” The objective of this work was to assess whether reductions in the emissions of SO2 from specific coal-fired power plants located over 100 km from DFW could lead to a discernible change in the DFW white haze. To that end, the transport, dispersion, deposition, and chemistry of the plume of a major power plant were simulated using a reactive plume model (ROME). The realism of the plume model simulations was tested by comparing model calculations of plume concentrations with aircraft data of SF6 tracer concentrations and ozone concentrations. A second-order closure dispersion algorithm was shown to perform better than a first-order closure algorithm and the empirical Pasquill-Gifford-Turner algorithm. For plume impact assessment, three actual scenarios were simulated, two with clear-sky conditions and one with the presence of fog prior to the haze. The largest amount of sulfate formation was obtained for the fog episode. Therefore, a hypothetical scenario was constructed using the meteorological conditions of the fog episode with input data values adjusted to be more conducive to sulfate formation. The results of the simulations suggest that reductions in the power plant emissions lead to less than proportional reductions in sulfate concentrations in DFW for the fog scenario. Calculations of the associated effects on light scattering using Mie theory suggest that reduction in total (plume + ambient) light extinction of less than 13% would be obtained with a 44% reduction in emissions of SO2 from the modeled power plant.  相似文献   

12.
An examination of the available toxicological literature indicates that sulfur dioxide itself would be properly classified as a mild respiratory irritant, the main portion of which is absorbed in the upper respiratory tract. The reported industrial experience of symptoms of mild chronic respiratory irritation from exposures at or above 5 ppm is compatible with what would have been predicted on the basis of available toxicological data. The basic physiological response to inhalation of pure SO2 appears to be a mild degree of bronchoconstriction reflected in a measurable increase in flow resistance. Although the response is highly variable, most individuals tested have responded to 5 ppm and levels of 5 to 10 ppm have upon occasion produced severe bronchospasm in sensitive individuals. This serves to point up the fact that experience with the industrial Threshold Limit Value (5 ppm) is not applicable as a guide for the general population. Although the majority of individuals tested have shown no detectable response to levels of 1 ppm, there are again sensitive individuals who have responded. It is not known whether these individuals would have responded to concentrations lower than this. The response of these more sensitive individuals to 1 ppm would be classified as detectable response, not as severe bronchospasm. An examination of the available toxicological literature also indicates that sulfuric acid and irritant sulfates, to the extent that the latter have been examined, are more potent irritants than sulfur dioxide. This has been demonstrated in studies using morality and lung pathology as criteria as well as in studies using alterations in pulmonary function in experimental animals and human subjects. The irritant potency of these substances is affected by particle size and by relative humidity, which factors are probably interrelated. It is unfortunate that these substances have not been as yet studied in as great detail as has the less irritant sulfur dioxide. There is evidence which cannot be ignored, even though it is based entirely on animal experiments of one investigator, indicating that the presence of particulate material capable of oxidizing sulfur dioxide to sulfuric acid caused a three to fourfold potentiation of the irritant response. The aerosols causing this potentiation were soluble salts of ferrous iron, manganese and vanadium all of which would become droplets upon inhalation. Insoluble aerosols such as carbon, iron oxide fume, triphenylphosphate or fly ash did not cause a potentiation of the irritant action of SO2 even when used at higher concentrations. The concentrations of SO2 used in these various experiments were in some cases as low as 0.16 ppm. The catalytic aerosols were used at concentrations of 0.7 to 1 mg/m3 which is above any reported levels of these metals in urban air. If the SO2 present as an air pollutant remained unaltered until removed by dilution, there would be no evidence in the toxicological literature suggesting that it would be likely to have any effects on man at prevailing levels. Studies of atmospheric chemistry have shown that SO2 does not remain unaltered in the atmosphere, especially under onditions of high humidity and in the presence of particulate material, but is converted to H2SO4. Such a conversion increases its irritant potency. On this basis the toxicological literature combined with the literature of atmospheric chemistry suggest that sulfur dioxide levels be controlled in terms of the potential formation of irritant particles. This means that control measures as far as feasible should be aimed at both SO2 and particulate material and not against either alone.  相似文献   

13.
Project MOHAVE (Measurements of Haze and Visual Effects) encompassed a 1-yr field study in the southwestern United States from September 1991 through August 1992. The congressionally mandated study was a joint partnership between the U.S. Environmental Protection Agency, Southern California Edison, and the National Park Service. A major objective of this study was to quantify the potential haze impacts on the nearby Grand Canyon National Park from the 1580 MW coal-fired MOHAVE Power Project (MPP). Any regional impacts from MPP were from secondary fine sulfate. In this paper, we explore the temporal and spatial patterns of particulate sulfur (Sp) and "organic mass by hydrogen" (OMH) during the summer intensive, conducted from mid-July through the end of August 1992. Using an innovative hierarchical pattern recognition classification scheme, we developed 6 groups of Sp and 8 groups of OMH temporally similar behaving patterns in the sampling region. From a regional understanding of synoptic meteorology, these Sp patterns were explainable. We observed two regional gradients. One gradient was a west-to-east decreasing gradient, most likely the result of major sources from urban southern California, including the San Joaquin Valley. The other decreasing gradient was from south-to-north, perhaps the result of emissions emanating from the large urban centers in northern Mexico. The patterns for OMH were not as regionally homogeneous as the patterns for Sp. A west-to-east decreasing gradient was observed for OMH, along with reduced values in the lower Colorado River Valley and some higher values in central and eastern Arizona. The west-to-east decreasing gradient suggests the presence of the Los Angeles urban plume, while the higher values in central and eastern Arizona may be due to biogenic emissions and increased seasonal fires.  相似文献   

14.
ABSTRACT

Emissions from distant source areas are often imagined to provide a steady background to the emissions of whatever local sources are being studied. As part of Project MOHAVE in summer 1992, several air mass markers and an injected stack tracer were measured hourly near the Grand Canyon. Observed haze events generally coincided with transients in methylchloroform and water vapor, which we interpret as endemic tags for air from southern California and the subtropics. The results depict a dynamic regional background.  相似文献   

15.
Receptor-based chemical mass balance (CMB) analysis techniques are designed to apportion species that are conserved during pollutant transport using conserved source profiles. The techniques will fail if non-conservative species (or profiles) are not properly accounted for in the CMB model. The straightforward application of the CMB model developed for Project MOHAVE using regional profiles resulted in a significant under-prediction of total sulfate oxides (SOx, SO2 plus fine particulate sulfate) for many samples at Meadview, AZ. In addition, for these samples the concentration of the inert tracer emitted from the MOHAVE Power Project (MPP), ocPDCH, was also under-predicted. A second-generation model has been developed which assumes that separation of particles and SO2 can occur in the MPP plume during nighttime stable plume conditions. This second-generation CMB model accounts for all SOx present at the various receptor sites. In addition, the concentrations of ocPDCH and the presence of other inert tracers of emission from regional sources are accurately predicted. The major source of SOx at Meadview was the MPP, but the major source of sulfate at this site was the Las Vegas urban area. At Hopi Point in the Grand Canyon, the Baja California region (Imperial Valley and northwestern Mexico) was the major source of both SOx and sulfate.  相似文献   

16.
This paper investigates the impact of light duty diesels on California visibility in the early 1990s. It is found that, without increased dieselization, there will be little change in statewide visibility levels from the late 1970s to the early 1990s. Visibility impacts from diesels are calculated for various scenarios of diesel use and particulate control. The likely dieselization (20%), do nothing particulate control (0.4 g/ml) scenario will change projected statewide emissions slightly for HC ( –2 % ) , NO x (+1%), SO x (+5%), and TSP (+1%) but will increase statewide emissions of elemental carbon (soot) by about 80%. Simplistic haze budget calculations indicate that this increase In soot emissions should reduce visibility about 10 to 25% in California. More precise and geographically detailed visibility calculations are performed by applying a lead tracer model to data for 86 California locations. The lead tracer model indicates that the likely dieselization, do nothing control scenario will reduce visibility by about 10 to 35%, with the greatest impacts occurring in and near urban areas. Actual visibility decreases for this scenario may even be much greater, 20 to 50%, because the analysis does not address two other significant factors: (1) increased SO4 –2 levels due to catalytic SO2 oxidation by soot and to higher SO2 emissions, and (2) increased soot emissions due to dieselization of the medium and heavy duty fleets.  相似文献   

17.
Abstract

A simple data analysis method called the Tracer-Aerosol Gradient Interpretive Technique (TAGIT) is used to attribute particulate S and SO2 at Big Bend National Park in Texas and nearby areas to local and regional sources. Particulate S at Big Bend is of concern because of its effects on atmospheric visibility. The analysis used particulate S, SO2 , and perfluorocarbon tracer data from six 6-hr sampling sites in and near Big Bend National Park. The data were collected in support of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study; the field portion was conducted from July through October 1999. Perfluorocarbon tracer was released continuously from a tower at Eagle Pass, TX, approximately 25 km northeast of two large coal-fired power plants (Carbon I and II) in Coahuila, Mexico, and approximately 270 km east-southeast of Big Bend National Park.

The perfluorocarbon tracer did not properly represent the location of the emissions from the Carbon power plants for individual 6-hr sampling periods and attributed only 3% of the particulate S and 27% of the SO2 at the 6-hr sites in and near Big Bend to sources represented by the tracer. An alternative approach using SO2 to tag “local” sources such as the Carbon plants attributed 10% of the particulate S and 75% of the SO2 at the 6-hr sites to local sources. Based on these two approaches, most of the regional (65–86%) and a small fraction (19–31%) of the local SO2 was converted to particulate S. The analysis implies that substantial reductions in particulate S at Big Bend National Park cannot be achieved by only reducing emissions from the Carbon power plants; reduction of emissions from many sources over a regional area would be necessary.  相似文献   

18.
Federal new source performance standards to control air emissions of sulfur dioxide from new industrial boilers were proposed by EPA on June 19, 1986. These standards would require boiler owners to reduce SO2 emissions by 90 percent and meet an emission limit of 1.2 lb/MM Btu of heat input for coal-fired boilers and 0.8 lb/MM Btu for oil-fired boilers. In developing these standards, several regulatory options were considered, from standards that could be met by firing low sulfur fuels to standards that would necessitate flue gas treatment. The environmental, economic, and cost impacts of each option were analyzed. National impacts were estimated by a computer model that projects the population of new boilers over the 5-year period following proposal, predicts the compliance strategy that will be used to comply with the particular option (always assuming that the lowest cost method of compliance will be selected), and estimates the resulting emission reductions and costs. Impacts on specific industries and on model boilers were also analyzed. This paper focuses on these analyses and their results. The Agency's conclusions from these analyses, which led to the decision to establish percent reduction standards, are provided, and the proposed SO2 standards are summarized. The proposed standards also include an emission limit for particulate matter from oil-fired boilers (0.1 lb/MM Btu). However, this article focuses only on the SO2 standards.  相似文献   

19.
Abstract

Supply curves were prepared for coal-fired power plants in the contiguous United States switching to Wyoming's Powder River Basin (PRB) low-sulfur coal. Up to 625 plants, representing ~44% of the nameplate capacity of all coal-fired plants, could switch. If all switched, more than $8.8 billion additional capital would be required and the cost of electricity would increase by up to $5.9 billion per year, depending on levels of plant derating. Coal switching would result in sulfur dioxide (SO2) emissions reduction of 4.5 million t/yr. Increase in cost of electricity would be in the range of 0.31-0.73 cents per kilowatt-hour. Average cost of S emissions reduction could be as high as $1298 per t of SO2. Up to 367 plants, or 59% of selected plants with 32% of 44% nameplate capacity, could have marginal cost in excess of $1000 per t of SO2. Up to 73 plants would appear to benefit from both a lowering of the annual cost and a lowering of SO2 emissions by switching to the PRB coal.  相似文献   

20.
ABSTRACT

A study was conducted to estimate the changes in wintertime visual air quality in Dallas-Fort Worth (DFW) that might occur due to proposed reductions in SO2 emissions at two steam electric generating plants in eastern Texas, each over 100 km from the city. To provide information for designing subsequent investigations, the haze was characterized broadly during the first year of the study. Meteorological data acquired then demonstrated that, during haze episodes, emissions from only one of the two plants were likely to be transported directly to DFW. Therefore, the second year of the study was centered on just one of the power plants. Air quality was then characterized within the urban area and at rural locations that would be upwind and downwind of the plant during transport to DFW. An instrumented aircraft measured plume dispersion and the air surrounding the plume on selected days. A mathematical model was used to predict the change that would occur in airborne particulate matter concentrations in DFW if SO2 emissions were reduced to reflect the proposed limitations. The contribution of particles in the atmosphere to light extinction was estimated, and simulated photographs were produced to illustrate the visibility changes. The study concluded that the proposed emission reductions would, at most, subtly change perceived wintertime visibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号